Pathogenicity patterns in cytochrome P450 family

. 2025 ; 5 (1) : vbaf231. [epub] 20251014

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41111907

MOTIVATION: Cytochrome P450 proteins play a crucial role in human metabolism, ranging from hormone production to drug metabolism. While multiple commonly known variants have known effects on the individual cytochrome P450 protein performance, the pathogenicity information is usually experimentally limited to only a few mutations. Current pathogenicity prediction software enables the extension of the scope to virtually mutate all amino acids with all possible substitutional mutations. In this work, we do a comprehensive exploration that unveils pathogenicity patterns in the human cytochrome P450 family. Pathogenicity analysis was conducted across proteins using SIFT, AlphaMissense, and PrimateAI-3D algorithms. RESULTS: Our findings indicate a progressive increase in pathogenicity along protein tunnels-identified via MOLE-toward the cofactor binding site, underscoring the essential role of cofactor interactions in enzymatic function. Notably, the integrity of tunnels and cofactor environment emerges as a critical factor, with even single amino acid alterations potentially disrupting molecular guidance to active sites. These insights highlight the fundamental role of structural pathways in preserving cytochrome P450 functionality, with implications for understanding disease-associated variants and drug metabolism. AVAILABILITY AND IMPLEMENTATION: Data and source code can be found at https://github.com/annaspac/P450_pathogenicity_codes.

Zobrazit více v PubMed

Bhattacharjee A, Banerjee D, Mookherjee S  et al. ; Indian Genome Variation Consortium. Leu432Val polymorphism in CYP1B1 as a susceptible factor towards predisposition to primary open-angle glaucoma. Mol Vis  2008;14:841–50. PubMed PMC

Berlin DS, Sangkuhl K, Klein TE  et al.  PharmGKB summary: cytochrome P450, family 2, subfamily J, polypeptide 2: CYP2J2. Pharmacogenet Genomics  2011;21:308–11. 10.1097/FPC.0b013e32833d1011 PubMed DOI PMC

Blobaum AL, Lu Y, Kent UM  et al.  Formation of a novel reversible cytochrome P450 spectral intermediate: role of threonine 303 in P450 2E1 inactivation. Biochemistry  2004;43:11942–52. 10.1021/bi048882s PubMed DOI

Cheng J, Novati G, Pan J  et al.  Accurate proteome-wide missense variant effect prediction with AlphaMissense. Science (1979)  2023;381:eadg7492. 10.1126/science.adg7492 PubMed DOI

ClinVar VCV001339668 [Internet]. https://www.ncbi.nlm.nih.gov/clinvar/variation/1339668/ (27 April 2025, date last accessed).

ClinVar VCV002203049 [Internet]. https://www.ncbi.nlm.nih.gov/clinvar/variation/2203049/ (27 April 2025, date last accessed).

Denisov IG, Makris TM, Sligar SG  et al.  Structure and chemistry of cytochrome P450. Chem Rev  2005;105:2253–77. 10.1021/cr0307143 PubMed DOI

Fang Y, Tai Z, Hu K  et al.  Comprehensive review on plant cytochrome P450 evolution: copy number, diversity, and motif analysis from chlorophyta to dicotyledoneae. Genome Biol Evol  2024;16:evae240. 10.1093/gbe/evae240 PubMed DOI PMC

Gao H, Hamp T, Ede J  et al.  The landscape of tolerated genetic variation in humans and primates. Science (1979)  2023;380:eabn8153. 10.1126/science.abn8197 PubMed DOI PMC

Guengerich FP.  Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem Res Toxicol  2001;14:611–50. 10.1021/tx0002583 PubMed DOI

Hekkelman ML, De Vries I, Joosten RP  et al.  AlphaFill: enriching AlphaFold models with ligands and cofactors. Nat Methods  2023;20:205–13. 10.1038/s41592-022-01770-1 PubMed DOI PMC

Hsu MH, Baer BR, Rettie AE  et al.  The crystal structure of cytochrome P450 4B1 (CYP4B1) monooxygenase complexed with octane discloses several structural adaptations for ω-hydroxylation. J Biol Chem  2017;292:5610–21. 10.1074/jbc.M117.775494 PubMed DOI PMC

Huang X, Holden HM, Raushel FM.  Channeling of substrates and intermediates in enzyme-catalyzed reactions. Annu Rev Biochem  2001;70:149–80. 10.1146/annurev.biochem.70.1.149 PubMed DOI

Hutařová Vařeková J, Hutař A, Midlik A  et al.  2DProts: database of family-wide protein secondary structure diagrams. Bioinformatics  2021;37:4599–601. 10.1093/bioinformatics/btab505 PubMed DOI PMC

Karczewski KJ, Francioli LC, Tiao G  et al. ; Genome Aggregation Database Consortium. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature  2020;581:434–43. 10.1038/s41586-020-2308-7 PubMed DOI PMC

Kitanaka S, Takeyama K, Murayama A  et al.  Inactivating mutations in the 25-hydroxyvitamin D3 1alpha-hydroxylase gene in patients with pseudovitamin D-deficiency rickets. N Engl J Med  1998;338:653–61. PubMed

Li L, Chang Z, Pan Z  et al.  Modes of heme binding and substrate access for cytochrome P450 CYP74A revealed by crystal structures of allene oxide synthase. Proc Natl Acad Sci USA  2008;105:13883–8. 10.1073/pnas.0804099105 PubMed DOI PMC

Ljungdahl A, Kohani S, Page NF  et al.  AlphaMissense is better correlated with functional assays of missense impact than earlier prediction algorithms. bioRxiv, 10.1101/2023.10.24.562294, 2023, preprint: not peer reviewed. DOI

Marques SM, Daniel L, Buryska T  et al.  Enzyme tunnels and gates as relevant targets in drug design. Med Res Rev  2017;37:1095–139. 10.1002/med.21439 PubMed DOI

Midlik A, Navrátilová V, Moturu TR  et al.  Uncovering of cytochrome P450 anatomy by SecStrAnnotator. Sci Rep  2021;11:12345. PubMed PMC

Mohamed AA, Armanious M, Bedair RW  et al.  When less is more: the association between the expression of polymorphic CYPs and AFB1-induced HCC. Eur J Clin Invest  2024;54:e14297. 10.1111/eci.14297 PubMed DOI

Mondal S, Shrivastava P, Mehra R.  Computing pathogenicity of mutations in human cytochrome P450 superfamily. Biochim Biophys Acta Proteins Proteom  2025;1873:141078. 10.1016/j.bbapap.2025.141078 PubMed DOI

Nebert DW, Wikvall K, Miller WL.  Human cytochromes P450 in health and disease. Philos Trans R Soc Lond B Biol Sci  2013;368:20120431. 10.1098/rstb.2012.0432 PubMed DOI PMC

Ng PC, Henikoff S.  SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res  2003;31:3812–4. 10.1093/nar/gkg509 PubMed DOI PMC

Painter JN, Nyholt DR, Krause L  et al.  Common variants in the CYP2C19 gene are associated with susceptibility to endometriosis. Fertil Steril  2014;102:496.e5–502. 10.1016/j.fertnstert.2014.04.015 PubMed DOI PMC

Pravda L, Berka K, Svobodová Vařeková R  et al.  Anatomy of enzyme channels. BMC Bioinformatics  2014;15:379. 10.1186/s12859-014-0379-0 PubMed DOI PMC

Pravda L, Sehnal D, Toušek D  et al.  MOLEonline: a web-based tool for analyzing channels, tunnels and pores (2018 update). Nucleic Acids Res  2018;46:W368–73. 10.1093/nar/gky397 PubMed DOI PMC

Sawada N, Sakaki T, Kitanaka S  et al.  Enzymatic properties of human 25-hydroxyvitamin D3 1alpha-hydroxylase coexpression with adrenodoxin and NADPH-adrenodoxin reductase in PubMed

Sehnal D, Svobodová Vařeková R, Berka K  et al.  MOLE 2.0: advanced approach for analysis of biomacromolecular channels. J Cheminform  2013;5:39. 10.1186/1758-2946-5-39 PubMed DOI PMC

Shen SJ, Strobel HW.  Role of lysine and arginine residues of cytochrome P450 in the interaction between cytochrome P450 2B1 and NADPH-cytochrome P450 reductase. Arch Biochem Biophys  1993;304:257–65. 10.1006/abbi.1993.1347 PubMed DOI

Sillitoe N, Bordin N, Dawson N  et al.  CATH: increased structural coverage of functional space. Nucleic Acids Res  2021;49:D266–73. 10.1093/nar/gkaa1079 PubMed DOI PMC

Sim NL, Kumar P, Hu J  et al.  SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res  2012;40:W452–7. 10.1093/nar/gks539 PubMed DOI PMC

Stevens JM, Uchida T, Daltrop O  et al.  Covalent cofactor attachment to proteins: cytochrome c biogenesis. Biochem Soc Trans  2005;33:792–5. 10.1042/BST0330792 PubMed DOI

Stoilov I, Akarsu AN, Sarfarazi M.  Identification of three different truncating mutations in cytochrome P4501B1 (CYP1B1) as the principal cause of primary congenital glaucoma (buphthalmos) in families linked to the GLC3A locus on chromosome 2p21. Hum Mol Genet  1997;6:641–7. 10.1093/hmg/6.4.641 PubMed DOI

Strushkevich N, Usanov SA, Park HW.  Structural basis of human CYP51 inhibition by antifungal azoles. J Mol Biol  2010;397:1067–78. 10.1016/j.jmb.2010.02.050 PubMed DOI

Špačková A, Vávra O, Raček T  et al.  ChannelsDB 2.0: a comprehensive database of protein tunnels and pores in AlphaFold era. Nucleic Acids Res  2024;52:D413–18. 10.1093/nar/gkad1012 PubMed DOI PMC

Šrejber M, Navrátilová V, Paloncýová M  et al.  Membrane-attached mammalian cytochromes P450: an overview of the membrane’s effects on structure, drug binding, and interactions with redox partners. J Inorg Biochem  2018;183:117–36. 10.1016/j.jinorgbio.2018.03.002 PubMed DOI

Tang EKY, Tieu EW, Tuckey RC.  Expression of human CYP27B1 in PubMed

UniProt Consortium  UniProt: the universal protein knowledgebase in 2023. Nucleic Acids Res  2023;51:D523–31. 10.1093/nar/gkac1049 PubMed DOI PMC

Wang Y, San KY, Bennett GN.  Cofactor engineering for advancing chemical biotechnology. Curr Opin Biotechnol  2013;24:994–9. 10.1016/j.copbio.2013.03.009 PubMed DOI

Werck-Reichhart D, Feyereisen R.  Cytochromes P450: a success story. Genome Biol  2000;1:REVIEWS3003. 10.1186/gb-2000-1-6-reviews3003 PubMed DOI PMC

Yoshigae Y, Kent UM, Hollenberg PF.  Role of the highly conserved threonine in cytochrome P450 2E1: prevention of H PubMed DOI PMC

Zeng T, Guo FF, Zhang CL  et al.  Roles of cytochrome P4502E1 gene polymorphisms and the risks of alcoholic liver disease: a meta-analysis. PLoS One  2013;8:e54188. 10.1371/journal.pone.0054188 PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...