On-Surface Synthesis of Nonbenzenoid PAHs Using Intermolecular π-Radical C-C Coupling
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
41259436
PubMed Central
PMC12679639
DOI
10.1021/jacs.5c12864
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
On-surface synthesis has emerged as a new research field, ideal for designing low-dimensional carbon-based nanomaterials. One of the central problems with this synthetic approach is the understanding of reaction mechanisms, which is a key point for advancing the design of novel, highly selective reactions. The concept of π-radical-mediated reactions has been rarely considered in the context of on-surface synthesis so far. Here, we demonstrate that a π-radical-mediated reaction can provide an efficient mechanism of regioselective carbon-carbon coupling. Namely, π-radical coupling enables the dimerization of two π-expanded acenaphthene units, which facilitates the formation of complex nonbenzenoid PAHs. Our work contributes to the understanding of reaction mechanisms at the fundamental level, thus bridging the gap between in-solution radical chemistry and on-surface synthesis. We demonstrate a highly selective reaction in which the crucial C-C coupling step proceeds without direct catalytic involvement of the gold surface. This mechanistic insight suggests that π-radical coupling is a promising strategy that could be potentially expanded to inert surfaces, providing suitable π-radical activation.
CATRIN RCPTM Palacký University Olomouc Šlechtitelů 27 77146 Olomouc Czech Republic
Institute of Physics of the Czech Academy of Sciences Cukrovarnická 10 16200 Prague Czech Republic
Zobrazit více v PubMed
Clair S., de Oteyza D. G.. Controlling a Chemical Coupling Reaction on a Surface: Tools and Strategies for On-Surface Synthesis. Chem. Rev. 2019;119(7):4717–4776. doi: 10.1021/acs.chemrev.8b00601. PubMed DOI PMC
Grill L., Hecht S.. Covalent On-Surface Polymerization. Nat. Chem. 2020;12(2):115–130. doi: 10.1038/s41557-019-0392-9. PubMed DOI
Shen Q., Gao H.-Y., Fuchs H.. Frontiers of On-Surface Synthesis: From Principles to Applications. Nano Today. 2017;13:77–96. doi: 10.1016/j.nantod.2017.02.007. DOI
Cai J., Ruffieux P., Jaafar R., Bieri M., Braun T., Blankenburg S., Muoth M., Seitsonen A. P., Saleh M., Feng X., Müllen K., Fasel R.. Atomically Precise Bottom-up Fabrication of Graphene Nanoribbons. Nature. 2010;466(7305):470–473. doi: 10.1038/nature09211. PubMed DOI
Ruffieux P., Wang S., Yang B., Sánchez-Sánchez C., Liu J., Dienel T., Talirz L., Shinde P., Pignedoli C. A., Passerone D., Dumslaff T., Feng X., Müllen K., Fasel R.. On-Surface Synthesis of Graphene Nanoribbons with Zigzag Edge Topology. Nature. 2016;531(7595):489–492. doi: 10.1038/nature17151. PubMed DOI
Yin R., Wang Z., Tan S., Ma C., Wang B.. On-Surface Synthesis of Graphene Nanoribbons with Atomically Precise Structural Heterogeneities and On-Site Characterizations. ACS Nano. 2023;17(18):17610–17623. doi: 10.1021/acsnano.3c06128. PubMed DOI
Chen Z., Narita A., Müllen K.. Graphene Nanoribbons: On-Surface Synthesis and Integration into Electronic Devices. Adv. Mater. 2020;32(45):2001893. doi: 10.1002/adma.202001893. PubMed DOI
Zhong D., Franke J.-H., Podiyanachari S. K., Blömker T., Zhang H., Kehr G., Erker G., Fuchs H., Chi L.. Linear Alkane Polymerization on a Gold Surface. Science. 2011;334(6053):213–216. doi: 10.1126/science.1211836. PubMed DOI
Di Giovannantonio M., Qiu Z., Pignedoli C. A., Asako S., Ruffieux P., Müllen K., Narita A., Fasel R.. On-Surface Cyclization of Vinyl Groups on Poly-Para-Phenylene Involving an Unusual Pentagon to Hexagon Transformation. Nat. Commun. 2024;15(1):1910. doi: 10.1038/s41467-024-46173-3. PubMed DOI PMC
Rizzo D. J., Veber G., Cao T., Bronner C., Chen T., Zhao F., Rodriguez H., Louie S. G., Crommie M. F., Fischer F. R.. Topological Band Engineering of Graphene Nanoribbons. Nature. 2018;560(7717):204–208. doi: 10.1038/s41586-018-0376-8. PubMed DOI
Li J., Sanz S., Merino-Díez N., Vilas-Varela M., Garcia-Lekue A., Corso M., de Oteyza D. G., Frederiksen T., Peña D., Pascual J. I.. Topological Phase Transition in Chiral Graphene Nanoribbons: From Edge Bands to End States. Nat. Commun. 2021;12(1):5538. doi: 10.1038/s41467-021-25688-z. PubMed DOI PMC
Gröning O., Wang S., Yao X., Pignedoli C. A., Borin Barin G., Daniels C., Cupo A., Meunier V., Feng X., Narita A., Müllen K., Ruffieux P., Fasel R.. Engineering of Robust Topological Quantum Phases in Graphene Nanoribbons. Nature. 2018;560(7717):209–213. doi: 10.1038/s41586-018-0375-9. PubMed DOI
Cirera B., Sánchez-Grande A., de la Torre B., Santos J., Edalatmanesh S., Rodríguez-Sánchez E., Lauwaet K., Mallada B., Zbořil R., Miranda R., Gröning O., Jelínek P., Martín N., Ecija D.. Tailoring Topological Order and π-Conjugation to Engineer Quasi-Metallic Polymers. Nat. Nanotechnol. 2020;15(6):437–443. doi: 10.1038/s41565-020-0668-7. PubMed DOI
Mishra S., Fatayer S., Fernández S., Kaiser K., Peña D., Gross L.. Nonbenzenoid High-Spin Polycyclic Hydrocarbons Generated by Atom Manipulation. ACS Nano. 2022;16(2):3264–3271. doi: 10.1021/acsnano.1c11157. PubMed DOI
de Oteyza D. G., Frederiksen T.. Carbon-Based Nanostructures as a Versatile Platform for Tunable π-Magnetism. J. Phys.: Condens. Matter. 2022;34(44):443001. doi: 10.1088/1361-648X/ac8a7f. PubMed DOI
Song S., Su J., Telychko M., Li J., Li G., Li Y., Su C., Wu J., Lu J.. On-Surface Synthesis of Graphene Nanostructures with π-Magnetism. Chem. Soc. Rev. 2021;50(5):3238–3262. doi: 10.1039/D0CS01060J. PubMed DOI
Song S., Pinar Solé A., Matěj A., Li G., Stetsovych O., Soler D., Yang H., Telychko M., Li J., Kumar M., Chen Q., Edalatmanesh S., Brabec J., Veis L., Wu J., Jelinek P., Lu J.. Highly Entangled Polyradical Nanographene with Coexisting Strong Correlation and Topological Frustration. Nat. Chem. 2024;16(6):938–944. doi: 10.1038/s41557-024-01453-9. PubMed DOI
Pavliček N., Mistry A., Majzik Z., Moll N., Meyer G., Fox D. J., Gross L.. Synthesis and Characterization of Triangulene. Nat. Nanotechnol. 2017;12(4):308–311. doi: 10.1038/nnano.2016.305. PubMed DOI
Mishra S., Beyer D., Eimre K., Kezilebieke S., Berger R., Gröning O., Pignedoli C. A., Müllen K., Liljeroth P., Ruffieux P., Feng X., Fasel R.. Topological Frustration Induces Unconventional Magnetism in a Nanographene. Nat. Nanotechnol. 2020;15(1):22–28. doi: 10.1038/s41565-019-0577-9. PubMed DOI
Muller P.. Glossary of Terms Used in Physical Organic Chemistry (IUPAC Recommendations 1994) Pure Appl. Chem. 1994;66(5):1077–1184. doi: 10.1351/pac199466051077. DOI
Gross L., Mohn F., Moll N., Liljeroth P., Meyer G.. The Chemical Structure of a Molecule Resolved by Atomic Force Microscopy. Science. 2009;325(5944):1110–1114. doi: 10.1126/science.1176210. PubMed DOI
Björk J., Hanke F.. Towards Design Rules for Covalent Nanostructures on Metal Surfaces. Chem.Eur. J. 2014;20(4):928–934. doi: 10.1002/chem.201303559. PubMed DOI
Björk J., Hanke F., Stafström S.. Mechanisms of Halogen-Based Covalent Self-Assembly on Metal Surfaces. J. Am. Chem. Soc. 2013;135(15):5768–5775. doi: 10.1021/ja400304b. PubMed DOI
Lackinger M.. Surface-Assisted Ullmann Coupling. Chem. Commun. 2017;53(56):7872–7885. doi: 10.1039/C7CC03402D. PubMed DOI
Calupitan J. P., Wang T., Pérez Paz A., Álvarez B., Berdonces-Layunta A., Angulo-Portugal P., Castrillo-Bodero R., Schiller F., Peña D., Corso M., Pérez D., de Oteyza D. G.. Room-Temperature C–C σ-Bond Activation of Biphenylene Derivatives on Cu(111) J. Phys. Chem. Lett. 2023;14(4):947–953. doi: 10.1021/acs.jpclett.2c03346. PubMed DOI PMC
Zhao X., Liu L., Zhang Z., Qin T., Hu J., Ying L., Zhu J., Wang T., Miao X.. On-Surface Synthesis of Organometallic Nanorings Linked by Unconventional Intermediates of the Ullmann Reaction. Chem. Sci. 2025;16:9348. doi: 10.1039/D5SC01269D. PubMed DOI PMC
Zhang C., Kazuma E., Kim Y.. Atomic-Scale Visualization of the Stepwise Metal-Mediated Dehalogenative Cycloaddition Reaction Pathways: Competition between Radicals and Organometallic Intermediates. Angew. Chem., Int. Ed. 2019;58(49):17736–17744. doi: 10.1002/anie.201909111. PubMed DOI
Bieri M., Nguyen M.-T., Gröning O., Cai J., Treier M., Aït-Mansour K., Ruffieux P., Pignedoli C. A., Passerone D., Kastler M., Müllen K., Fasel R.. Two-Dimensional Polymer Formation on Surfaces: Insight into the Roles of Precursor Mobility and Reactivity. J. Am. Chem. Soc. 2010;132(46):16669–16676. doi: 10.1021/ja107947z. PubMed DOI
Pérez-Elvira E., Barragán A., Chen Q., Soler-Polo D., Sánchez-Grande A., Vicent D. J., Lauwaet K., Santos J., Mutombo P., Mendieta-Moreno J. I., de la Torre B., Gallego J. M., Miranda R., Martín N., Jelínek P., Urgel J. I., Écija D.. Generating Antiaromaticity in Polycyclic Conjugated Hydrocarbons by Thermally Selective Skeletal Rearrangements at Interfaces. Nat. Synth. 2023;2:1159–1170. doi: 10.1038/s44160-023-00390-8. DOI
Björk J., Sánchez-Sánchez C., Chen Q., Pignedoli C. A., Rosen J., Ruffieux P., Feng X., Narita A., Müllen K., Fasel R.. The Role of Metal Adatoms in a Surface-Assisted Cyclodehydrogenation Reaction on a Gold Surface. Angew. Chem., Int. Ed. 2022;61(49):e202212354. doi: 10.1002/anie.202212354. PubMed DOI PMC
Lowe B., Hellerstedt J., Matěj A., Mutombo P., Kumar D., Ondráček M., Jelinek P., Schiffrin A.. Selective Activation of Aromatic C–H Bonds Catalyzed by Single Gold Atoms at Room Temperature. J. Am. Chem. Soc. 2022;144(46):21389–21397. doi: 10.1021/jacs.2c10154. PubMed DOI
Biswas K., Chen Q., Obermann S., Ma J., Soler-Polo D., Melidonie J., Barragán A., Sánchez-Grande A., Lauwaet K., Gallego J. M., Miranda R., Écija D., Jelínek P., Feng X., Urgel J. I.. On-Surface Synthesis of Non-Benzenoid Nanographenes Embedding Azulene and Stone-Wales Topologies. Angew. Chem. 2024;136(13):e202318185. doi: 10.1002/ange.202318185. PubMed DOI
Mendieta-Moreno J. I., Mallada B., de la Torre B., Cadart T., Kotora M., Jelínek P.. Unusual Scaffold Rearrangement in Polyaromatic Hydrocarbons Driven by Concerted Action of Single Gold Atoms on a Gold Surface. Angew. Chem., Int. Ed. 2022;61(50):e202208010. doi: 10.1002/anie.202208010. PubMed DOI
Urgel J. I., Hayashi H., Di Giovannantonio M., Pignedoli C. A., Mishra S., Deniz O., Yamashita M., Dienel T., Ruffieux P., Yamada H., Fasel R.. On-Surface Synthesis of Heptacene Organometallic Complexes. J. Am. Chem. Soc. 2017;139(34):11658–11661. doi: 10.1021/jacs.7b05192. PubMed DOI
Liu J., Chen Q., Xiao L., Shang J., Zhou X., Zhang Y., Wang Y., Shao X., Li J., Chen W., Xu G. Q., Tang H., Zhao D., Wu K.. Lattice-Directed Formation of Covalent and Organometallic Molecular Wires by Terminal Alkynes on Ag Surfaces. ACS Nano. 2015;9(6):6305–6314. doi: 10.1021/acsnano.5b01803. PubMed DOI
Romero K. J., Galliher M. S., Pratt D. A., Stephenson C. R. J.. Radicals in Natural Product Synthesis. Chem. Soc. Rev. 2018;47(21):7851–7866. doi: 10.1039/C8CS00379C. PubMed DOI PMC
Leifert D., Studer A.. The Persistent Radical Effect in Organic Synthesis. Angew. Chem., Int. Ed. 2020;59(1):74–108. doi: 10.1002/anie.201903726. PubMed DOI
Li D.-Y., Huang Z.-Y., Kang L.-X., Wang B.-X., Fu J.-H., Wang Y., Xing G.-Y., Zhao Y., Zhang X.-Y., Liu P.-N.. Room-Temperature Selective Cyclodehydrogenation on Au(111) via Radical Addition of Open-Shell Resonance Structures. Nat. Commun. 2024;15(1):9545. doi: 10.1038/s41467-024-53927-6. PubMed DOI PMC
Lawrence J., Mohammed M. S. G., Rey D., Aguilar-Galindo F., Berdonces-Layunta A., Peña D., de Oteyza D. G.. Reassessing Alkyne Coupling Reactions While Studying the Electronic Properties of Diverse Pyrene Linkages at Surfaces. ACS Nano. 2021;15(3):4937–4946. doi: 10.1021/acsnano.0c09756. PubMed DOI PMC
Colazzo L., Casarin M., Sambi M., Sedona F.. On-Surface Photochemistry of Pre-Ordered 1-Methyl-2-Phenyl-Acetylenes: C-H Bond Activation and Intermolecular Coupling on Highly Oriented Pyrolytic Graphite. ChemPhysChem. 2019;20(18):2317–2321. doi: 10.1002/cphc.201900382. PubMed DOI
Wang J., Niu K., Zhu H., Xu C., Deng C., Zhao W., Huang P., Lin H., Li D., Rosen J., Liu P., Allegretti F., Barth J. V., Yang B., Björk J., Li Q., Chi L.. Universal Inter-Molecular Radical Transfer Reactions on Metal Surfaces. Nat. Commun. 2024;15(1):3030. doi: 10.1038/s41467-024-47252-1. PubMed DOI PMC
Sun Q., Mateo L. M., Robles R., Lorente N., Ruffieux P., Bottari G., Torres T., Fasel R.. Bottom-up Fabrication and Atomic-Scale Characterization of Triply Linked, Laterally π-Extended Porphyrin Nanotapes. Angew. Chem. 2021;133(29):16344–16350. doi: 10.1002/ange.202105350. PubMed DOI PMC
Biswas K., Janeiro J., Gallardo A., Lozano M., Barragán A., Álvarez B., Soler-Polo D., Stetsovych O., Solé A. P., Lauwaet K., Gallego J. M., Pérez D., Miranda R., Urgel J. I., Jelínek P., Peña D., Écija D.. Designing Highly Delocalized Solitons by Harnessing the Structural Parity of π-Conjugated Polymers. Nat. Synth. 2025;4(2):233–242. doi: 10.1038/s44160-024-00665-8. DOI
Amick A. W., Scott L. T.. Trisannulated Benzene Derivatives by Acid Catalyzed Aldol Cyclotrimerizations of Cyclic Ketones. Methodology Development and Mechanistic Insight. J. Org. Chem. 2007;72(9):3412–3418. doi: 10.1021/jo070080q. PubMed DOI
Weigold S., Liu Y., Li H., Chen Q., Li X., Zhang H., Xie M., Rominger F., Freudenberg J., Bunz U. H. F., Müllen K., Chi L.. Ring Contraction of Cyclooctatetraenes toward Non-Benzenoid Polycyclic Aromatic Hydrocarbons by Au(111)-Catalysis and Bulk Pyrolysis. Chem. Eur. J. 2025;31(40):e202501101. doi: 10.1002/chem.202501101. PubMed DOI PMC
Villalobos F., Berger J., Matěj A., Nieman R., Sánchez-Grande A., Soler D., Solé A. P., Lischka H., Matoušek M., Brabec J., Veis L., Millan A., Sánchez-Sánchez C., Campaña A. G., Cuerva J. M., Jelínek P.. Globally Aromatic Odd-Electron π-Magnetic Macrocycle. Chem. 2025;11:102316. doi: 10.1016/j.chempr.2024.09.015. DOI
Su J., Telychko M., Hu P., Macam G., Mutombo P., Zhang H., Bao Y., Cheng F., Huang Z.-Q., Qiu Z., Tan S. J. R., Lin H., Jelínek P., Chuang F.-C., Wu J., Lu J.. Atomically Precise Bottom-up Synthesis of π-Extended [5]Triangulene. Sci Adv. 2019;5(7):eaav7717. doi: 10.1126/sciadv.aav7717. PubMed DOI PMC
Labrum J. M., Kolc J., Michl J.. Energy Barriers in Photochemical Reactions. Photochemical Conversion of 6b,12c-Dehydrocyclobuta[1,2-a:3,4-a’]Bisacenaphthylene (Dehydroheptacyclene) to Dinaphth[de-1,2,3:D’e’-5,6,7]Aulene. J. Am. Chem. Soc. 1974;96(8):2636–2637. doi: 10.1021/ja00815a065. DOI
Krygowski T. M., Cyrański M. K.. Structural Aspects of Aromaticity. Chem. Rev. 2001;101(5):1385–1420. doi: 10.1021/cr990326u. PubMed DOI
Chen Z., Wannere C. S., Corminboeuf C., Puchta R., Schleyer P. von R.. Nucleus-Independent Chemical Shifts (NICS) as an Aromaticity Criterion. Chem. Rev. 2005;105(10):3842–3888. doi: 10.1021/cr030088+. PubMed DOI
Geuenich D., Hess K., Köhler F., Herges R.. Anisotropy of the Induced Current Density (ACID), a General Method To Quantify and Visualize Electronic Delocalization. Chem. Rev. 2005;105(10):3758–3772. doi: 10.1021/cr0300901. PubMed DOI
Warren G. I., Barker J. E., Zakharov L. N., Haley M. M.. Enhancing the Antiaromaticity of S-Indacene through Naphthothiophene Fusion. Org. Lett. 2021;23(13):5012–5017. doi: 10.1021/acs.orglett.1c01514. PubMed DOI
Usuba J., Hayakawa M., Yamaguchi S., Fukazawa A.. Dithieno[a,e]Pentalenes: Highly Antiaromatic Yet Stable π-Electron Systems without Bulky Substituents. Chem. Eur. J. 2021;27(5):1638–1647. doi: 10.1002/chem.202004244. PubMed DOI
Eiden S. C., Misselwitz E., Rominger F., Kivala M.. Cyclopentannulated Decacyclenes as Carbon-Based Multistage Electron Acceptors. Chem. Asian J. 2025;20(17):e00551. doi: 10.1002/asia.202500551. PubMed DOI PMC
Lavendomme R., Yamashina M.. Antiaromaticity in Molecular Assemblies and Materials. Chem. Sci. 2024;15(45):18677–18697. doi: 10.1039/D4SC05318D. PubMed DOI PMC
Sanchez-Valencia J. R., Dienel T., Gröning O., Shorubalko I., Mueller A., Jansen M., Amsharov K., Ruffieux P., Fasel R.. Controlled Synthesis of Single-Chirality Carbon Nanotubes. Nature. 2014;512(7512):61–64. doi: 10.1038/nature13607. PubMed DOI
Tomada J., Dienel T., Hampel F., Fasel R., Amsharov K.. Combinatorial Design of Molecular Seeds for Chirality-Controlled Synthesis of Single-Walled Carbon Nanotubes. Nat. Commun. 2019;10(1):3278. doi: 10.1038/s41467-019-11192-y. PubMed DOI PMC