Climate change drives the retreat of Aethionema spinosum (Brassicaceae) to high-elevation refugia
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.01.01/00/22_008/0004581
TowArds Next GENeration Crops
PubMed
41120654
PubMed Central
PMC12541087
DOI
10.1038/s41598-025-20695-2
PII: 10.1038/s41598-025-20695-2
Knihovny.cz E-zdroje
- Klíčová slova
- Climate change, Conservation, Ecological niche modeling, Endemic species, Irano-Turanian,
- MeSH
- biodiverzita MeSH
- Brassicaceae * fyziologie MeSH
- ekosystém MeSH
- klimatické změny * MeSH
- nadmořská výška * MeSH
- refugium * MeSH
- zachování přírodních zdrojů MeSH
- Publikační typ
- časopisecké články MeSH
Global climate change poses an increasing threat to biodiversity, prompting scientists to utilize ecological and evolutionary knowledge to address this challenge. Understanding these fields and their interconnections is crucial for improving conservation strategies. Accordingly, we conducted a study to assess the potential repercussions of climate change on Aethionema spinosum, a plant species endemic to the mountains of the Irano-Turanian floristic region. Employing ecological niche modeling (ENM), we projected the potential geographic distribution of A. spinosum under current conditions and two future climate scenarios (SSP2-4.5 and SSP5-8.5) for the period 2041-2060. Key climatic factors, including annual mean temperature (bio1), isothermality (bio3), and precipitation of the wettest quarter (bio16), exhibited the highest percentage contribution rates influencing the distribution of A. spinosum. The current model predicted the distribution of A. spinosum in montane areas, while under future-climatic conditions, a reduction and shift toward higher elevations were anticipated. Notably, substantial losses were observed in areas proximate to existing habitats. These findings are useful for the management and conservation of A. spinosum and provide insights into the potential future impacts of climate change on its distribution in the Irano-Turanian region.
Zobrazit více v PubMed
Kozak, K. H., Graham, C. H. & Wiens, J. J. Integrating GIS-based environmental data into evolutionary biology. PubMed DOI
Ford, K. R. & HilleRisLambers, J. Soil alters seedling establishment responses to climate. PubMed DOI
Dolezal, J., Kurnotova, M., Stastna, P. & Klimesova, J. Alpine plant growth and reproduction dynamics in a warmer world. PubMed DOI
Wang, Y. et al. Warming-induced shrubline advance stalled by moisture limitation on the Tibetan plateau. DOI
Anderson, R. P. A framework for using niche models to estimate impacts of climate change on species distributions. PubMed DOI
Pacifici, M. et al. Assessing species vulnerability to climate change. DOI
Peterson, A. T. et al.
Waldvogel, A. M. et al. Evolutionary genomics can improve prediction of species’ responses to climate change. PubMed DOI PMC
Provart, N. J. et al. 50 years of PubMed DOI
Nguyen, T. P. et al. Genome improvement and genetic map construction for aethionema arabicum, the first divergent branch in the brassicaceae family. PubMed DOI PMC
Walden, N. et al. Nested whole-genome duplications coincide with diversification and high morphological disparity in brassicaceae. PubMed DOI PMC
Lysak, M. A., Mandáková, T. & Schranz, M. E. Comparative paleogenomics of crucifers: ancestral genomic blocks revisited. PubMed DOI
Schranz, M. E., Mohammadin, S. & Edger, P. P. Ancient whole genome duplications, novelty and diversification: the WGD radiation Lag-Time model. PubMed DOI
Moazzeni, H. et al. A taxonomic revision of the genus
Moazzeni, H., Mahmoodi, M., Jafari, M., Schneeweiss, G. M. & Noroozi, J. Underestimated diversity in high elevations of a global biodiversity hotspot: two new endemic species of aethionema (Brassicaceae) from the alpine zone of Iran. PubMed PMC
Noroozi, J. et al. Hotspots of (sub)alpine plants in the Irano-Anatolian global biodiversity hotspot are insufficiently protected. DOI
Lovejoy, T. E. & Hannah, L. Avoiding the climate failsafe point. PubMed DOI PMC
Guisan, A. & Zimmermann, N. E. Predictive habitat distribution models in ecology. DOI
Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. DOI
Raxworthy, C. J., Ingram, C. M., Rabibisoa, N. & Pearson, R. G. Applications of ecological niche modeling for species delimitation: A review and empirical evaluation using day geckos ( PubMed DOI
Escobar, L. E. Ecological niche modeling: an introduction for veterinarians and epidemiologists. PubMed PMC
Kolanowska, M. & Jakubska-Busse, A. Is the lady’s-slipper Orchid ( PubMed DOI PMC
Outammassine, A., Zouhair, S. & Loqman, S. Global potential distribution of three underappreciated arboviruses vectors ( PubMed DOI
Heikkinen, R. K., Marmion, M. & Luoto, M. Does the interpolation accuracy of species distribution models come at the expense of transferability? DOI
Jha, A., Nameer, P. O. & J, P. & Contrasting occupancy models with presence-only models: does accounting for detection lead to better predictions? DOI
Hedge, I. C. Flora Iranica.
Takhtajan, A.
White, F. & Léonard, J.
Léonard, J. On the plant associations mentioned in Iran by M. Zohary. DOI
Zohary, M.
Guest, E. & Al-Rawi, A.
Klein, J. C.
Manafzadeh, S., Salvo, G. & Conti, E. A Tale of migrations from East to west: the Irano-Turanian floristic region as a source of mediterranean xerophytes. DOI
Djamali, M. et al. Application of the global bioclimatic classification to iran: implications for Understanding the modern vegetation and biogeography. DOI
Djamali, M., Brewer, S., Breckle, S. W. & Jackson, S. T. Climatic determinism in phytogeographic regionalization: A test from the Irano-Turanian region, SW and central Asia. DOI
Akhani, H. in
Memariani, F., Zarrinpour, V. & Akhani, H. A review of plant diversity, vegetation, and phytogeography of the Khorassan-Kopet Dagh floristic Province in the Irano-Turanian region (northeastern Iran–southern Turkmenistan). DOI
GBIF.org. (2023).
Phillips, S. J. et al. Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. PubMed DOI
None
Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km Spatial resolution climate surfaces for global land areas. DOI
O’Neill, B. C. et al. The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century. DOI
Riahi, K. et al. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. DOI
Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. DOI
Knutti, R. & Sedláček, J. Robustness and uncertainties in the new CMIP5 climate model projections. DOI
Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. DOI
Escobar, L. E., Lira-Noriega, A. & Medina-Vogel, G. Townsend Peterson, A. Potential for spread of the white-nose fungus ( PubMed DOI
Naimi, B., Hamm, N. A. S., Groen, T. A., Skidmore, A. K. & Toxopeus, A. G. Where is positional uncertainty a problem for species distribution modelling? DOI
Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. DOI
Kass, J. M. et al. ENMeval 2.0: redesigned for customizable and reproducible modeling of species’ niches and distributions. DOI
Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: an open-source release of maxent. DOI
Merow, C., Smith, M. J. & Silander, J. A. Jr A practical guide to maxent for modeling species’ distributions: what it does, and why inputs and settings matter. DOI
Kaky, E., Nolan, V., Alatawi, A. & Gilbert, F. A comparison between ensemble and maxent species distribution modelling approaches for conservation: A case study with Egyptian medicinal plants. DOI
Morales, N. S., Fernández, I. C. & V, B. G. MaxEnt’s parameter configuration and small samples: are we paying attention to recommendations? A systematic review. PubMed DOI PMC
Radosavljevic, A. & Anderson, R. P. Making better maxent models of species distributions: complexity, overfitting and evaluation. DOI
VanDerWal, J., Shoo, L. P., Graham, C. & Williams, S. E. Selecting pseudo-absence data for presence-only distribution modeling: how Far should you stray from what you know? DOI
Pebesma, E. Simple features for R: standardized support for Spatial vector data. DOI
Bohl, C. L., Kass, J. M. & Anderson, R. P. A new null model approach to quantify performance and significance for ecological niche models of species distributions. DOI
Kass, J. M. et al. Biotic predictors with phenological information improve range estimates for migrating monarch butterflies in Mexico. DOI
Henry, G. H. R. & Molau, U. Tundra plants and climate change: the international tundra experiment (ITEX). DOI
Walther, G. R., Beißner, S. & Burga, C. A. Trends in the upward shift of alpine plants. DOI
Heisler-White, J. L., Blair, J. M., Kelly, E. F., Harmony, K. & Knapp, A. K. Contingent productivity responses to more extreme rainfall regimes across a grassland biome. DOI
Brant, A. N. & Chen, H. Y. H. Patterns and mechanisms of nutrient resorption in plants. DOI
Ganjurjav, H. et al. Warming and precipitation addition interact to affect plant spring phenology in alpine meadows on the central Qinghai-Tibetan plateau. DOI
Larcher, W.
Berry, J. & Bjorkman, O. Photosynthetic response and adaptation to temperature in higher plants. DOI
Chapin, F. S., Matson, P. A. & Mooney, H.
Sung, D. Y., Kaplan, F., Lee, K. J. & Guy, C. L. Acquired tolerance to temperature extremes. PubMed DOI
Kozlowski, T. & Pallardy, S. Acclimation and adaptive responses of Woody plants to environmental stresses. DOI
Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. DOI
Behroozian, M., Ejtehadi, H., Peterson, A. T., Memariani, F. & Mesdaghi, M. Climate change influences on the potential distribution of PubMed DOI PMC
Karami, S., Ejtehadi, H., Moazzeni, H., Vaezi, J. & Behroozian, M. Minimal climate change impacts on the geographic distribution of PubMed DOI PMC
Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PubMed DOI PMC
Dormann, C. et al. A review of methods to deal with it and a simulation study evaluating their performance. DOI
Elith, J. & Leathwick, J. R. Species distribution models: ecological explanation and prediction across space and time. DOI
Kalimuthu, K. & Lakshmanan, K. K. Effect of different treatments on pod germination of
Venkataramaiah, V., Prasad, S., Rajeswara Rao, G. & Swamy, P. Levels of phenolic acids in
Arshad, W. et al. Dispersal biophysics and adaptive significance of dimorphic diaspores in the annual PubMed DOI PMC
Shaw, R. G. & Etterson, J. R. Rapid climate change and the rate of adaptation: insight from experimental quantitative genetics. PubMed DOI
Tibbets, C. A. & Dowling, T. E. Effects of intrinsic and extrinsic factors on population fragmentation in three species of North American minnows (Teleostei: Cyprinidae). PubMed DOI
López-Jurado, J., Mateos-Naranjo, E., García-Castaño, J. L. & Balao, F. Conditions for translocation of a key threatened species, Dianthus Inoxianus Gallego, in the Southwestern Iberian mediterranean forest. DOI
Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. PubMed DOI PMC
Körner, C. The use of ‘altitude’ in ecological research. PubMed DOI
Scherrer, D. & Körner, C. Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. DOI
Noroozi, J.
Berberian, M. & King, G. C. P. Towards a paleogeography and tectonic evolution of Iran. DOI
Stöcklin, J. Structural history and tectonics of iran: a review.
Manafzadeh, S., Staedler, Y. M. & Conti, E. Visions of the past and Dreams of the future in the orient: the Irano-Turanian region from classical botany to evolutionary studies. PubMed DOI