Gromacs MetaDump: a tool for extracting GROMACS simulation metadata

. 2025 Oct 23 ; 17 (1) : 160. [epub] 20251023

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41131648

Grantová podpora
LM2023055 Ministerstvo Školství, Mládeže a Tělovýchovy
LM2023055 Ministerstvo Školství, Mládeže a Tělovýchovy
LM2023055 Ministerstvo Školství, Mládeže a Tělovýchovy
LM2023055 Ministerstvo Školství, Mládeže a Tělovýchovy
LM2023055 Ministerstvo Školství, Mládeže a Tělovýchovy
LM2023055 Ministerstvo Školství, Mládeže a Tělovýchovy
LM2023055 Ministerstvo Školství, Mládeže a Tělovýchovy
LM2023055 Ministerstvo Školství, Mládeže a Tělovýchovy

Odkazy

PubMed 41131648
PubMed Central PMC12548288
DOI 10.1186/s13321-025-01082-5
PII: 10.1186/s13321-025-01082-5
Knihovny.cz E-zdroje

The volume of molecular dynamics (MD) simulation data shared via public repositories is rapidly increasing; however, fragmentation across multiple independent repositories, each employing distinct dataset identifiers and metadata schemas, hinders the efficient exploration and reuse of these data. In this study, we present GROMACS MetaDump, a tool for automatic annotation of output files from GROMACS MD simulations producing human- and machine-readable metadata leveraging the native GROMACS metadata (gmx dump) output. The tool takes the run input simulation file (.tpr) as the basis for the metadata output, optionally extending it with annotations from topology and structure files (.top, .gro). The tool is available as a web application ( https://gmd.ceitec.cz/ ), API service, and a command-line utility. By automating the metadata extraction process, GROMACS MetaDump aims to simplify and standardise the extraction of rich, structured metadata from GROMACS MD simulations, making it easier to share, discover, and reuse simulation data within the research community. SCIENTIFIC CONTRIBUTION: This work introduces GROMACS MetaDump, a software tool for the automatic extraction of metadata from molecular dynamics (MD) simulations performed with GROMACS. GROMACS MetaDump captures all extractable simulation parameters, such as software version, force field, water model, box geometry, temperature, etc., and returns them in a structured JSON or YAML file. As a result, GROMACS MetaDump supports the creation of unified metadata annotations of MD simulations, making datasets indexable and findable in line with the FAIR principles.

Zobrazit více v PubMed

Tiemann JK, Szczuka M, Bouarroudj L, Oussaren M, Garcia S, Howard RJ, Delemotte L, Lindahl E, Baaden M, Lindorff-Larsen K et al (2024) Mdverse: shedding light on the dark matter of molecular dynamics simulations. Elife 12:90061. 10.7554/elife.90061.2 PubMed DOI PMC

Roy A, Ward E, Choi I, Cosi M, Edgin T, Hughes TS, Islam MS, Khan AM, Kolekar A, Rayl M et al (2025) Mdrepo—an open data warehouse for community-contributed molecular dynamics simulations of proteins. Nucleic Acids Res 53(D1):477–486. 10.1093/nar/gkae1109 PubMed DOI PMC

Beltrán D, Hospital A, Gelpí JL, Orozco M (2024) A new paradigm for molecular dynamics databases: the covid-19 database, the legacy of a titanic community effort. Nucleic Acids Res 52(D1):393–403. 10.1093/nar/gkad991 PubMed DOI PMC

Vander Meersche Y, Cretin G, Gheeraert A, Gelly J-C, Galochkina T (2024) Atlas: protein flexibility description from atomistic molecular dynamics simulations. Nucleic Acids Res 52(D1):384–392. 10.1093/nar/gkad1084 PubMed DOI PMC

Banáš P, Mlýnský V, Číž D, Furmánek R, Pilat N, Pauw V, Hachinger S, Šponer J, Martinovič J, Otyepka M (2024) Integrated database of force-field parameters, experimental measurements and molecular dynamics simulations. bioRxiv 10.1101/2024.12.03.626554

Amaro RE, Åqvist J, Bahar I, Battistini F, Bellaiche A, Beltran D, Biggin PC, Bonomi M, Bowman GR, Bryce RA et al (2025) The need to implement fair principles in biomolecular simulations. Nat Methods. 10.1038/s41592-025-02635-0 PubMed DOI

Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A, Blomberg N, Boiten J-W, Silva Santos LB, Bourne PE et al (2016) The fair guiding principles for scientific data management and stewardship. Sci Data 3(1):1–9. 10.1038/sdata.2016.18 PubMed DOI PMC

Musen MA (2022) Without appropriate metadata, data-sharing mandates are pointless. Nature 609(7926):222–222. 10.1038/d41586-022-02820-7 PubMed DOI

Biriukov D, Vácha R (2024) Pathways to a shiny future: building the foundation for computational physical chemistry and biophysics in 2050. ACS Phys Chem Au 4(4):302–313. 10.1021/acsphyschemau.4c00003 PubMed DOI PMC

Campbell Q, Cox S, Medina J, Watterson B, White AD (2025) MDCrow: automating Molecular Dynamics Workflows with Large Language Models . 10.48550/arXiv.2502.09565

European Research Council Scientific Council: Open research data and data management plans. Technical report, European Research Council (2022). https://erc.europa.eu/sites/default/files/document/file/ERC_info_document-Open_Research_Data_and_Data_Management_Plans.pdf Accessed 2025-03-05

OpenAIRE: how to comply with Horizon Europe mandate for Research Data Management. OpenAIRE website (2022). https://www.openaire.eu/how-to-comply-with-horizon-europe-mandate-for-rdm Accessed 2025-03-05

Thibault JC, Facelli JC, Cheatham TEI (2013) iBIOMES: managing and Sharing Biomolecular Simulation Data in a Distributed Environment. ACS Publ. 10.1021/ci300524j PubMed DOI PMC

Goni R, Lundborg M, Bernau C, Jamitzky F, Laure E, Becerra Y, Orozco M, Gelpi JL (2013) Standards for data handling. ScalaLife White Paper, 1–9

Gomes DG, Pottier P, Crystal-Ornelas R, Hudgins EJ, Foroughirad V, Sánchez-Reyes LL, Turba R, Martinez PA, Moreau D, Bertram MG et al (2022) Why don’t we share data and code? perceived barriers and benefits to public archiving practices. Proc R Soc B 289(1987):20221113. 10.1098/rspb.2022.1113 PubMed DOI PMC

Ollila OS, Heikkinen HA, Iwaï H (2018) Rotational dynamics of proteins from spin relaxation times and molecular dynamics simulations. J Phys Chem B 122(25):6559–6569. 10.1021/acs.jpcb.8b02250 PubMed DOI PMC

Bründl M, Pellikan S, Stary-Weinzinger A (2021) Simulating pip2-induced gating transitions in kir6.2 channels. Front Mol Biosci 8:711975. 10.3389/fmolb.2021.711975 PubMed DOI PMC

Chu BC, Peacock RS, Vogel HJ (2007) Bioinformatic analysis of the tonb protein family. Biometals 20:467–483. 10.1007/s10534-006-9049-4 PubMed DOI

Oeemig JS, Ollila OS (2018) Nmr structure of the c-terminal domain of tonb protein from pseudomonas aeruginosa. PeerJ 6:5412. 10.7717/peerj.5412 PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...