Pathogenicity patterns in cytochrome P450 family
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
41111907
PubMed Central
PMC12534787
DOI
10.1093/bioadv/vbaf231
PII: vbaf231
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
MOTIVATION: Cytochrome P450 proteins play a crucial role in human metabolism, ranging from hormone production to drug metabolism. While multiple commonly known variants have known effects on the individual cytochrome P450 protein performance, the pathogenicity information is usually experimentally limited to only a few mutations. Current pathogenicity prediction software enables the extension of the scope to virtually mutate all amino acids with all possible substitutional mutations. In this work, we do a comprehensive exploration that unveils pathogenicity patterns in the human cytochrome P450 family. Pathogenicity analysis was conducted across proteins using SIFT, AlphaMissense, and PrimateAI-3D algorithms. RESULTS: Our findings indicate a progressive increase in pathogenicity along protein tunnels-identified via MOLE-toward the cofactor binding site, underscoring the essential role of cofactor interactions in enzymatic function. Notably, the integrity of tunnels and cofactor environment emerges as a critical factor, with even single amino acid alterations potentially disrupting molecular guidance to active sites. These insights highlight the fundamental role of structural pathways in preserving cytochrome P450 functionality, with implications for understanding disease-associated variants and drug metabolism. AVAILABILITY AND IMPLEMENTATION: Data and source code can be found at https://github.com/annaspac/P450_pathogenicity_codes.
CEITEC Central European Institute of Technology Masaryk University Brno Brno 625 00 Czech Republic
Department of Physical Chemistry Faculty of Science Palacký University Olomouc 771 46 Czech Republic
IT4Innovations VSB Technical University of Ostrava Ostrava Poruba 708 00 Czech Republic
Zobrazit více v PubMed
Bhattacharjee A, Banerjee D, Mookherjee S et al. ; Indian Genome Variation Consortium. Leu432Val polymorphism in CYP1B1 as a susceptible factor towards predisposition to primary open-angle glaucoma. Mol Vis 2008;14:841–50. PubMed PMC
Berlin DS, Sangkuhl K, Klein TE et al. PharmGKB summary: cytochrome P450, family 2, subfamily J, polypeptide 2: CYP2J2. Pharmacogenet Genomics 2011;21:308–11. 10.1097/FPC.0b013e32833d1011 PubMed DOI PMC
Blobaum AL, Lu Y, Kent UM et al. Formation of a novel reversible cytochrome P450 spectral intermediate: role of threonine 303 in P450 2E1 inactivation. Biochemistry 2004;43:11942–52. 10.1021/bi048882s PubMed DOI
Cheng J, Novati G, Pan J et al. Accurate proteome-wide missense variant effect prediction with AlphaMissense. Science (1979) 2023;381:eadg7492. 10.1126/science.adg7492 PubMed DOI
ClinVar VCV001339668 [Internet]. https://www.ncbi.nlm.nih.gov/clinvar/variation/1339668/ (27 April 2025, date last accessed).
ClinVar VCV002203049 [Internet]. https://www.ncbi.nlm.nih.gov/clinvar/variation/2203049/ (27 April 2025, date last accessed).
Denisov IG, Makris TM, Sligar SG et al. Structure and chemistry of cytochrome P450. Chem Rev 2005;105:2253–77. 10.1021/cr0307143 PubMed DOI
Fang Y, Tai Z, Hu K et al. Comprehensive review on plant cytochrome P450 evolution: copy number, diversity, and motif analysis from chlorophyta to dicotyledoneae. Genome Biol Evol 2024;16:evae240. 10.1093/gbe/evae240 PubMed DOI PMC
Gao H, Hamp T, Ede J et al. The landscape of tolerated genetic variation in humans and primates. Science (1979) 2023;380:eabn8153. 10.1126/science.abn8197 PubMed DOI PMC
Guengerich FP. Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem Res Toxicol 2001;14:611–50. 10.1021/tx0002583 PubMed DOI
Hekkelman ML, De Vries I, Joosten RP et al. AlphaFill: enriching AlphaFold models with ligands and cofactors. Nat Methods 2023;20:205–13. 10.1038/s41592-022-01770-1 PubMed DOI PMC
Hsu MH, Baer BR, Rettie AE et al. The crystal structure of cytochrome P450 4B1 (CYP4B1) monooxygenase complexed with octane discloses several structural adaptations for ω-hydroxylation. J Biol Chem 2017;292:5610–21. 10.1074/jbc.M117.775494 PubMed DOI PMC
Huang X, Holden HM, Raushel FM. Channeling of substrates and intermediates in enzyme-catalyzed reactions. Annu Rev Biochem 2001;70:149–80. 10.1146/annurev.biochem.70.1.149 PubMed DOI
Hutařová Vařeková J, Hutař A, Midlik A et al. 2DProts: database of family-wide protein secondary structure diagrams. Bioinformatics 2021;37:4599–601. 10.1093/bioinformatics/btab505 PubMed DOI PMC
Karczewski KJ, Francioli LC, Tiao G et al. ; Genome Aggregation Database Consortium. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 2020;581:434–43. 10.1038/s41586-020-2308-7 PubMed DOI PMC
Kitanaka S, Takeyama K, Murayama A et al. Inactivating mutations in the 25-hydroxyvitamin D3 1alpha-hydroxylase gene in patients with pseudovitamin D-deficiency rickets. N Engl J Med 1998;338:653–61. PubMed
Li L, Chang Z, Pan Z et al. Modes of heme binding and substrate access for cytochrome P450 CYP74A revealed by crystal structures of allene oxide synthase. Proc Natl Acad Sci USA 2008;105:13883–8. 10.1073/pnas.0804099105 PubMed DOI PMC
Ljungdahl A, Kohani S, Page NF et al. AlphaMissense is better correlated with functional assays of missense impact than earlier prediction algorithms. bioRxiv, 10.1101/2023.10.24.562294, 2023, preprint: not peer reviewed. DOI
Marques SM, Daniel L, Buryska T et al. Enzyme tunnels and gates as relevant targets in drug design. Med Res Rev 2017;37:1095–139. 10.1002/med.21439 PubMed DOI
Midlik A, Navrátilová V, Moturu TR et al. Uncovering of cytochrome P450 anatomy by SecStrAnnotator. Sci Rep 2021;11:12345. PubMed PMC
Mohamed AA, Armanious M, Bedair RW et al. When less is more: the association between the expression of polymorphic CYPs and AFB1-induced HCC. Eur J Clin Invest 2024;54:e14297. 10.1111/eci.14297 PubMed DOI
Mondal S, Shrivastava P, Mehra R. Computing pathogenicity of mutations in human cytochrome P450 superfamily. Biochim Biophys Acta Proteins Proteom 2025;1873:141078. 10.1016/j.bbapap.2025.141078 PubMed DOI
Nebert DW, Wikvall K, Miller WL. Human cytochromes P450 in health and disease. Philos Trans R Soc Lond B Biol Sci 2013;368:20120431. 10.1098/rstb.2012.0432 PubMed DOI PMC
Ng PC, Henikoff S. SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res 2003;31:3812–4. 10.1093/nar/gkg509 PubMed DOI PMC
Painter JN, Nyholt DR, Krause L et al. Common variants in the CYP2C19 gene are associated with susceptibility to endometriosis. Fertil Steril 2014;102:496.e5–502. 10.1016/j.fertnstert.2014.04.015 PubMed DOI PMC
Pravda L, Berka K, Svobodová Vařeková R et al. Anatomy of enzyme channels. BMC Bioinformatics 2014;15:379. 10.1186/s12859-014-0379-0 PubMed DOI PMC
Pravda L, Sehnal D, Toušek D et al. MOLEonline: a web-based tool for analyzing channels, tunnels and pores (2018 update). Nucleic Acids Res 2018;46:W368–73. 10.1093/nar/gky397 PubMed DOI PMC
Sawada N, Sakaki T, Kitanaka S et al. Enzymatic properties of human 25-hydroxyvitamin D3 1alpha-hydroxylase coexpression with adrenodoxin and NADPH-adrenodoxin reductase in PubMed
Sehnal D, Svobodová Vařeková R, Berka K et al. MOLE 2.0: advanced approach for analysis of biomacromolecular channels. J Cheminform 2013;5:39. 10.1186/1758-2946-5-39 PubMed DOI PMC
Shen SJ, Strobel HW. Role of lysine and arginine residues of cytochrome P450 in the interaction between cytochrome P450 2B1 and NADPH-cytochrome P450 reductase. Arch Biochem Biophys 1993;304:257–65. 10.1006/abbi.1993.1347 PubMed DOI
Sillitoe N, Bordin N, Dawson N et al. CATH: increased structural coverage of functional space. Nucleic Acids Res 2021;49:D266–73. 10.1093/nar/gkaa1079 PubMed DOI PMC
Sim NL, Kumar P, Hu J et al. SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res 2012;40:W452–7. 10.1093/nar/gks539 PubMed DOI PMC
Stevens JM, Uchida T, Daltrop O et al. Covalent cofactor attachment to proteins: cytochrome c biogenesis. Biochem Soc Trans 2005;33:792–5. 10.1042/BST0330792 PubMed DOI
Stoilov I, Akarsu AN, Sarfarazi M. Identification of three different truncating mutations in cytochrome P4501B1 (CYP1B1) as the principal cause of primary congenital glaucoma (buphthalmos) in families linked to the GLC3A locus on chromosome 2p21. Hum Mol Genet 1997;6:641–7. 10.1093/hmg/6.4.641 PubMed DOI
Strushkevich N, Usanov SA, Park HW. Structural basis of human CYP51 inhibition by antifungal azoles. J Mol Biol 2010;397:1067–78. 10.1016/j.jmb.2010.02.050 PubMed DOI
Špačková A, Vávra O, Raček T et al. ChannelsDB 2.0: a comprehensive database of protein tunnels and pores in AlphaFold era. Nucleic Acids Res 2024;52:D413–18. 10.1093/nar/gkad1012 PubMed DOI PMC
Šrejber M, Navrátilová V, Paloncýová M et al. Membrane-attached mammalian cytochromes P450: an overview of the membrane’s effects on structure, drug binding, and interactions with redox partners. J Inorg Biochem 2018;183:117–36. 10.1016/j.jinorgbio.2018.03.002 PubMed DOI
Tang EKY, Tieu EW, Tuckey RC. Expression of human CYP27B1 in PubMed
UniProt Consortium UniProt: the universal protein knowledgebase in 2023. Nucleic Acids Res 2023;51:D523–31. 10.1093/nar/gkac1049 PubMed DOI PMC
Wang Y, San KY, Bennett GN. Cofactor engineering for advancing chemical biotechnology. Curr Opin Biotechnol 2013;24:994–9. 10.1016/j.copbio.2013.03.009 PubMed DOI
Werck-Reichhart D, Feyereisen R. Cytochromes P450: a success story. Genome Biol 2000;1:REVIEWS3003. 10.1186/gb-2000-1-6-reviews3003 PubMed DOI PMC
Yoshigae Y, Kent UM, Hollenberg PF. Role of the highly conserved threonine in cytochrome P450 2E1: prevention of H PubMed DOI PMC
Zeng T, Guo FF, Zhang CL et al. Roles of cytochrome P4502E1 gene polymorphisms and the risks of alcoholic liver disease: a meta-analysis. PLoS One 2013;8:e54188. 10.1371/journal.pone.0054188 PubMed DOI PMC