Sex differences in Alzheimer's disease CSF biomarkers and their association with Aβ pathology on PET in cognitively unimpaired individuals

. 2025 Oct 30 ; 17 (1) : 235. [epub] 20251030

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41168813

Grantová podpora
AARF-23-1141384 Alzheimer's Association Research Fellowship
AEI/10.13039/501100011033 Agencia Estatal de Investigación
CP23/00039 Instituto de Salud Carlos III
PI19/00155 Instituto de Salud Carlos III
LX22NPO5107 NextGenerationEU
948677 HORIZON EUROPE European Research Council
ERAPERMED2021-184 ERA PerMed
100010434 LaCaixa Foundation
LCF/BQ/PR21/11840004 H2020 Marie Skłodowska-Curie Actions

Odkazy

PubMed 41168813
PubMed Central PMC12573942
DOI 10.1186/s13195-025-01844-1
PII: 10.1186/s13195-025-01844-1
Knihovny.cz E-zdroje

BACKGROUND: Alzheimer's disease (AD) exhibits sex differences in prevalence, symptoms and risk factors. Understanding the effect of sex in AD cerebrospinal fluid (CSF) biomarkers and their association with amyloid-beta (Aβ) pathology in preclinical stages have important implications for their use in prevention trials. The objective of this study was to examine sex differences in core AD CSF biomarkers used in early diagnosis and prevention trials, as well as in CSF biomarkers reflecting downstream pathophysiological mechanisms, and in their associations with Aβ pathology as measured by Positron Emission Tomography (PET). METHODS: Cognitively Unimpaired (CU) participants from the ALFA + (N = 400) and the WRAP/WADRC (N = 548) cohorts were included in the study. CSF biomarkers for core AD pathology (Aβ42, Aβ42/40, p-tau181/Aβ42, p-tau181, p-tau217 and p-tau231), neurodegeneration (NfL, t-tau), synaptic dysfunction (neurogranin, GAP-43, SNAP25, synaptotagmin-1, α-synuclein), glial reactivity (GFAP, S100B, sTREM2, YKL-40), neuroinflammation (IL-6, MCP-1), and vascular dysregulation (sICAM-1, sVCAM-1) were measured. Participants underwent Aβ PET at baseline and follow-up visit. We used Analyses of Covariance (ANCOVA) to evaluate sex differences in CSF biomarker levels and performed sex-stratified Receiver-Operating Characteristic (ROC) analyses to test their performance to identify Aβ PET-positive individuals. Additionally, we run linear regression models to study the modifying effect of sex on the association of baseline CSF biomarkers with cross-sectional and longitudinal Aβ PET uptake. RESULTS: Men had higher CSF NfL, glial reactivity and vascular dysregulation biomarkers (Cohen's d ranging from -0.22 to -0.44, P < 0.05), and lower synaptic biomarkers (Cohen's d ranging from 0.18 to 0.30, P < 0.05) compared to women at baseline. There were no sex differences in the core AD CSF biomarkers' performance to identify Aβ PET-positive individuals (DeLong's test P values > 0.05), with CSF p-tau181/Aβ42 and p-tau217 showing the highest performance in both sexes (Areas Under the Curve (AUCs) ranging from 87.1 to 96.3). However, sex modified the associations of baseline CSF biomarkers with Aβ PET uptake, which were more pronounced in women than in men. CONCLUSIONS: Our results suggest that tailoring core AD CSF biomarkers by sex is not necessary for detecting Aβ PET positivity in CU individuals. However, sex differences in their association with Aβ deposition could influence their prognostic or monitoring applications.

Zobrazit více v PubMed

Aisen PS, Cummings J, Jack CR, Morris JC, Sperling R, Frölich L, et al. On the path to 2025: understanding the Alzheimer’s disease continuum. Alzheimers Res Ther. 2017;9: 60. PubMed PMC

Rafii MS, Aisen PS. Detection and treatment of Alzheimer’s disease in its preclinical stage. Nat Aging. 2023;3:520–31. PubMed PMC

Jack CR. Advances in Alzheimer’s disease research over the past two decades. Lancet Neurol. 2022;21:866–9. PubMed

Milà-Alomà M, Salvadó G, Gispert JD, Vilor-Tejedor N, Grau-Rivera O, Sala-Vila A, et al. Amyloid beta, tau, synaptic, neurodegeneration, and glial biomarkers in the preclinical stage of the Alzheimer’s continuum. Alzheimers Dement. 2020;16:1358–71. PubMed PMC

Sutphen CL, Jasielec MS, Shah AR, Macy EM, Xiong C, Vlassenko AG, et al. Longitudinal cerebrospinal fluid biomarker changes in preclinical Alzheimer disease during middle age. JAMA Neurol. 2015;72:1029–42. PubMed PMC

Rahman A, Jackson H, Hristov H, Isaacson RS, Saif N, Shetty T, et al. Sex and Gender Driven Modifiers of Alzheimer’s: The Role for Estrogenic Control Across Age, Race, Medical, and Lifestyle Risks. Frontiers in Aging Neuroscience. 2019;11:1–22. PubMed PMC

Calvo N, Einstein G. Steroid hormones: risk and resilience in women’s Alzheimer disease. Front Aging Neurosci. 2023;15: 1159435. PubMed PMC

Eissman JM, Dumitrescu L, Mahoney ER, Smith AN, Mukherjee S, Lee ML, et al. Sex differences in the genetic architecture of cognitive resilience to Alzheimer’s disease. Brain. 2022;145:2541–54. PubMed PMC

Barnes LL, Wilson RS, Bienias JL, Schneider JA, Evans DA, Bennett DA. Sex differences in the clinical manifestations of Alzheimer disease pathology. Arch Gen Psychiatry. 2005;62:685–91. PubMed

Holland D, Desikan RS, Dale AM, McEvoy LK. Higher rates of decline for women and Apolipoprotein E ε4 carriers. AJNR Am J Neuroradiol. 2013;34:2287–93. PubMed PMC

Ferretti MT, Martinkova J, Biskup E, Benke T, Gialdini G, Nedelska Z, et al. Sex and gender differences in Alzheimer’s disease: current challenges and implications for clinical practice. Eur J Neurol. 2020;27:928–43. PubMed

Mielke MM, Ferretti MT, Iulita MF, Hayden K, Khachaturian AS. Sex and gender in Alzheimer’s disease - does it matter? Alzheimers Dement. 2018;14:1101–3. PubMed

Bouter C, Vogelgsang J, Wiltfang J. Comparison between amyloid-PET and CSF amyloid-β biomarkers in a clinical cohort with memory deficits. Clin Chim Acta. 2019;492:62–8. PubMed

Buckley RF, Mormino EC, Chhatwal J, Schultz AP, Rabin JS, Rentz DM, et al. Associations between baseline amyloid, sex, and APOE on subsequent tau accumulation in cerebrospinal fluid. Neurobiol Aging. 2019;78:178–85. PubMed PMC

Hohman TJ, Dumitrescu L, Barnes LL, Thambisetty M, Beecham G, Kunkle B, et al. Sex-specific association of apolipoprotein E with cerebrospinal fluid levels of tau. JAMA Neurol. 2018;75:989–98. PubMed PMC

Li G, Shofer JB, Petrie EC, Yu CE, Wilkinson CW, Figlewicz DP, et al. Cerebrospinal fluid biomarkers for Alzheimer’s and vascular disease vary by age, gender, and APOE genotype in cognitively normal adults. Alzheimers Res Ther. 2017;9: 1–9. PubMed PMC

Duarte-Guterman P, Albert AY, Barha CK, Galea LAM, On Behalf Of The Alzheimer’s Disease Neuroimaging Initiative null. Sex influences the effects of APOE genotype and Alzheimer’s diagnosis on neuropathology and memory. Psychoneuroendocrinology. 2021;129:105248. PubMed

Buckley RF, Scott MR, Jacobs HIL, Schultz AP, Properzi MJ, Amariglio RE, et al. Sex mediates relationships between regional tau pathology and cognitive decline. Ann Neurol. 2020;88:921–32. PubMed PMC

Koran MEI, Wagener M, Hohman TJ, Initiative for the AN. Sex differences in the association between AD biomarkers and cognitive decline. Brain Imaging and Behavior. 2017;11:205–13. PubMed PMC

Altmann A, Tian L, Henderson VW, Greicius MD. Sex modifies the APOE-related risk of developing Alzheimer disease. Ann Neurol. 2014;75:563–73. PubMed PMC

Damoiseaux JS, Seeley WW, Zhou J, Shirer WR, Coppola G, Karydas A, et al. Gender modulates the APOE 4 effect in healthy older adults: convergent evidence from functional brain connectivity and spinal fluid tau levels. J Neurosci. 2012;32:8254–62. PubMed PMC

Babapour Mofrad R, Tijms BM, Scheltens P, Barkhof F, van der Flier WM, Sikkes SAM, et al. Sex differences in CSF biomarkers vary by Alzheimer disease stage and APOE ε4 genotype. Neurology. 2020;95: e2378–88. PubMed

Bridel C, van Wieringen WN, Zetterberg H, Tijms BM, Teunissen CE, Alvarez-Cermeño JC, et al. Diagnostic value of cerebrospinal fluid neurofilament light protein in neurology. JAMA Neurol. 2019;76:1035. PubMed PMC

Delaby C, Alcolea D, Carmona-Iragui M, Illán-Gala I, Morenas-Rodríguez E, Barroeta I, et al. Differential levels of neurofilament light protein in cerebrospinal fluid in patients with a wide range of neurodegenerative disorders. Sci Rep. 2020;10: 9161. PubMed PMC

Lim B, Grøntvedt GR, Bathala P, Kale SS, Campbell CT, Stengelin M, et al. CSF neurofilament light may predict progression from amnestic mild cognitive impairment to Alzheimer’s disease dementia. Neurobiol Aging. 2021;107:78–85. PubMed

Mattsson N, Insel PS, Palmqvist S, Portelius E, Zetterberg H, Weiner M, et al. Cerebrospinal fluid tau, neurogranin, and neurofilament light in Alzheimer’s disease. EMBO Mol Med. 2016;8:1184–96. PubMed PMC

Mielke MM, Syrjanen JA, Blennow K, Zetterberg H, Skoog I, Vemuri P, et al. Comparison of variables associated with cerebrospinal fluid neurofilament, total-tau, and neurogranin. Alzheimers Dement. 2019;15:1437–47. PubMed PMC

Skillbäck T, Blennow K, Zetterberg H, Shams S, Machado A, Pereira J, et al. Sex differences in CSF biomarkers for neurodegeneration and blood-brain barrier integrity. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring. 2021;13: e12141. PubMed PMC

Wang L, Alzheimer’s Disease Neuroimaging Initiative. Association of cerebrospinal fluid neurogranin with Alzheimer’s disease. Aging Clin Exp Res. 2019;31:185–91. PubMed

Xue M, Sun F-R, Ou Y-N, Shen X-N, Li H-Q, Huang Y-Y, et al. Association of cerebrospinal fluid neurogranin levels with cognition and neurodegeneration in Alzheimer’s disease. Aging. 2020;12:9365–79. PubMed PMC

Agnello L, Gambino CM, Lo Sasso B, Bivona G, Milano S, Ciaccio AM, et al. Neurogranin as a novel biomarker in Alzheimer’s disease. Lab Med. 2021;52:188–96. PubMed

Casaletto KB, Elahi FM, Bettcher BM, Neuhaus J, Bendlin BB, Asthana S, et al. Neurogranin, a synaptic protein, is associated with memory independent of Alzheimer biomarkers. Neurology. 2017;89:1782–8. PubMed PMC

Tarawneh R, D’Angelo G, Crimmins D, Herries E, Griest T, Fagan AM, et al. Diagnostic and prognostic utility of the synaptic marker neurogranin in Alzheimer disease. JAMA Neurol. 2016;73:561. PubMed PMC

Duarte-Guterman P, Albert AY, Inkster AM, Barha CK, Galea LAM, Alzheimer’s Disease Neuroimaging Initiative. Inflammation in Alzheimer’s disease: do sex and APOE matter? J Alzheimers Dis. 2020;78:627–41. PubMed

Janelidze S, Mattsson N, Stomrud E, Lindberg O, Palmqvist S, Zetterberg H, et al. CSF biomarkers of neuroinflammation and cerebrovascular dysfunction in early Alzheimer disease. Neurology. 2018;91:e867-77. PubMed PMC

Brosseron F, Kolbe C, Santarelli F, Carvalho S, Antonell A, Castro-Gomez S, et al. Multicenter Alzheimer’s and Parkinson’s disease immune biomarker verification study. Alzheimers Dement. 2020;16:292–304. PubMed

Nordengen K, Kirsebom B-E, Henjum K, Selnes P, Gísladóttir B, Wettergreen M, et al. Glial activation and inflammation along the Alzheimer’s disease continuum. J Neuroinflammation. 2019;16: 46. PubMed PMC

Salvadó G, Milà-Alomà M, Shekari M, Minguillon C, Fauria K, Niñerola-Baizán A, et al. Cerebral amyloid-β load is associated with neurodegeneration and gliosis: mediation by p-tau and interactions with risk factors early in the Alzheimer’s continuum. Alzheimers Dement. 2021;17:788–800. PubMed PMC

Vila-Castelar C, Akinci M, Palpatzis E, Aguilar-Dominguez P, Operto G, Kollmorgen G, et al. Sex/gender effects of glial reactivity on preclinical Alzheimer’s disease pathology. Mol Psychiatry. 2025;30:1430–9. PubMed PMC

Molinuevo JL, Gramunt N, Gispert JD, Fauria K, Esteller M, Minguillon C, et al. The ALFA project: a research platform to identify early pathophysiological features of Alzheimer’s disease. Alzheimers Dement (N Y). 2016;2:82–92. PubMed PMC

Johnson SC, Koscik RL, Jonaitis EM, Clark LR, Mueller KD, Berman SE, et al. The Wisconsin registry for Alzheimer’s prevention: a review of findings and current directions. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring. 2018;10:130–42. PubMed PMC

Bettcher BM, Johnson SC, Fitch R, Casaletto KB, Heffernan KS, Asthana S, et al. CSF and Plasma Levels of Inflammation Differentially Relate to CNS Markers of Alzheimer’s Disease Pathology and Neuronal Damage HHS Public Access. J Alzheimers Dis. 2018;62:385–97. PubMed PMC

Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12:189–98. PubMed

Papp KV, Rentz DM, Orlovsky I, Sperling RA, Mormino EC. Optimizing the preclinical Alzheimer’s cognitive composite with semantic processing: The PACC5. Alzheimers Dement (N Y). 2017;3:668–77. PubMed PMC

Donohue MC, Sperling RA, Petersen R, Sun C-K, Weiner MW, Aisen PS. Association between elevated brain amyloid and subsequent cognitive decline among cognitively normal persons. JAMA. 2017;317:2305. PubMed PMC

Suárez-Calvet M, Karikari TK, Ashton NJ, Lantero Rodríguez J, Milà-Alomà M, Gispert JD, et al. Novel tau biomarkers phosphorylated at T181, T217 or T231 rise in the initial stages of the preclinical Alzheimer’s continuum when only subtle changes in Aβ pathology are detected. EMBO Mol Med. 2020;12:1–19. PubMed PMC

Van Hulle C, Jonaitis EM, Betthauser TJ, Batrla R, Wild N, Kollmorgen G, et al. An examination of a novel multipanel of CSF biomarkers in the Alzheimer’s disease clinical and pathological continuum. Alzheimers Dement. 2021;17:431-445. PubMed PMC

Ashton NJ, Pascoal TA, Karikari TK, Benedet AL, Lantero-Rodriguez J, Brinkmalm G, et al. Plasma p-tau231: a new biomarker for incipient Alzheimer’s disease pathology. Acta Neuropathol. 2021;141:709–24. PubMed PMC

Thijssen EH, La Joie R, Strom A, Fonseca C, Iaccarino L, Wolf A, et al. Plasma phosphorylated tau 217 and phosphorylated tau 181 as biomarkers in Alzheimer’s disease and frontotemporal lobar degeneration: a retrospective diagnostic performance study. Lancet Neurol. 2021;20:739–52. PubMed PMC

Tible M, Sandelius Å, Höglund K, Brinkmalm A, Cognat E, Dumurgier J, et al. Dissection of synaptic pathways through the CSF biomarkers for predicting Alzheimer disease. Neurology. 2020;95:e953-61. PubMed

Sandelius Å, Portelius E, Källén Å, Zetterberg H, Rot U, Olsson B, et al. Elevated CSF GAP-43 is Alzheimer’s disease specific and associated with tau and amyloid pathology. Alzheimers Dement. 2019;15:55–64. PubMed PMC

Shekari M, Vállez García D, Collij LE, Altomare D, Heeman F, Pemberton H, et al. Stress testing the Centiloid: Precision and variability of PET quantification of amyloid pathology. Alzheimers Dement. 2024;20:5102–13. PubMed PMC

Johnson SC, Christian BT, Okonkwo OC, Oh JM, Harding S, Xu G, et al. Amyloid burden and neural function in people at risk for Alzheimer’s disease. Neurobiol Aging. 2014;35:576–84. PubMed PMC

Betthauser TJ, Bilgel M, Koscik RL, Jedynak BM, An Y, Kellett KA, et al. Multi-method investigation of factors influencing amyloid onset and impairment in three cohorts. Brain. 2022;145:4065–79. PubMed PMC

Klunk WE, Koeppe RA, Price JC, Benzinger TL, Devous MD, Jagust WJ, et al. The centiloid project: standardizing quantitative amyloid plaque estimation by PET. Alzheimers Dement. 2015;11:1-15.e4. PubMed PMC

Rea Reyes RE, Cody KA, Wilson RE, Zetterberg H, Chin NA, Jonaitis EM, et al. Visual read of [F-18]florquinitau PET that includes and extends beyond the mesial temporal lobe is associated with increased plasma pTau217 and cognitive decline in a cohort that is enriched with risk for Alzheimer’s disease. Alzheimers Dement. 2025;21:e14406. PubMed PMC

Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol. 1995;57:289–300.

Janelidze S, Zetterberg H, Mattsson N, Palmqvist S, Vanderstichele H, Lindberg O, et al. CSF A β 42/A β 40 and A β 42/A β 38 ratios: better diagnostic markers of Alzheimer disease. Ann Clin Transl Neurol. 2016;3:154–65. PubMed PMC

Jack CR, Andrews JS, Beach TG, Buracchio T, Dunn B, Graf A, et al. Revised criteria for diagnosis and staging of Alzheimer’s disease: Alzheimer’s association workgroup. Alzheimers Dement. 2024;20:5143–5169. PubMed PMC

Therriault J, Vermeiren M, Servaes S, Tissot C, Ashton NJ, Benedet AL, et al. Association of phosphorylated tau biomarkers with amyloid positron emission tomography vs tau positron emission tomography. JAMA Neurol. 2023;80:188–199. PubMed PMC

Mattsson-Carlgren N, Janelidze S, Bateman RJ, Smith R, Stomrud E, Serrano GE, et al. Soluble P-tau217 reflects amyloid and tau pathology and mediates the association of amyloid with tau. EMBO Mol Med. 2021;13: e14022. PubMed PMC

Mielke MM, Hagen CE, Xu J, Chai X, Vemuri P, Lowe VJ, et al. Plasma phospho-tau181 increases with Alzheimer’s disease clinical severity and is associated with tau- and amyloid-positron emission tomography. Alzheimers Dement. 2018;14:989–97. PubMed PMC

Murray ME, Moloney CM, Kouri N, Syrjanen JA, Matchett BJ, Rothberg DM, et al. Global neuropathologic severity of Alzheimer’s disease and locus coeruleus vulnerability influences plasma phosphorylated tau levels. Mol Neurodegener. 2022;17: 85. PubMed PMC

Coughlan GT, Betthauser TJ, Boyle R, Koscik RL, Klinger HM, Chibnik LB, et al. Association of age at menopause and hormone therapy use with tau and β-amyloid positron emission tomography. JAMA Neurol. 2023;80:462–73. PubMed PMC

Sundermann EE, Panizzon MS, Chen X, Andrews M, Galasko D, Banks SJ. Sex differences in Alzheimer’s-related tau biomarkers and a mediating effect of testosterone. Biol Sex Differ. 2020;11: 33. PubMed PMC

Gur RC, Turetsky BI, Matsui M, Yan M, Bilker W, Hughett P, et al. Sex differences in brain gray and white matter in healthy young adults: correlations with cognitive performance. J Neurosci. 1999;19:4065–72. PubMed PMC

Milà-Alomà M, Brinkmalm A, Ashton NJ, Kvartsberg H, Shekari M, Operto G, et al. CSF synaptic biomarkers in the preclinical stage of Alzheimer disease and their association with MRI and PET. Neurology. 2021;97:e2065–78. PubMed PMC

Parrado-Fernández C, Blennow K, Hansson M, Leoni V, Cedazo-Minguez A, Björkhem I. Evidence for sex difference in PubMed PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...