Protein Kinase C Regulates Meiosis in Mammalian Oocytes

. 2026 Jan ; 48 (1) : e70087. [epub] 20251110

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid41208434

Grantová podpora
RVO67985904 Institutional Research Concept
22-27301S Czech Science Foundation

The protein kinase C (PKC) family comprises enzyme kinases that regulate cell survival, metabolism, and proliferation. PKC isotypes (PKCs) phosphorylate specific downstream substrates, thereby controlling critical steps in both mitotic and meiotic cell division. Throughout the cell cycle, PKCs orchestrate essential processes, such as chromosome segregation, recombination, and cell cycle progression. In vertebrates, PKCs play essential roles in oogenesis and the early stages of embryo development. Disruption of PKC signaling in mammalian oocytes can lead to errors in chromosome segregation and induce meiotic arrest. Therefore, investigating PKC function in meiosis is crucial for advancing fundamental biological research and for developing new approaches to infertility treatment.

Zobrazit více v PubMed

Newton A. C., “Protein Kinase C: Poised to Signal,” American Journal of Physiology Endocrinology and Metabolism 298, no. 3 (2010): E395–402, 10.1152/ajpendo.00477.2009. PubMed DOI PMC

Mochly‐Rosen D., Das K., and Grimes K. V., “Protein Kinase C, an Elusive Therapeutic Target?,” Nature Reviews Drug Discovery 11, no. 12 (2012): 937–957, 10.1038/nrd3871. PubMed DOI PMC

Pieles O. and Morsczeck C., “The Role of Protein Kinase C During the Differentiation of Stem and Precursor Cells Into Tissue Cells,” Biomedicines 12, no. 12 (2024), 10.3390/biomedicines12122735. PubMed DOI PMC

Poli A., Mongiorgi S., Cocco L., and Follo M. Y., “Protein Kinase C Involvement in Cell Cycle Modulation,” Biochemical Society Transactions 42, no. 5 (2014): 1471–1476, 10.1042/BST20140128. PubMed DOI

Papp H., Czifra G., Lázár J., et al., “Protein Kinase C Isozymes Regulate Proliferation and High Cell Density‐Mediated Differentiation in HaCaT Keratinocytes,” Experimental Dermatology 12, no. 6 (2003): 811–824, 10.1111/j.0906-6705.2003.00097.x. PubMed DOI

Newton A. C., “Protein Kinase C: Perfectly Balanced,” Critical Reviews in Biochemistry and Molecular Biology 53, no. 2 (2018): 208–230, 10.1080/10409238.2018.1442408. PubMed DOI PMC

Borner C., Filipuzzi I., Wartmann M., Eppenberger U., and Fabbro D., “Biosynthesis and Posttranslational Modifications of Protein Kinase C in human Breast Cancer Cells,” Journal of Biological Chemistry 264, no. 23 (1989): 13902–13909, http://www.ncbi.nlm.nih.gov/pubmed/2474538. PubMed

Keranen L. M., Dutil E. M., and Newton A. C., “Protein Kinase C Is Regulated In Vivo by Three Functionally Distinct Phosphorylations,” Current Biology 5, no. 12 (1995): 1394–1403, 10.1016/S0960-9822(95)00277-6. PubMed DOI

Dutil E. M., Toker A., and Newton A. C., “Regulation of Conventional Protein Kinase C Isozymes by Phosphoinositide‐Dependent Kinase 1 (PDK‐1),” Current Biology 8, no. 25 (1998): 1366–1375, 10.1016/S0960-9822(98)00017-7. PubMed DOI

Le Good J. A., Ziegler W. H., Parekh D. B., Alessi D. R., Cohen P., and Parker P. J., “Protein Kinase C Isotypes Controlled by Phosphoinositide 3‐Kinase Through the Protein Kinase PDK1,” Science 281, no. 5385 (1998): 2042–2045, 10.1126/science.281.5385.2042. PubMed DOI

Guertin D. A., Stevens D. M., Thoreen C. C., et al., “Ablation in Mice of the mTORC Components Raptor, Rictor, or mLST8 Reveals That mTORC2 Is Required for Signaling to Akt‐FOXO and PKCα, but Not S6K1,” Developmental Cell 11, no. 6 (2006): 859–871, 10.1016/j.devcel.2006.10.007. PubMed DOI

Behn‐Krappa A. and Newton A. C., “The Hydrophobic Phosphorylation Motif of Conventional Protein Kinase C Is Regulated by Autophosphorylation,” Current Biology 9, no. 14 (1999): 728–737, 10.1016/S0960-9822(99)80332-7. PubMed DOI

Tsutakawa S. E., Medzihradszky K. F., Flint A. J., Burlingame A. L., and Koshland D. E., “Determination of In Vivo Phosphorylation Sites in Protein Kinase C,” Journal of Biological Chemistry 270, no. 45 (1995): 26807–26812, 10.1074/jbc.270.45.26807. PubMed DOI

Wilson C. H., Ali E. S., Scrimgeour N., et al., “Steatosis Inhibits Liver Cell Store‐operated Ca PubMed DOI

Verdaguer N., Corbalan‐Garcia S., Ochoa W. F., Fita I., and Gómez‐Fernández J. C., “Ca2+ Bridges the C2 Membrane‐Binding Domain of Protein Kinase Cα Directly to Phosphatidylserine,” EMBO Journal 18, no. 22 (1999): 6329–6338, 10.1093/emboj/18.22.6329. PubMed DOI PMC

Steinberg S. F., “Structural Basis of Protein Kinase C Isoform Function,” Physiological Reviews 88, no. 4 (2008): 1341–1378, 10.1152/physrev.00034.2007. PubMed DOI PMC

Kanno T., Yamamoto H., Yaguchi T., et al., “The Linoleic Acid Derivative DCP‐LA Selectively Activates PKC‐ɛ, Possibly Binding to the Phosphatidylserine Binding Site,” Journal of Lipid Research 47, no. 6 (2006): 1146–1156, 10.1194/jlr.M500329-JLR200. PubMed DOI

Kajimoto T., Caliman A. D., Tobias I. S., et al., “Activation of atypical Protein Kinase C by Sphingosine 1‐Phosphate Revealed by an aPKC‐Specific Activity Reporter,” Science Signaling 12, no. 562 (2019): aat6662, 10.1126/scisignal.aat6662. PubMed DOI PMC

Limatola C., Schaap D., Moolenaar W. H., and van Blitterswijk W. J., “Phosphatidic Acid Activation of Protein Kinase C‐ ζ Overexpressed in COS Cells: Comparison With Other Protein Kinase C Isotypes and Other Acidic Lipids,” Biochemical Journal 304, no. 3 (1994): 1001–1008, 10.1042/bj3041001. PubMed DOI PMC

Sajan M. P., Acevedo‐Duncan M. E., Standaert M. L., Ivey R. A., Lee M., and Farese R. V., “Akt‐Dependent Phosphorylation of Hepatic FoxO1 Is Compartmentalized on a WD40/ProF Scaffold and Is Selectively Inhibited by aPKC in Early Phases of Diet‐Induced Obesity,” Diabetes 63, no. 8 (2014): 2690–2701, 10.2337/db13-1863. PubMed DOI PMC

Shoji M., Girard P. R., Mazzei G. J., Vogler W. R., and Kuo J. F., “Immunocytochemical Evidence for Phorbol Ester‐Induced Protein Kinase C Translocation in HL60 Cells,” Biochemical and Biophysical Research Communications 135, no. 3 (1986): 1144–1149, 10.1016/0006-291X(86)91047-8. PubMed DOI

Disatnik M. H., Hernandez‐Sotomayor S. M., Jones G., Carpenter G., and Mochly‐Rosen D., “Phospholipase C‐gamma 1 Binding to Intracellular Receptors for Activated Protein Kinase C,” Proceedings of the National Academy of Sciences 91, no. 2 (1994): 559–563, 10.1073/pnas.91.2.559. PubMed DOI PMC

Gruss O. J., Feick P., Frank R., and Dobberstein B., “Phosphorylation of Components of the ER Translocation Site,” European Journal of Biochemistry 260, no. 3 (1999): 785–793, 10.1046/j.1432-1327.1999.00215.x. PubMed DOI

Westermann P., Knoblich M., Maier O., Lindschau C., and Haller H., “Protein Kinase C Bound to the Golgi Apparatus Supports the Formation of Constitutive Transport Vesicles,” Biochemical Journal 320, no. 2 (1996): 651–658, 10.1042/bj3200651. PubMed DOI PMC

Wu‐Zhang A. X., Murphy A. N., Bachman M., and Newton A. C., “Isozyme‐Specific Interaction of Protein Kinase Cδ With Mitochondria Dissected Using Live Cell Fluorescence Imaging,” Journal of Biological Chemistry 287, no. 45 (2012): 37891–37906, 10.1074/jbc.M112.412635. PubMed DOI PMC

Zalewski P. D., Forbes I. J., Valente L., Apostolou S., and Hurst N. P., “Translocation of Protein Kinase C to a Triton‐Insoluble Sub‐Cellular Compartment Induced by the Lipophilic Gold Compound Auranofin,” Biochemical Pharmacology 37, no. 7 (1988): 1415–1417, 10.1016/0006-2952(88)90802-7. PubMed DOI

Gonzalez‐Garcia J. R., Machaty Z., Lai F. A., and Swann K., “The Dynamics of PKC‐Induced Phosphorylation Triggered by Ca 2+ Oscillations in Mouse Eggs,” Journal of Cellular Physiology 228, no. 1 (2013): 110–119, 10.1002/jcp.24110. PubMed DOI PMC

Meier M., Menne J., and Haller H., “Targeting the Protein Kinase C Family in the Diabetic Kidney: Lessons From Analysis of Mutant Mice,” Diabetologia 52, no. 5 (2009): 765–775, 10.1007/s00125-009-1278-y. PubMed DOI

Fan H.‐Y., Huo L.‐J., Chen D.‐Y., Schatten H., and Sun Q.‐Y., “Protein Kinase C and Mitogen‐Activated Protein Kinase Cascade in Mouse Cumulus Cells: Cross Talk and Effect on Meiotic Resumption of Oocyte1,” Biology of Reproduction 70, no. 4 (2004): 1178–1187, 10.1095/biolreprod.103.024737. PubMed DOI

Kuroda T., Naito K., Sugiura K., Yamashita M., Takakura I., and Tojo H., “Analysis of the Roles of Cyclin B1 and Cyclin B2 in Porcine Oocyte Maturation by Inhibiting Synthesis With Antisense RNA Injection1,” Biology of Reproduction 70, no. 1 (2004): 154–159, 10.1095/biolreprod.103.021519. PubMed DOI

Massacci G., Perfetto L., and Sacco F., “The Cyclin‐Dependent Kinase 1: More Than a Cell Cycle Regulator,” British Journal of Cancer 129, no. 11 (2023): 1707–1716, 10.1038/s41416-023-02468-8. PubMed DOI PMC

Kishimoto T., “Entry Into Mitosis: A Solution to the Decades‐Long Enigma of MPF,” Chromosoma 124, no. 4 (2015): 417–428, 10.1007/s00412-015-0508-y. PubMed DOI PMC

Dorée M. and Hunt T., “From Cdc2 to Cdk1: When Did the Cell Cycle Kinase Join Its Cyclin Partner?,” Journal of Cell Science 115, no. 12 (2002): 2461–2464, 10.1242/jcs.115.12.2461. PubMed DOI

Jones K. T., “Turning It On and Off: M‐Phase Promoting Factor During Meiotic Maturation and Fertilization,” Molecular Human Reproduction 10, no. 1 (2004): 1–5, 10.1093/molehr/gah009. PubMed DOI

Lu L. X., Domingo‐Sananes M. R., Huzarska M., Novak B., and Gould K. L., “Multisite Phosphoregulation of Cdc25 Activity Refines the Mitotic Entrance and Exit Switches,” Proceedings of the National Academy of Sciences 109, no. 25 (2012): 9899–9904, 10.1073/pnas.1201366109. PubMed DOI PMC

Margadant C., Cremers L., Sonnenberg A., and Boonstra J., “MAPK Uncouples Cell Cycle Progression From Cell Spreading and Cytoskeletal Organization in Cycling Cells,” Cellular and Molecular Life Sciences 70, no. 2 (2013): 293–307, 10.1007/s00018-012-1130-2. PubMed DOI PMC

Mitchell D., Rodgers K., Hanly J., et al., “Lipoxins Inhibit Akt/PKB Activation and Cell Cycle Progression in Human Mesangial Cells,” American Journal of Pathology 164, no. 3 (2004): 937–946, 10.1016/S0002-9440(10)63181-1. PubMed DOI PMC

Zhang X., “Aurora Kinases,” Current Biology 18, no. 4 (2008): R146–R148, 10.1016/j.cub.2007.12.004. PubMed DOI

Lolli G. and Johnson L. N., “CAK—Cyclin‐Dependent Activating Kinase: A Key Kinase in Cell Cycle Control and a Target for Drugs?,” Cell Cycle (Georgetown, Tex) 4, no. 4 (2005): 572–577, 10.4161/cc.4.4.1607. PubMed DOI

Procházka R., Bartková A., Němcová L., et al., “The Role of MAPK3/1 and AKT in the Acquisition of High Meiotic and Developmental Competence of Porcine Oocytes Cultured In Vitro in FLI Medium,” International Journal of Molecular Sciences 22, no. 20 (2021): 11148, 10.3390/ijms222011148. PubMed DOI PMC

Kalous J., Aleshkina D., and Anger M., “A Role of PI3K/Akt Signaling in Oocyte Maturation and Early Embryo Development,” Cells 12, no. 14 (2023): 1830, 10.3390/cells12141830. PubMed DOI PMC

Willems E., Dedobbeleer M., Digregorio M., Lombard A., Lumapat P. N., and Rogister B., “The Functional Diversity of Aurora Kinases: A Comprehensive Review,” Cell Division 13, no. 1 (2018): 7, 10.1186/s13008-018-0040-6. PubMed DOI PMC

Black A. R. and Black J. D., “Protein Kinase C Signaling and Cell Cycle Regulation,” Frontiers in Immunology 3 (2013): 423, 10.3389/fimmu.2012.00423. PubMed DOI PMC

Barboule N., Lafon C., Chadebech P., Vidal S., and Valette A., “Involvement of p21 in the PKC‐Induced Regulation of the G2/M Cell Cycle Transition,” FEBS Letters 444, no. 1 (1999): 32–37, 10.1016/S0014-5793(99)00022-8. PubMed DOI

Besson A. and Yong V. W., “Involvement of p21 Waf1/Cip1 in Protein Kinase C Alpha‐Induced Cell Cycle Progression,” Molecular and Cellular Biology 20, no. 13 (2000): 4580–4590, 10.1128/MCB.20.13.4580-4590.2000. PubMed DOI PMC

Black J. D., “PKC and Control of the Cell Cycle,” in Protein Kinase C in Cancer Signaling and Therapy (Humana Press, 2010): 155–188, 10.1007/978-1-60761-543-9_8. DOI

Li Y., Li M., Weigel B., Mall M., Werth V. P., and Liu M., “Nuclear Envelope Rupture and NET Formation Is Driven by PKCα‐Mediated Lamin B Disassembly,” PubMed DOI PMC

Jaffe L. A. and Norris R. P., “Initiation of the Meiotic Prophase‐to‐Metaphase Transition in Mammalian Oocytes,” in Oogenesis (Wiley, 2010): 179–197, 10.1002/9780470687970.ch7. DOI

Ozturk S., “Molecular Determinants of the Meiotic Arrests in Mammalian Oocytes at Different Stages of Maturation,” Cell Cycle 21, no. 6 (2022): 547–571, 10.1080/15384101.2022.2026704. PubMed DOI PMC

Pei Z., Deng K., Xu C., and Zhang S., “The Molecular Regulatory Mechanisms of Meiotic Arrest and Resumption in Oocyte Development and Maturation,” Reproductive Biology and Endocrinology 21, no. 1 (2023): 90, 10.1186/s12958-023-01143-0. PubMed DOI PMC

Bornslaeger E. A. and Schultz R. M., “Regulation of Mouse Oocyte Maturation: Effect of Elevating Cumulus Cell cAMP on Oocyte cAMP Levels1,” Biology of Reproduction 33, no. 3 (1985): 698–704, 10.1095/biolreprod33.3.698. PubMed DOI

Sanders J. R. and Jones K. T., “Regulation of the Meiotic Divisions of Mammalian Oocytes and Eggs,” Biochemical Society Transactions 46, no. 4 (2018): 797–806, 10.1042/BST20170493. PubMed DOI PMC

Homer H., Gui L., and Carroll J., “A Spindle Assembly Checkpoint Protein Functions in Prophase I Arrest and Prometaphase Progression,” Science 326, no. 5955 (2009): 991–994, 10.1126/science.1175326. PubMed DOI PMC

Adhikari D. and Liu K., “The Regulation of Maturation Promoting Factor During Prophase I Arrest and Meiotic Entry in Mammalian Oocytes,” Molecular and Cellular Endocrinology 382, no. 1 (2014): 480–487, 10.1016/j.mce.2013.07.027. PubMed DOI

Kalous J., Kubelka M., Rimkevicova Z., Guerrier P., and Motlik J., “Okadaic Acid Accelerates Germinal Vesicle Breakdown and Overcomes Cycloheximide‐ and 6‐Dimethylaminopurine Block in Cattle and Pig Oocytes,” Developmental Biology 157, no. 2 (1993): 448–454, 10.1006/dbio.1993.1148. PubMed DOI

Lincoln A. J., Wickramasinghe D., Stein P., et al., “Cdc25b phosphatase Is Required for Resumption of Meiosis During Oocyte Maturation,” Nature Genetics 30, no. 4 (2002): 446–449, 10.1038/ng856. PubMed DOI

Kubelka M., Anger M., Kalous J., Schultz R. M., and MotlÍk J., “Chromosome Condensation in Pig Oocytes: Lack of a Requirement for either cdc2 Kinase or MAP Kinase Activity,” Molecular Reproduction and Development 63, no. 1 (2002): 110–118, 10.1002/mrd.10176. PubMed DOI

Marangos P. and Carroll J., “The Dynamics of Cyclin B1 Distribution During Meiosis I in Mouse Oocytes,” Reproduction (Cambridge, England) 128, no. 2 (2004): 153–162, 10.1530/rep.1.00192. PubMed DOI

Kalous J., Jansová D., and Šušor A., “Role of Cyclin‐Dependent Kinase 1 in Translational Regulation in the M‐Phase,” Cells 9, no. 7 (2020): 1568, 10.3390/cells9071568. PubMed DOI PMC

Kidder G. M. and Vanderhyden B. C., “Bidirectional Communication Between Oocytes and Follicle Cells: Ensuring Oocyte Developmental Competence,” Canadian Journal of Physiology and Pharmacology 88, no. 4 (2010): 399–413, 10.1139/Y10-009. PubMed DOI PMC

Zhang M., Su Y.‐Q., Sugiura K., Xia G., and Eppig J. J., “Granulosa Cell Ligand NPPC and Its Receptor NPR2 Maintain Meiotic Arrest in Mouse Oocytes,” Science 330, no. 6002 (2010): 366–369, 10.1126/science.1193573. PubMed DOI PMC

Kalma Y., Granot I., Galiani D., Barash A., and Dekel N., “Luteinizing Hormone‐Induced Connexin 43 Down‐Regulation: Inhibition of Translation,” Endocrinology 145, no. 4 (2004): 1617–1624, 10.1210/en.2003-1051. PubMed DOI

Conti M., Hsieh M., Zamah A. M., and Oh J. S., “Novel Signaling Mechanisms in the Ovary During Oocyte Maturation and Ovulation,” Molecular and Cellular Endocrinology 356, no. 1–2 (2012): 65–73, 10.1016/j.mce.2011.11.002. PubMed DOI PMC

Norris R. P., Freudzon M., Mehlmann L. M., et al., “Luteinizing Hormone Causes MAP Kinase‐Dependent Phosphorylation and Closure of Connexin 43 Gap Junctions in Mouse Ovarian Follicles: One of Two Paths to Meiotic Resumption,” Development (Cambridge, England) 135, no. 19 (2008): 3229–3238, 10.1242/dev.025494. PubMed DOI PMC

Sela‐Abramovich S., Edry I., Galiani D., Nevo N., and Dekel N., “Disruption of Gap Junctional Communication Within the Ovarian Follicle Induces Oocyte Maturation,” Endocrinology 147, no. 5 (2006): 2280–2286, 10.1210/en.2005-1011. PubMed DOI

Norris R. P., Ratzan W. J., Freudzon M., et al., “Cyclic GMP From the Surrounding Somatic Cells Regulates Cyclic AMP and Meiosis in the Mouse Oocyte,” Development (Cambridge, England) 136, no. 11 (2009): 1869–1878, 10.1242/dev.035238. PubMed DOI PMC

Li Y., Chang H.‐M., Sung Y.‐W., Zhu H., Leung P. C. K., and Sun Y.‐P., “Betacellulin Regulates Gap Junction Intercellular Communication by Inducing the Phosphorylation of Connexin 43 in Human Granulosa‐Lutein Cells,” Journal of Ovarian Research 16, no. 1 (2023): 103, 10.1186/s13048-023-01185-3. PubMed DOI PMC

Cai H., Liu B., Yang T., et al., “Involvement of PKCε in FSH‐Induced Connexin43 Phosphorylation and Oocyte Maturation in Mouse,” Biology Open 7, no. 8 (2018): bio034678, 10.1242/bio.034678. PubMed DOI PMC

Yi Z.‐Y., Liang Q.‐X., Meng T.‐G., et al., “PKCβ1 Regulates Meiotic Cell Cycle in Mouse Oocyte,” Cell Cycle 18, no. 4 (2019): 395–412, 10.1080/15384101.2018.1564492. PubMed DOI PMC

Viveiros M. M., Hirao Y., and Eppig J. J., “Evidence That Protein Kinase C (PKC) Participates in the Meiosis I to Meiosis II Transition in Mouse Oocytes,” Developmental Biology 235, no. 2 (2001): 330–342, 10.1006/dbio.2001.0311. PubMed DOI

Avazeri N., Courtot A.‐M., and Lefevre B., “Regulation of Spontaneous Meiosis Resumption in Mouse Oocytes by Various Conventional PKC Isozymes Depends on Cellular Compartmentalization,” Journal of Cell Science 117, no. 21 (2004): 4969–4978, 10.1242/jcs.01375. PubMed DOI

Ma W., Koch J. A., and Viveiros M. M., “Protein Kinase C Delta (PKCδ) Interacts With Microtubule Organizing Center (MTOC) – Associated Proteins and Participates in Meiotic Spindle Organization,” Developmental Biology 320, no. 2 (2008): 414–425, 10.1016/j.ydbio.2008.05.550. PubMed DOI

Baluch D. P., Koeneman B. A., Hatch K. R., McGaughey R. W., and Capco D. G., “PKC Isotypes in Post‐activated and Fertilized Mouse Eggs: Association With the Meiotic Spindle,” Developmental Biology 274, no. 1 (2004): 45–55, 10.1016/j.ydbio.2004.05.030.. PubMed DOI

Zheng Z.‐Y., Li Q.‐Z., Chen D.‐Y., Schatten H., and Sun Q.‐Y., “Translocation of Phospho‐Protein Kinase Cs Implies Their Roles in Meiotic‐Spindle Organization, Polar‐Body Emission and Nuclear Activity in Mouse Eggs,” Reproduction (Cambridge, England) 129, no. 2 (2005): 229–234, 10.1530/rep.1.00336. PubMed DOI

Luria A., Tennenbaum T., Sun Q. Y., Rubinstein S., and Breitbart H., “Differential Localization of Conventional Protein Kinase C Isoforms During Mouse Oocyte Development,” Biology of Reproduction 62, no. 6 (2000): 1564–1570, 10.1095/biolreprod62.6.1564. PubMed DOI

Raz T., Skutelsky E., Amihai D., Hammel I., and Shalgi R., “Mechanisms Leading to Cortical Reaction in the Mammalian Egg,” Molecular Reproduction and Development 51, no. 3 (1998): 295–303, 10.1002/(SICI)1098-2795(199811)51:3<295::AID-MRD9>3.0.CO;2-K. PubMed DOI

Downs S. M., Cottom J., and Hunzicker‐Dunn M., “Protein Kinase C and Meiotic Regulation in Isolated Mouse Oocytes,” Molecular Reproduction and Development 58, no. 1 (2001): 101–115, 10.1002/1098-2795(200101)58:1<101::AID-MRD13>3.0.CO;2-J. PubMed DOI

Craig L. B., Curnow E. C., and Hayes E. S., “Bovine Oocytes as a Model System for the Study of Protein Kinase C (PKC) Signaling During Mammalian Oocyte In Vitro Maturation (IVM),” Fertility and Sterility 82 (2004): S278–S279, 10.1016/j.fertnstert.2004.07.747. DOI

Mondadori R. G., Neves J. P., and Gonçalves P. B. D., “Protein Kinase C (PKC) Role in Bovine Oocyte Maturation and Early Embryo Development,” Animal Reproduction Science 107 (2008): 20–29, 10.1016/j.anireprosci.2007.06.015. PubMed DOI

Quan H.‐M., Fan H.‐Y., Meng X.‐Q., et al., “Effects of PKC Activation on the Meiotic Maturation, Fertilization and Early Embryonic Development of Mouse Oocytes,” Zygote (Cambridge, England) 11, no. 4 (2003): 329–337, 10.1017/S0967199403002399. PubMed DOI

Denys A., Avazeri N., and Lefèvre B., “The PKC Pathway and in Particular Its β1 Isoform Is Clearly Involved in Meiotic Arrest Maintenance but Poorly in FSH‐Induced Meiosis Resumption of the Mouse Cumulus Cell Enclosed Oocyte,” Molecular Reproduction and Development 74, no. 12 (2007): 1575–1580, 10.1002/mrd.20748. PubMed DOI

Baluch D. P. and Capco D. G., “GSK3β Mediates Acentromeric Spindle Stabilization by Activated PKCζ,” Developmental Biology 317, no. 1 (2008): 46–58, 10.1016/j.ydbio.2008.01.044. PubMed DOI

Lu Q., Smith G. D., Chen D.‐Y., et al., “Phosphorylation of Mitogen‐Activated Protein Kinase Is Regulated by Protein Kinase C, Cyclic 3′,5′‐Adenosine Monophosphate, and Protein Phosphatase Modulators During Meiosis Resumption in Rat Oocytes1,” Biology of Reproduction 64, no. 5 (2001): 1444–1450, 10.1095/biolreprod64.5.1444. PubMed DOI

Sun Q. Y., Rubinstein S., and Breitbart H., “MAP Kinase Activity Is Downregulated by Phorbol Ester During Mouse Oocyte Maturation and Egg Activation In Vitro,” Molecular Reproduction and Development 52, no. 3 (1999): 310–318, 10.1002/(SICI)1098-2795(199903)52:3<310::AID-MRD9>3.0.CO;2-C. PubMed DOI

Prochazka R., Blaha M., and Němcová L., “Significance of Epidermal Growth Factor Receptor Signaling for Acquisition of Meiotic and Developmental Competence in Mammalian Oocytes†,” Biology of Reproduction 97, no. 4 (2017): 537–549, 10.1093/biolre/iox112. PubMed DOI

Shimada M., Umehara T., and Hoshino Y., “Roles of Epidermal Growth Factor (EGF)‐Like Factor in the Ovulation Process,” Reproductive Medicine and Biology 15, no. 4 (2016): 201–216, 10.1007/s12522-016-0236-x. PubMed DOI PMC

Abbassi L., El‐Hayek S., Carvalho K. F., et al., “Epidermal Growth Factor Receptor Signaling Uncouples Germ Cells From the Somatic Follicular Compartment at Ovulation,” Nature Communications 12, no. 1 (2021): 1438, 10.1038/s41467-021-21644-z. PubMed DOI PMC

Chen X., Zhou B., Yan J., et al., “Epidermal Growth Factor Receptor Activation by Protein Kinase C Is Necessary for FSH‐induced Meiotic Resumption in Porcine Cumulus–Oocyte Complexes,” Journal of Endocrinology 197, no. 2 (2008): 409–419, 10.1677/JOE-07-0592. PubMed DOI

Prochazka R. and Nemcova L., “Mechanisms of FSH‐ and Amphiregulin‐Induced MAP Kinase 3/1 Activation in Pig Cumulus‐Oocyte Complexes During Maturation In Vitro,” International Journal of Molecular Sciences 20, no. 5 (2019): 1179, 10.3390/ijms20051179. PubMed DOI PMC

Chen Q., Zhang W., Ran H., et al., “PKCδ and θ Possibly Mediate FSH‐Induced Mouse Oocyte Maturation via NOX‐ROS‐TACE Cascade Signaling Pathway,” PLoS ONE 9, no. 10 (2014): 111423, 10.1371/journal.pone.0111423. PubMed DOI PMC

Halet G., “PKC Signaling at Fertilization in Mammalian Eggs,” Biochimica Et Biophysica Acta (BBA)—Molecular Cell Research 1742, no. 1–3 (2004): 185–189, 10.1016/j.bbamcr.2004.09.012. PubMed DOI

Kalive M., Faust J. J., Koeneman B. A., and Capco D. G., “Involvement of the PKC family in Regulation of Early Development,” Molecular Reproduction and Development 77, no. 2 (2010): 95–104, 10.1002/mrd.21112. PubMed DOI

Cui L.‐B., Zhao Z.‐J., Zhou X.‐Y., Li Q., Huang X.‐Y., and Sun F.‐Z., “Effect of Age, GV Transfer and Modified Nucleocytoplasmic Ratio on PKCα in Mouse Oocytes and Early Embryos,” Zygote (Cambridge, England) 20, no. 1 (2012): 87–95, 10.1017/S0967199410000626. PubMed DOI

Ma W., Baumann C., and Viveiros M. M., “Lack of Protein Kinase C‐Delta (PKCδ) Disrupts Fertilization and Embryonic Development,” Molecular Reproduction and Development 82, no. 10 (2015): 797–808, 10.1002/mrd.22528. PubMed DOI

Zhang Y., Wu L.‐L., Wan X., et al., “Loss of PKC Mu Function Induces Cytoskeletal Defects in Mouse Oocyte Meiosis,” Journal of Cellular Physiology 234, no. 10 (2019): 18513–18523, 10.1002/jcp.28487. PubMed DOI

Kalive M., Baluch D. P., and Capco D. G., “Involvement of PKCζ and GSK3β in the Stability of the Metaphase Spindle,” In Vitro Cellular & Developmental Biology—Animal 48, no. 2 (2012): 97–111, 10.1007/s11626-011-9476-6. PubMed DOI

Liu X. F., Xie X., and Miki T., “Inhibition of Protein Kinase C ζ Blocks the Attachment of Stable Microtubules to Kinetochores Leading to Abnormal Chromosome Alignment,” Cellular Signalling 18, no. 12 (2006): 2314–2323, 10.1016/j.cellsig.2006.05.017. PubMed DOI

Leitges M., Mayr M., Braun U., et al., “Exacerbated Vein Graft Arteriosclerosis in Protein Kinase Cδ–Null Mice,” Journal of Clinical Investigation 108, no. 10 (2001): 1505–1512, 10.1172/JCI12902. PubMed DOI PMC

Gallicano G. I., McGaughey R. W., and Capco D. G., “Activation of Protein Kinase C After Fertilization Is Required for Remodeling the Mouse Egg Into the Zygote,” Molecular Reproduction and Development 46, no. 4 (1997): 587–601, 10.1002/(SICI)1098-2795(199704)46:4<587::AID-MRD16>3.0.CO;2-T. PubMed DOI

Feitosa W. B., Lopes E., Visintin J. A., and Assumpção M. E. O. D., “Endoplasmic Reticulum Distribution During Bovine Oocyte Activation Is Regulated by Protein Kinase C via Actin filaments,” Journal of Cellular Physiology 235, no. 7–8 (2020): 5823–5834, 10.1002/jcp.29516. PubMed DOI

Fan H.‐Y., Tong C., Li M.‐Y., et al., “Translocation of the Classic Protein Kinase C Isoforms in Porcine Oocytes: Implications of Protein Kinase C Involvement in the Regulation of Nuclear Activity and Cortical Granule Exocytosis,” Experimental Cell Research 277, no. 2 (2002): 183–191, 10.1006/excr.2002.5547. PubMed DOI

Liu Y., Deng X., Wu D., Jin M., and Yu B., “PKCδ Promotes Fertilization of Mouse Embryos in Early Development via the Cdc25B Signaling Pathway,” Experimental and Therapeutic Medicine 18, no. 5 (2019): 3281–3290, 10.3892/etm.2019.7959. PubMed DOI PMC

Yu B., Zheng J., Yu A., et al., “Effects of Protein Kinase C on M‐Phase Promoting Factor in Early Development of Fertilized Mouse Eggs,” Cell Biochemistry and Function 22, no. 5 (2004): 291–298, 10.1002/cbf.1103. PubMed DOI

Liu M., “The Biology and Dynamics of Mammalian Cortical Granules,” Reproductive Biology and Endocrinology: RB&E 9 (2011): 149, 10.1186/1477-7827-9-149. PubMed DOI PMC

Eliyahu E., Shtraizent N., Tsaadon A., and Shalgi R., “Association Between Myristoylated Alanin‐Rich C Kinase Substrate (MARCKS) Translocation and Cortical Granule Exocytosis in Rat Eggs,” Reproduction (Cambridge, England) 131, no. 2 (2006): 221–231, 10.1530/rep.1.00794. PubMed DOI

Eliyahu E., Tsaadon A., Shtraizent N., and Shalgi R., “The Involvement of Protein Kinase C and Actin filaments in Cortical Granule Exocytosis in the Rat,” Reproduction (Cambridge, England) 129, no. 2 (2005): 161–170, 10.1530/rep.1.00424. PubMed DOI

Tsaadon L., Kaplan‐Kraicer R., and Shalgi R., “Myristoylated Alanine‐rich C Kinase Substrate, but Not Ca2+/Calmodulin‐Dependent Protein Kinase II, Is the Mediator in Cortical Granules Exocytosis,” Reproduction (Cambridge, England) 135, no. 5 (2008): 613–624, 10.1530/REP-07-0554. PubMed DOI

Haberman Y., Alon L. T., Eliyahu E., and Shalgi R., “Receptor for Activated C Kinase (RACK) and Protein Kinase C (PKC) in Egg Activation,” Theriogenology 75, no. 1 (2011): 80–89, 10.1016/j.theriogenology.2010.07.013. PubMed DOI

Carbone M. C. and Tatone C., “Alterations in the Protein Kinase C Signaling Activated by a Parthenogenetic Agent in Oocytes From Reproductively Old Mice,” Molecular Reproduction and Development 76, no. 2 (2009): 122–131, 10.1002/mrd.20923. PubMed DOI

Wu X., Zhang X., Li X., et al., “Translocation of Classical PKC and Cortical Granule Exocytosis of human Oocyte in Germinal Vesicle and Metaphase II Stage,” Acta Pharmacologica Sinica 27, no. 10 (2006): 1353–1358, 10.1111/j.1745-7254.2006.00407.x. PubMed DOI

Pauken C. M. and Capco D. G., “The Expression and Stage‐Specific Localization of Protein Kinase C Isotypes During Mouse Preimplantation Development,” Developmental Biology 223, no. 2 (2000): 411–421, 10.1006/dbio.2000.9763. PubMed DOI

Dehghani H. and Hahnel A. C., “Expression Profile of Protein Kinase C Isozymes in Preimplantation Mouse Development,” Reproduction (Cambridge, England) 130, no. 4 (2005): 441–451, 10.1530/rep.1.00571. PubMed DOI

Viveiros M. M., O'Brien M., Wigglesworth K., and Eppig J. J., “Characterization of Protein Kinase C‐δ in Mouse Oocytes Throughout Meiotic Maturation and Following Egg Activation,” Biology of Reproduction 69, no. 5 (2003): 1494–1499, 10.1095/biolreprod.103.019018. PubMed DOI

Gallicano G. I. and Capco D. G., “Remodeling of the Specialized Intermediate Filament Network in Mammalian Eggs and Embryos During Development: Regulation by Protein Kinase C and Protein Kinase M,” Current Topics in Developmental Biology 31 (1995): 277–320, 10.1016/s0070-2153(08)60231-8. PubMed DOI

Eliyahu E. and Shalgi R., “A Role for Protein Kinase C During Rat Egg Activation,” Biology of Reproduction 67, no. 1 (2002): 189–195, 10.1095/biolreprod67.1.189. PubMed DOI

Lu Q., Smith G. D., Chen D.‐Y., Han Z.‐M., and Sun Q.‐Y., “Activation of Protein Kinase C Induces Mitogen‐Activated Protein Kinase Dephosphorylation and Pronucleus Formation in Rat Oocytes1,” Biology of Reproduction 67, no. 1 (2002): 64–69, 10.1095/biolreprod67.1.64. PubMed DOI

Yang Q.‐E., Ozawa M., Zhang K., Johnson S. E., and Ealy A. D., “The Requirement for Protein Kinase C Delta (PRKCD) During Preimplantation Bovine Embryo Development,” Reproduction, Fertility, and Development 28, no. 4 (2016): 482–490, 10.1071/RD14160. PubMed DOI

Niino Y. S., Kawashima I., Iguchi Y., et al., “PKCδ Deficiency Inhibits Fetal Development and Is Associated With Heart Elastic fiber Hyperplasia and Lung Inflammation in Adult PKCδ Knockout Mice,” PLoS ONE 16, no. 7 (2021): 0253912, 10.1371/journal.pone.0253912. PubMed DOI PMC

Eckert J. J., McCallum A., Mears A., Rumsby M. G., Cameron I. T., and Fleming T. P., “PKC Signalling Regulates Tight Junction Membrane Assembly in the Pre‐Implantation Mouse Embryo,” Reproduction (Cambridge, England) 127, no. 6 (2004): 653–667, 10.1530/rep.1.00150. PubMed DOI

Zhang R., Li G., Du M., and Bao S., “Effect of Ezrin on Regulating Trophoblast Cell Invasion via PKC Signaling Pathway in Unexplained Recurrent Spontaneous Abortion,” Reproductive Biology 22, no. 2 (2022): 100634, 10.1016/j.repbio.2022.100634. PubMed DOI

Liu H., Wu Z., Shi X., et al., “Atypical PKC, Regulated by Rho GTPases and Mek/Erk, Phosphorylates Ezrin During Eight‐Cell Embryocompaction,” Developmental Biology 375, no. 1 (2013): 13–22, 10.1016/j.ydbio.2013.01.002. PubMed DOI

Tatone C., Delle Monache S., Francione A., Gioia L., Barboni B., and Colonna R., “Ca2+‐Independent Protein Kinase C Signalling in Mouse Eggs During the Early Phases of Fertilization,” International Journal of Developmental Biology 47, no. 5 (2003): 327–333, http://www.ncbi.nlm.nih.gov/pubmed/12895027. PubMed

Pauken C. M. and Capco D. G., “Regulation of Cell Adhesion During Embryonic Compaction of Mammalian Embryos: Roles for PKC and Beta‐catenin,” Molecular Reproduction and Development 54, no. 2 (1999): 135–144, 10.1002/(SICI)1098-2795(199910)54:2<135::AID-MRD5>3.0.CO;2-A. PubMed DOI

Dard N., Louvet S., Santa‐Maria A., et al., “In Vivo Functional Analysis of Ezrin During Mouse Blastocyst Formation,” Developmental Biology 233, no. 1 (2001): 161–173, 10.1006/dbio.2001.0192. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...