Blue-Shifting Hydridic Hydrogen Bonds in Complexes of (Me3Si)3SiH

. 2025 Dec 18 ; 129 (50) : 11512-11522. [epub] 20251016

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41099663

Hydridic hydrogen bonds, formed by X-H···Y interactions with negatively charged hydrogen, expand the conventional view of H-bonding beyond elements that are more electronegative than hydrogen. Using a highly polarizable silane donor (Me3Si)3SiH, we systematically examined various electron acceptors (σ- and π-hole) and observed both red and blue shifts in the X-H stretching frequency. We provide the first experimental evidence of a blue-shifting hydridic bond and report the largest experimental blue shift for any hydrogen-bonded system. Thermodynamic, spectroscopic, and theoretical analyses show that the dispersion energy is crucial for stabilizing these complexes and reproducing their spectral signatures. Notably, the IR band intensity increases for red-shifting bonds and increases or decreases for blue-shifting hydridic bonds, offering a distinct spectroscopic fingerprint. Adiabatic ALMO-EDA calculations indicate that red shifts in hydridic bonds primarily arise from electrostatics and dispersion rather than charge transfer. It can be thus concluded that protonic as well as hydridic hydrogen bonds exhibit similar spectral manifestations, namely, the red or blue shift of the X-H stretching frequency connected with the intensity increase or decrease. These findings broaden hydrogen-bonding paradigms for diverse chemical applications.

Zobrazit více v PubMed

Hobza P., Havlas Z.. Blue-Shifting Hydrogen Bonds. Chem. Rev. 2000;100:4253. doi: 10.1021/cr990050q. PubMed DOI

Barnes A. J.. Blue-shifting hydrogen bondsare they improper or proper? J. Mol. Struct. 2004;704(1):3–9. doi: 10.1016/j.molstruc.2004.02.040. DOI

Pinchas S.. Infrared Absorption of Aldehydic C-H Group. Anal. Chem. 1957;29(3):334–339. doi: 10.1021/ac60123a003. DOI

Pinchas S.. Intramolecular Hydrogen Bonding In O-nitrobenzaldehyde And Related Compounds. J. Phys. Chem. 1963;67(9):1862–1865. doi: 10.1021/j100803a030. DOI

Hobza P., Špirko V., Havlas Z., Buchhold K., Reimann B., Barth H. D., Brutschy B.. Anti-Hydrogen Bond between Chloroform and Fluorobenzene. Chem. Phys. Lett. 1999;299:180. doi: 10.1016/S0009-2614(98)01264-0. DOI

Delanoye S. N., Herrebout W. A., van der Veken B. J.. Blue Shifting Hydrogen Bonding in the Complexes of Chlorofluoro Haloforms with Acetone-d6 and Oxirane-d4. J. Am. Chem. Soc. 2002;124(40):11854–11855. doi: 10.1021/ja027610e. PubMed DOI

Arunan E., Desiraju G. R., Klein R. A., Sadlej J., Scheiner S., Alkorta I., Clary D. C., Crabtree R. H., Dannenberg J. J., Hobza P.. et al. Definition of the hydrogen bond (IUPAC Recommendations 2011) Pure Appl. Chem. 2011;83(8):1637–1641. doi: 10.1351/PAC-REC-10-01-02. DOI

Tantardini C., Oganov A. R.. Thermochemical electronegativities of the elements. Nat. Commun. 2021;12(1):2087. doi: 10.1038/s41467-021-22429-0. PubMed DOI PMC

Grabowski S. J., Sokalski W. A., Leszczynski J.. Hydride bonding – Ab initio studies of BeH2··· Li+, BeH2··· Na+ and BeH2··· Mg2+ model systems. Chem. Phys. Lett. 2006;422(4):334–339. doi: 10.1016/j.cplett.2006.01.120. DOI

Sahoo D. K., Jena S., Dutta J., Rana A., Biswal H. S.. Nature and Strength of M–H···S and M–H···Se (M = Mn, Fe, & Co) Hydrogen Bond. J. Phys. Chem. A. 2019;123(11):2227–2236. doi: 10.1021/acs.jpca.8b12003. PubMed DOI

Rozas I., Alkorta I., Elguero J.. Inverse Hydrogen-Bonded Complexes. J. Phys. Chem. A. 1997;101(23):4236–4244. doi: 10.1021/jp963943k. DOI

Jabłoński M.. Binding of X–H to the lone-pair vacancy: Charge-inverted hydrogen bond. Chem. Phys. Lett. 2009;477(4):374–376. doi: 10.1016/j.cplett.2009.07.009. DOI

Jabłoński M.. Intramolecular Charge-Inverted Hydrogen Bond. J. Mol. Struct.: THEOCHEM. 2010;948:21. doi: 10.1016/j.theochem.2010.02.013. DOI

Jabłoński M.. Theoretical Insight into the Nature of the Intermolecular Charge-Inverted Hydrogen Bond. Comput. Theor. Chem. 2012;998:39. doi: 10.1016/j.comptc.2012.05.023. DOI

Jabłoński M., Sokalski W. A.. Physical Nature of Interactions in Charge-Inverted Hydrogen Bonds. Chem. Phys. Lett. 2012;552:156. doi: 10.1016/j.cplett.2012.09.061. DOI

Jabłoński M.. Comparative Study of Geometric and QTAIM-Based Differences between X-H···Y Intramolecular Charge-Inverted Hydrogen Bonds, M1···(H–X) Agostic Bonds and M2···(H2-XH) σ Interactions (X = Si, Ge) Comput. Theor. Chem. 2016;1096:54. doi: 10.1016/j.comptc.2016.09.023. DOI

Jabłoński M.. Ten Years of Charge-Inverted Hydrogen Bonds. Struct. Chem. 2020;31:61. doi: 10.1007/s11224-019-01454-2. DOI

Jabłoński M.. Red and blue shifted hydridic bonds. J. Comput. Chem. 2014;35(24):1739–1747. doi: 10.1002/jcc.23678. PubMed DOI

Lipkowski P., Grabowski S. J., Leszczynski J.. Properties of the Halogen–Hydride Interaction: An ab Initio and“Atoms in Molecules” Analysis. J. Phys. Chem. A. 2006;110(34):10296–10302. doi: 10.1021/jp062289y. PubMed DOI

Civiš S., Lamanec M., Špirko V., Kubišta J., Špet’ko M., Hobza P.. Hydrogen Bonding with Hydridic Hydrogen–Experimental Low-Temperature IR and Computational Study: Is a Revised Definition of Hydrogen Bonding Appropriate? J. Am. Chem. Soc. 2023;145(15):8550–8559. doi: 10.1021/jacs.3c00802. PubMed DOI PMC

Lamanec M., Zienertová J., Špet́ko M., Nachtigallová D., Hobza P.. Similarities and Differences of Hydridic and Protonic Hydrogen Bonding. ChemPhyschem. 2024;25(17):e202400403. doi: 10.1002/cphc.202400403. PubMed DOI

Lamanec M., Civiš S., Hobza P.. On the similar spectral manifestations of protonic and hydridic hydrogen bonds despite their different origin. Commun. Chem. 2024;7(1):254. doi: 10.1038/s42004-024-01334-9. PubMed DOI PMC

Desiraju G. R., Ho P. S., Kloo L., Legon A. C., Marquardt R., Metrangolo P., Politzer P., Resnati G., Rissanen K.. Definition of the halogen bond (IUPAC Recommendations 2013) Pure Appl. Chem. 2013;85(8):1711–1713. doi: 10.1351/PAC-REC-12-05-10. DOI

Aakeroy C. B., Bryce D. L., Desiraju G. R., Frontera A., Legon A. C., Nicotra F., Rissanen K., Scheiner S., Terraneo G., Metrangolo P.. et al. Definition of the chalcogen bond (IUPAC Recommendations 2019) Pure Appl. Chem. 2019;91(11):1889–1892. doi: 10.1515/pac-2018-0713. DOI

Resnati G., Bryce D. L., Desiraju G. R., Frontera A., Krossing I., Legon A. C., Metrangolo P., Nicotra F., Rissanen K., Scheiner S.. et al. Definition of the pnictogen bond (IUPAC Recommendations 2023) Pure Appl. Chem. 2024;96(1):135–145. doi: 10.1515/pac-2020-1002. DOI

Joseph J., Jemmis E.-D.. Red-, Blue-, or No-Shift in Hydrogen Bonds: A Unified Explanation. J. Am. Chem. Soc. 2007;129(15):4620–4632. doi: 10.1021/ja067545z. PubMed DOI

Alabugin I. V., Manoharan M., Peabody S., Weinhold F.. Electronic Basis of Improper Hydrogen Bonding: A Subtle Balance of Hyperconjugation and Rehybridization. J. Am. Chem. Soc. 2003;125(19):5973–5987. doi: 10.1021/ja034656e. PubMed DOI

Zierkiewicz W., Jurečka P., Hobza P.. On Differences between Hydrogen Bonding and Improper Blue-Shifting Hydrogen Bonding. ChemPhyschem. 2005;6(4):609–617. doi: 10.1002/cphc.200400243. PubMed DOI

Mao Y., Head-Gordon M.. Probing Blue-Shifting Hydrogen Bonds with Adiabatic Energy Decomposition Analysis. J. Phys. Chem. Lett. 2019;10(14):3899–3905. doi: 10.1021/acs.jpclett.9b01203. PubMed DOI

Bondybey V. E., Smith A. M., Agreiter J.. New Developments in Matrix Isolation Spectroscopy. Chem. Rev. 1996;96:2113. doi: 10.1021/cr940262h. PubMed DOI

Kossmann S., Neese F.. Efficient Structure Optimization with Second-Order Many-Body Perturbation Theory: The RIJCOSX-MP2Method. J. Chem. Theory Comput. 2010;6(8):2325–2338. doi: 10.1021/ct100199k. PubMed DOI

Peterson K. A., Dunning T.. H. Accurate Correlation Consistent Basis Sets for Molecular Core–Valence Correlation Effects: The Second Row Atoms Al–Ar, and the First Row Atoms B–Ne Revisited. J. Chem. Phys. 2002;117:10548. doi: 10.1063/1.1520138. DOI

Peterson K. A., Yousaf K. E.. Molecular core-valence correlation effects involving the post- elements Ga–Rn: Benchmarks and new pseudopotential-based correlation consistent basis sets. J. Chem. Phys. 2010;133(17):174116. doi: 10.1063/1.3503659. PubMed DOI

Mardirossian N., Head-Gordon M.. ωB97M-V: A combinatorially optimized, range-separated hybrid, meta-GGA density functional with VV10 nonlocal correlation. J. Chem. Phys. 2016;144(21):214110. doi: 10.1063/1.4952647. PubMed DOI

Adamo C., Barone V.. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999;110(13):6158–6170. doi: 10.1063/1.478522. DOI

Caldeweyher E., Bannwarth C., Grimme S.. Extension of the D3 dispersion coefficient model. J. Chem. Phys. 2017;147(3):034112. doi: 10.1063/1.4993215. PubMed DOI

Weigend F., Ahlrichs R.. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005;7(18):3297–3305. doi: 10.1039/b508541a. PubMed DOI

Mardirossian N., Head-Gordon M.. Thirty years of density functional theory in computational chemistry: An overview and extensive assessment of 200 density functionals. Mol. Phys. 2017;115(19):2315–2372. doi: 10.1080/00268976.2017.1333644. DOI

Glendening E. D., Landis C. R., Weinhold F.. NBO 7.0: New vistas in localized and delocalized chemical bonding theory. J. Comput. Chem. 2019;40(25):2234–2241. doi: 10.1002/jcc.25873. PubMed DOI

Epifanovsky E., Gilbert A. T. B., Feng X., Lee J., Mao Y., Mardirossian N., Pokhilko P., White A. F., Coons M. P., Dempwolff A. L.. et al. Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package. J. Chem. Phys. 2021;155(8):084801. doi: 10.1063/5.0055522. PubMed DOI PMC

Johnson E. R., Keinan S., Mori-Sánchez P., Contreras-García J., Cohen A. J., Yang W.. Revealing Noncovalent Interactions. J. Am. Chem. Soc. 2010;132(18):6498–6506. doi: 10.1021/ja100936w. PubMed DOI PMC

Lu T.. A comprehensive electron wavefunction analysis toolbox for chemists, Multiwfn. J. Chem. Phys. 2024;161(8):082503. doi: 10.1063/5.0216272. PubMed DOI

Lu T., Chen F.. Atomic Dipole Moment Corrected Hirshfeld Population Method. J. Theor. Comput. Chem. 2012;11(1):163–183. doi: 10.1142/S0219633612500113. DOI

Mahmoudi S., Gruene T., Schröder C., Ferjaoui K. D., Fröjdh E., Mozzanica A., Takaba K., Volkov A., Maisriml J., Paunović V.. et al. Experimental determination of partial charges with electron diffraction. Nature. 2025;645(8079):88–94. doi: 10.1038/s41586-025-09405-0. PubMed DOI PMC

Jeziorski B., Moszynski R., Szalewicz K.. Perturbation Theory Approach to Intermolecular Potential Energy Surfaces of van Der Waals Complexes. Chem. Rev. 1994;94:1887. doi: 10.1021/cr00031a008. DOI

Mao Y., Horn P. R., Head-Gordon M.. Energy decomposition analysis in an adiabatic picture. Phys. Chem. Chem. Phys. 2017;19(8):5944–5958. doi: 10.1039/C6CP08039A. PubMed DOI

Neese F.. Software update: The ORCA program systemVersion 5.0. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2022;12(5):e1606. doi: 10.1002/wcms.1606. DOI

Smith D. G. A., Burns L. A., Simmonett A. C., Parrish R. M., Schieber M. C., Galvelis R., Kraus P., Kruse H., Di Remigio R., Alenaizan A.. et al. PSI4 1.4: Open-source software for high-throughput quantum chemistry. J. Chem. Phys. 2020;152(18):184108. doi: 10.1063/5.0006002. PubMed DOI PMC

Humphrey W., Dalke A., Schulten K. V.. Visual molecular dynamics. J. Mol. Graphics. 1996;14(1):33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI

Lo R., Manna D., Lamanec M., Dračínský M., Bouř P., Wu T., Bastien G., Kaleta J., Miriyala V. M., Špirko V.. et al. The Stability of Covalent Dative Bond Significantly Increases with Increasing Solvent Polarity. Nat. Commun. 2022;13(1):2107. doi: 10.1038/s41467-022-29806-3. PubMed DOI PMC

Mallada B., Gallardo A., Lamanec M., de la Torre B., Špirko V., Hobza P., Jelinek P.. Real-Space Imaging of Anisotropic Charge of σ-Hole by Means of Kelvin Probe Force Microscopy. Science. 2021;374:863. doi: 10.1126/science.abk1479. PubMed DOI

Steele D., Whiffen D.. The vibrational frequencies of hexafluorobenzene. Trans. Faraday Soc. 1959;55:369–376. doi: 10.1039/tf9595500369. DOI

Frankiss S. G., Harrison D. J.. Thermodynamic properties of fluorine compoundsXVI. The vibrational spectra and thermodynamic functions of pentafluorobenzene, chloropentafluorobenzene, bromopentafluorobenzene and methylpentafluorobenzene. Spectrochim. Acta, Part A. 1975;31(12):1839–1864. doi: 10.1016/0584-8539(75)80239-X. DOI

Shirhatti P. R., Maity D. K., Wategaonkar S.. C–H···Y Hydrogen Bonds in the Complexes of p-Cresol and p-Cyanophenol with Fluoroform and Chloroform. J. Phys. Chem. A. 2013;117(11):2307–2316. doi: 10.1021/jp311596x. PubMed DOI

Roberts D. W., Mao Y.. Probing “hydridic hydrogen bonds” using energy decomposition analysis based on absolutely localized molecular orbitals. Phys. Chem. Chem. Phys. 2025;27(27):14370–14378. doi: 10.1039/D5CP01581B. PubMed DOI

Li X., Liu L., Schlegel H. B.. On the Physical Origin of Blue-Shifted Hydrogen Bonds. J. Am. Chem. Soc. 2002;124(32):9639–9647. doi: 10.1021/ja020213j. PubMed DOI

Kong L., Bischoff F. A., Valeev E. F.. Explicitly Correlated R12/F12 Methods for Electronic Structure. Chem. Rev. 2012;112(1):75–107. doi: 10.1021/cr200204r. PubMed DOI

Arunan E., Metrangolo P., Resnati G., Scheiner S.. IUPAC Recommendations: (Un)­equivocal Understanding of Hydrogen and Halogen Bonds and Their (Un)­equivocal Naming! Cryst. Growth Des. 2024;24(20):8153–8158. doi: 10.1021/acs.cgd.4c00982. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...