Comparison of Independent Analyses of Identical Image Sets Reveals Significant Analyst-to-Analyst Variability

. 2025 Jul 31 ; 36 (2) : . [epub] 20250512

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, srovnávací studie

Perzistentní odkaz   https://www.medvik.cz/link/pmid41111557

The Light Microscopy Research Group, a research group with the Association of Biomolecular Resource Facilities, organized a global study where participants were given artificially generated images of various specimens with various signal-to-noise and object proximity levels. Users were tasked with segmenting the images and providing measured metrics as part of the study. Rather than ranking algorithms, our goal was to study the sources of variability of the results across participants given the same task. This study highlights that substantial variability can exist between independent analyses of identical datasets, even when the analysis problem is relatively straightforward and the analysts are experienced. These findings further support the need for data and analysis methods that follow the findable, accessible, interoperable, reusable (FAIR) principles.

Zobrazit více v PubMed

Mische SM, Fisher NC, Meyn SM, et al. A review of the scientific rigor, reproducibility, and transparency studies conducted by the ABRF research groups. PubMed DOI PMC

Botvinik-Nezer R, Holzmeister F, Camerer CF, et al. Variability in the analysis of a single neuroimaging dataset by many teams. PubMed DOI PMC

Culley S, Caballero AC, Burden JJ, Uhlmann V. Made to measure: an introduction to quantifying microscopy data in the life sciences. PubMed DOI

Aaron J, Chew TL. A guide to accurate reporting in digital image processing – can anyone reproduce your quantitative analysis? PubMed DOI

Schmied C, Jambor HK. Effective image visualization for publications - a workflow using open access tools and concepts. PubMed DOI PMC

Marques O. Core image. In: SpringerBriefs in Computer Science: Springer, Cham; 2020:19-27. 10.1007/978-3-030-54032-6_3 DOI

Wiesner D, Svoboda D, Maška M, Kozubek M. CytoPacq: a web-interface for simulating multi-dimensional cell imaging. PubMed DOI PMC

Maška M, Ulman V, Delgado-Rodriguez P, et al. The cell tracking challenge: 10 years of objective benchmarking. PubMed DOI PMC

Holz D, Ichim AE, Tombari F, Rusu RB, Behnke S. Registration with the point cloud library: a modular framework for aligning in 3-D. In: IEEE Robotics & Automation Magazine. IEEE; 2015;22(4):110-24. 10.1109/MRA.2015.2432331 DOI

Gatti AA, Khallaghi S. PyCPD: Pure NumPy implementation of the coherent point drift algorithm. DOI

Virtanen P, Gommers R, Oliphant TE, et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. PubMed DOI PMC

Lambert T, Waters J. Towards effective adoption of novel image analysis methods. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...