Predation experiments with 3D-printed lizard models yield limited responses in pheasants
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
41211315
PubMed Central
PMC12591047
DOI
10.7717/peerj.20103
PII: 20103
Knihovny.cz E-zdroje
- Klíčová slova
- 3R, Colour polymorphism, Hyperspectral imaging, Predation experiment, Predator-prey dynamics, Reduction, Refinement, Replacement,
- MeSH
- 3D tisk * MeSH
- Galliformes * fyziologie MeSH
- ještěři * fyziologie MeSH
- predátorské chování * fyziologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Animal colouration has been viewed as an adaptation shaped by both abiotic and biotic factors, balancing sexual attractiveness against predation risk. In studying predator-prey dynamics, using 3D models as prey surrogates is common, but material constraints can affect outcomes in both natural and seminatural settings. Here, we utilized 3D-printed models representing three colour morphs of sand lizards (Lacerta agilis) to investigate interactions with captive-bred pheasants (Phasianus colchicus) utilizing forced exploration experiments in an outdoor arena fitted with a grass carpet. The models adequately represented the lizard colouration across a reflectance spectral range of 330-800 nm. Our findings indicate that the pheasants generally exhibited a minimal response to static models, with significant differences observed only in younger birds (7-12 weeks old), demonstrating a higher alert response than adults. No effects were found relating to the colour morph or sex of the lizard models. These results suggest that immobile 3D-printed prey models may be insufficient to trigger natural predator responses in this predator-prey system, highlighting potential limitations of static models in eliciting predator reaction.
Department of Biology Masaryk University Brno Czech Republic
Department of Botany and Zoology Masaryk University Brno Czech Republic
Institute of Animal Physiology and Genetics Czech Academy of Sciences Brno Czech Republic
Institute of Automation and Computer Science Brno University of Technology Brno Czech Republic
Institute of Vertebrate Biology Czech Academy of Sciences Brno Czech Republic
Zobrazit více v PubMed
Abrams PA. The evolution of predator-prey interactions: theory and evidence. Annual Review of Ecology and Systematics. 2000;31:79–105. doi: 10.1146/annurev.ecolsys.31.1.79. DOI
Adam I. Master’s thesis. 2022. Predation of Lacertidae lizards by omnivorous birds.
Aigueperse N, Calandreau L, Bertin A. Maternal diet influences offspring feeding behavior and fearfulness in the precocial chicken. PLOS ONE. 2013;8:e77583. doi: 10.1371/journal.pone.0077583. PubMed DOI PMC
Antonová K, Veselý P, Fuchs R. Untrained birds’ability to recognise predators with changed body size and colouration in a field experiment. BMC Ecology and Evolution. 2021;21:74. doi: 10.1186/s12862-021-01807-8. PubMed DOI PMC
Bateman P, Fleming P, Wolfe A. A different kind of ecological modelling: the use of clay model organisms to explore predator-prey interactions in vertebrates. Journal of Zoology. 2017;301:251–262. doi: 10.1111/jzo.12415. DOI
Behm J, Waite B, Hsieh S, Helmus M. Benefits and limitations of three-dimensional printing technology for ecological research. BMC Ecology. 2018;18:32. doi: 10.1186/s12898-018-0190-z. PubMed DOI PMC
Blanke I, Fearnley H. Laurenti-Verlag; Bielefeld: 2015. The sand lizard. Between light and shadow.
Brodie III ED, Brodie Jr ED. Predator-prey arms races: asymmetrical selection on predators and prey may be reduced when prey are dangerous. BioScience. 1999;49:557–568. doi: 10.2307/1313476. DOI
Castilla AM, Labra A. Predation and spatial distribution of the lizard Podarcishispanica atrata: an experimental approach. Acta Oecologica. 1998;19:107–114. doi: 10.1016/S1146-609X(98)80014-3. DOI
De Alcantara Viana JV, Vieira C, Duarte RC, Romero GQ. Predator responses to prey camouflage strategies: a meta-analysis. Proceedings of the Royal Society B: Biological Sciences. 2022;289(1982):20220980. doi: 10.1098/rspb.2022.0980. PubMed DOI PMC
Dimond R, Warner N, Wheeler M, Westbury D. An investigation into the relationship between pheasants (Phasianus colchicus) and reptiles as prey. The Herpetological Journal. 2014;24:3–6.
Elbing K, Günther R, Rahmel U. Die Amphibien und Reptilien Deutschlands. Gustav Fischer; Jena: 1996. pp. 535–557.
Endler JA. A predator’s view of animal color patterns. In: Hecht MK, Steere WC, Wallace B, editors. Evolutionary biology. Springer US; Boston: 1978. pp. 319–364. DOI
Farallo VR, Forstner MRJ. Predation and the maintenance of color polymorphism in a habitat specialist squamate. PLOS ONE. 2012;7:e30316. doi: 10.1371/journal.pone.0030316. PubMed DOI PMC
Graitson E, Taymans J. Impacts des lâchers massifs de faisans de Colchide (Phasianus colchicus L.) sur les squamates (Reptilia Squamata) Bulletin de la Société Herpétologique de France. 2022;180:2. doi: 10.48716/bullshf.180-2. DOI
Hart NS. Variations in cone photoreceptor abundance and the visual ecology of birds. Journal of Comparative Physiology A. 2001;187:685–697. doi: 10.1007/s00359-001-0240-3. PubMed DOI
Hernández-Agüero J, Polo V, García M, Simón D, Ruiz-Tapiador I, Cayuela L. Effects of prey colour on bird predation: an experiment in Mediterranean woodlands. Animal Behaviour. 2020;170:89–97. doi: 10.1016/j.anbehav.2020.10.017. DOI
Husak JF, Macedonia JM, Fox SF, Sauceda RC. Predation cost of conspicuous male coloration in collared lizards (Crotaphytus collaris): an experimental test using clay-covered model lizards. Ethology. 2006;112:572–580. doi: 10.1111/j.1439-0310.2005.01189.x. DOI
Jedrzejewska B, Jedrzejewski W. Predation in vertebrate communities: the Bialoweža primeval forest as a case study. Berlin: London: Springer-Verlag; 1998. DOI
Kabisch K, Belter H. Verzehen Das Verzehren von Amphibien und Reptilien durch Vogel. Zoologische Abhandlungen, Staatliches Museum für Tierkunde in Dresden. 1968;29:191–226.
Karpestam E, Merilaita S, Forsman A. Detection experiments with humans implicate visual predation as a driver of colour polymorphism dynamics in pygmy grasshoppers. BMC Ecology. 2013;13:17. doi: 10.1186/1472-6785-13-17. PubMed DOI PMC
Kendall S. Preference for intermittent reinforcement. Journal of the Experimental Analysis of Behaviour. 1974;21:463–473. doi: 10.1901/jeab.1974.21-463. PubMed DOI PMC
Kivelä L, Elgert C, Lehtonen TK, Candolin U. The color of artificial light affects mate attraction in the common glow-worm. Science of the Total Environment. 2023;857:159451. doi: 10.1016/j.scitotenv.2022.159451. PubMed DOI
Kjernsmo K, Merilaita S. Background choice as an anti-predator strategy: the roles of background matching and visual complexity in the habitat choice of the least killifish. Proceedings of the Royal Society B: Biological Sciences. 2012;279:4192–4198. doi: 10.1098/rspb.2012.1547. PubMed DOI PMC
Magnhagen C. Predation risk as a cost of reproduction. Trends in Ecology & Evolution. 1991;6:183–186. doi: 10.1016/0169-5347(91)90210-O. PubMed DOI
Maia R, Gruson H, Endler JA, White TE. pavo 2: new tools for the spectral and spatial analysis of colour in R. Methods in Ecology and Evolution. 2019;10:1097–1107. doi: 10.1111/2041-210X.13174. DOI
Marshall KL, Philpot KE, Stevens M. Conspicuous male coloration impairs survival against avian predators in Aegean wall lizards, Podarcis erhardii. Ecology and Evolution. 2015;5:4115–4131. doi: 10.1002/ece3.1650. PubMed DOI PMC
Martin M, Le Galliard J-F, Meylan S, Loew ER. The importance of ultraviolet and near-infrared sensitivity for visual discrimination in two species of lacertid lizards. Journal of Experimental Biology. 2015;218:458–465. PubMed
McCabe BJ. Visual imprinting in birds: behavior, models, and neural mechanisms. Frontiers in Physiology. 2019;10:658. doi: 10.3389/fphys.2019.00658. PubMed DOI PMC
Meier C, Pant S, Van Horik J, Laker P, Langley E, Whiteside M, Verbruggen F, Madden J. A novel continuous inhibitory-control task: variation in individual performance by young pheasants (Phasianus colchicus) Animal Cognition. 2017;20:1035–1047. doi: 10.1007/s10071-017-1120-8. PubMed DOI PMC
Niu X, Jiang Z, Peng Y, Huang S, Wang Z, Shi L. Visual cognition of birds and its underlying neural mechanism: a review. Avian Research. 2022;13:100023. doi: 10.1016/j.avrs.2022.100023. DOI
Nordberg EJ, Schwarzkopf L. Predation risk is a function of alternative prey availability rather than predator abundance in a tropical savanna woodland ecosystem. Scientific Reports. 2019;9:7718. doi: 10.1038/s41598-019-44159-6. PubMed DOI PMC
Oksanen J, Simpson GL, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara R, Solymos P, Stevens MHH, Szoecs E, Wagner H, Barbour M, Bedward M, Bolker B, Borcard D, Carvalho G, Chirico M, De Caceres M, Durand S, Evangelista HBA, FitzJohn R, Friendly M, Furneaux B, Hannigan G, Hill MO, Lahti L, McGlinn D, Ouellette M-H, Ribeiro Cunha E, Smith T, Stier A, Ter Braak CJ, Weedon J. vegan: community Ecology Package. https://CRAN.R-project.org/package=vegan. R package version 2.6-6.12024
Olsson M. Nuptial coloration and predation risk in model sand lizards, Lacerta agilis. Animal Behaviour. 1993;46:410–412. doi: 10.1006/anbe.1993.1207. DOI
Pfeifer G. Brut der Lachseeschwalbe auf Sylt 1998 und Anmerkungen zur aktuellen Bestandssituation. Corax. 1998;17:247–250.
Pianka E, Vitt L. Lizards: windows to the evolution of diversity. University of California Press; Berkeley: 2003.
Poulin B, Lefebvre G, Ibáñez R, Jaramillo C, Hernández C, Stanley Rand A. Avian predation upon lizards and frogs in a neotropical forest understorey. Journal of Tropical Ecology. 2001;17:21–40. doi: 10.1017/S026646740100102X. DOI
Purger JJ, Pál-Dittrich B, Szép D, Samu K. The role of skin colour in camouflage: experiment with green plasticine models of the European tree frog Hyla arborea. Belgian Journal of Zoology. 2025;155:1–14. doi: 10.26496/bjz.2025.196. DOI
R Core Team . R Foundation for Statistical Computing; Vienna: 2024.
Regnault S, Lucas F, Fumagalli L. DNA degradation in avian faecal samples and feasibility of non-invasive studies of threatened Capercaillie populations. Conservation Genetics. 2006;7(3):449–453. doi: 10.1007/s10592-005-9023-7. DOI
Rößler D, Pröhl H, Lötters S. The future of clay model studies. BMC Zoology. 2018;3:6. doi: 10.1186/s40850-018-0033-6. DOI
Sage RB, Hoodless AN, Woodburn MIA, Draycott RAH, Madden JR, Sotherton NW. Summary review and synthesis: effects on habitats and wildlife of the release and management of pheasants and red-legged partridges on UK lowland shoots. Wildlife Biology. 2020;4:wlb.00766. doi: 10.2981/wlb.00766. DOI
Santilli F, Bagliacca M. Fear and behavior of young pheasants reared with or without parent figure. Avian Biology Research. 2019;12:23–27. doi: 10.1177/1758155919826765. DOI
Sau S, Smolinský R, Martínková N. Environment drives color pattern polymorphism in sand lizards beyond the Gloger’s rule. Journal of Zoology. 2023;321:142–155. doi: 10.1111/jzo.13097. DOI
Shine R. “Costs” of reproduction in reptiles. Oecologia. 1980;46(1):92–100. doi: 10.1007/BF00346972. PubMed DOI
Shine R. Locomotor speeds of gravid lizards: placing ‘costs of reproduction’ within an ecological context. Functional Ecology. 2003;17:526–533. doi: 10.1046/j.1365-2435.2003.00756.x. DOI
Sinervo B, Hedges R, Adolph SC. Decreased sprint speed as a cost of reproduction in the lizard sceloporus occidentals: variation among populations. Journal of Experimental Biology. 1991;155:323–336. doi: 10.1242/jeb.155.1.323. DOI
Smolinský R, Hiadlovská Z, Maršala v, Škrabánek P, Škrobánek M, Martínková N. High predation risk decimates survival during the reproduction season. Ecology and Evolution. 2022;12:e9407. doi: 10.1002/ece3.9407. PubMed DOI PMC
Stevens M, Merilaita S. Animal camouflage: current issues and new perspectives. Philosophical Transactions of the Royal Society B: Biological Sciences. 2009;364:423–427. doi: 10.1098/rstb.2008.0217. PubMed DOI PMC
Stevens M, Merilaita S. Cambridge University Press; Cambridge: 2011. Animal camouflage: mechanisms and function. DOI
Stuart-Fox DM, Moussalli A, Marshall NJ, Owens IPF. Conspicuous males suffer higher predation risk: visual modeling and experimental evidence from lizards. Animal Behaviour. 2003;66:541–550. doi: 10.1006/anbe.2003.2235. DOI
Therneau TM. A package for survival analysis in R. https://CRAN.R-project.org/package=survival. R package version 3.7-02024
Walker M, Humphries S. 3D printing: applications in evolution and ecologys. Ecology and Evolution. 2019;9:4289–4301. doi: 10.1002/ece3.5050. PubMed DOI PMC
Watson CM, Roelke CE, Pasichnyk PN, Cox CL. The fitness consequences of the autotomous blue tail in lizards: an empirical test of predator response using clay models. Zoology. 2012;115:339–344. doi: 10.1016/j.zool.2012.04.001. PubMed DOI
Whiteside MA, Sage R, Madden JR. Diet complexity in early life affects survival in released pheasants by altering foraging efficiency, food choice, handling skills and gut morphology. Journal of Animal Ecology. 2015;84:1480–1489. doi: 10.1111/1365-2656.12401. PubMed DOI
Whiteside MA, Sage R, Madden JR. Multiple behavioural, morphological and cognitive developmental changes arise from a single alteration to early life spatial environment, resulting in fitness consequences for released pheasants. Royal Society Open Science. 2016;3:160008. doi: 10.1098/rsos.160008. PubMed DOI PMC
Wiebe KL, Slagsvold T. Mouth coloration in nestling birds: increasing detection or signalling quality? Animal Behaviour. 2009;78:1413–1420. doi: 10.1016/j.anbehav.2009.09.013. DOI
Wuthrich KL, Nagel A, Swierk L. Rapid body color change provides lizards with facultative crypsis in the eyes of their avian predators. The American Naturalist. 2022;199:277–290. doi: 10.1086/717678. PubMed DOI
Zvereva EL, Kozlov MV. Predation risk estimated on live and artificial insect prey follows different patterns. Ecology. 2023;104:e3943. doi: 10.1002/ecy.3943. PubMed DOI