On-Surface Synthesis of Nonbenzenoid PAHs Using Intermolecular π-Radical C-C Coupling

. 2025 Dec 03 ; 147 (48) : 44123-44130. [epub] 20251119

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41259436

On-surface synthesis has emerged as a new research field, ideal for designing low-dimensional carbon-based nanomaterials. One of the central problems with this synthetic approach is the understanding of reaction mechanisms, which is a key point for advancing the design of novel, highly selective reactions. The concept of π-radical-mediated reactions has been rarely considered in the context of on-surface synthesis so far. Here, we demonstrate that a π-radical-mediated reaction can provide an efficient mechanism of regioselective carbon-carbon coupling. Namely, π-radical coupling enables the dimerization of two π-expanded acenaphthene units, which facilitates the formation of complex nonbenzenoid PAHs. Our work contributes to the understanding of reaction mechanisms at the fundamental level, thus bridging the gap between in-solution radical chemistry and on-surface synthesis. We demonstrate a highly selective reaction in which the crucial C-C coupling step proceeds without direct catalytic involvement of the gold surface. This mechanistic insight suggests that π-radical coupling is a promising strategy that could be potentially expanded to inert surfaces, providing suitable π-radical activation.

Zobrazit více v PubMed

Clair S., de Oteyza D. G.. Controlling a Chemical Coupling Reaction on a Surface: Tools and Strategies for On-Surface Synthesis. Chem. Rev. 2019;119(7):4717–4776. doi: 10.1021/acs.chemrev.8b00601. PubMed DOI PMC

Grill L., Hecht S.. Covalent On-Surface Polymerization. Nat. Chem. 2020;12(2):115–130. doi: 10.1038/s41557-019-0392-9. PubMed DOI

Shen Q., Gao H.-Y., Fuchs H.. Frontiers of On-Surface Synthesis: From Principles to Applications. Nano Today. 2017;13:77–96. doi: 10.1016/j.nantod.2017.02.007. DOI

Cai J., Ruffieux P., Jaafar R., Bieri M., Braun T., Blankenburg S., Muoth M., Seitsonen A. P., Saleh M., Feng X., Müllen K., Fasel R.. Atomically Precise Bottom-up Fabrication of Graphene Nanoribbons. Nature. 2010;466(7305):470–473. doi: 10.1038/nature09211. PubMed DOI

Ruffieux P., Wang S., Yang B., Sánchez-Sánchez C., Liu J., Dienel T., Talirz L., Shinde P., Pignedoli C. A., Passerone D., Dumslaff T., Feng X., Müllen K., Fasel R.. On-Surface Synthesis of Graphene Nanoribbons with Zigzag Edge Topology. Nature. 2016;531(7595):489–492. doi: 10.1038/nature17151. PubMed DOI

Yin R., Wang Z., Tan S., Ma C., Wang B.. On-Surface Synthesis of Graphene Nanoribbons with Atomically Precise Structural Heterogeneities and On-Site Characterizations. ACS Nano. 2023;17(18):17610–17623. doi: 10.1021/acsnano.3c06128. PubMed DOI

Chen Z., Narita A., Müllen K.. Graphene Nanoribbons: On-Surface Synthesis and Integration into Electronic Devices. Adv. Mater. 2020;32(45):2001893. doi: 10.1002/adma.202001893. PubMed DOI

Zhong D., Franke J.-H., Podiyanachari S. K., Blömker T., Zhang H., Kehr G., Erker G., Fuchs H., Chi L.. Linear Alkane Polymerization on a Gold Surface. Science. 2011;334(6053):213–216. doi: 10.1126/science.1211836. PubMed DOI

Di Giovannantonio M., Qiu Z., Pignedoli C. A., Asako S., Ruffieux P., Müllen K., Narita A., Fasel R.. On-Surface Cyclization of Vinyl Groups on Poly-Para-Phenylene Involving an Unusual Pentagon to Hexagon Transformation. Nat. Commun. 2024;15(1):1910. doi: 10.1038/s41467-024-46173-3. PubMed DOI PMC

Rizzo D. J., Veber G., Cao T., Bronner C., Chen T., Zhao F., Rodriguez H., Louie S. G., Crommie M. F., Fischer F. R.. Topological Band Engineering of Graphene Nanoribbons. Nature. 2018;560(7717):204–208. doi: 10.1038/s41586-018-0376-8. PubMed DOI

Li J., Sanz S., Merino-Díez N., Vilas-Varela M., Garcia-Lekue A., Corso M., de Oteyza D. G., Frederiksen T., Peña D., Pascual J. I.. Topological Phase Transition in Chiral Graphene Nanoribbons: From Edge Bands to End States. Nat. Commun. 2021;12(1):5538. doi: 10.1038/s41467-021-25688-z. PubMed DOI PMC

Gröning O., Wang S., Yao X., Pignedoli C. A., Borin Barin G., Daniels C., Cupo A., Meunier V., Feng X., Narita A., Müllen K., Ruffieux P., Fasel R.. Engineering of Robust Topological Quantum Phases in Graphene Nanoribbons. Nature. 2018;560(7717):209–213. doi: 10.1038/s41586-018-0375-9. PubMed DOI

Cirera B., Sánchez-Grande A., de la Torre B., Santos J., Edalatmanesh S., Rodríguez-Sánchez E., Lauwaet K., Mallada B., Zbořil R., Miranda R., Gröning O., Jelínek P., Martín N., Ecija D.. Tailoring Topological Order and π-Conjugation to Engineer Quasi-Metallic Polymers. Nat. Nanotechnol. 2020;15(6):437–443. doi: 10.1038/s41565-020-0668-7. PubMed DOI

Mishra S., Fatayer S., Fernández S., Kaiser K., Peña D., Gross L.. Nonbenzenoid High-Spin Polycyclic Hydrocarbons Generated by Atom Manipulation. ACS Nano. 2022;16(2):3264–3271. doi: 10.1021/acsnano.1c11157. PubMed DOI

de Oteyza D. G., Frederiksen T.. Carbon-Based Nanostructures as a Versatile Platform for Tunable π-Magnetism. J. Phys.: Condens. Matter. 2022;34(44):443001. doi: 10.1088/1361-648X/ac8a7f. PubMed DOI

Song S., Su J., Telychko M., Li J., Li G., Li Y., Su C., Wu J., Lu J.. On-Surface Synthesis of Graphene Nanostructures with π-Magnetism. Chem. Soc. Rev. 2021;50(5):3238–3262. doi: 10.1039/D0CS01060J. PubMed DOI

Song S., Pinar Solé A., Matěj A., Li G., Stetsovych O., Soler D., Yang H., Telychko M., Li J., Kumar M., Chen Q., Edalatmanesh S., Brabec J., Veis L., Wu J., Jelinek P., Lu J.. Highly Entangled Polyradical Nanographene with Coexisting Strong Correlation and Topological Frustration. Nat. Chem. 2024;16(6):938–944. doi: 10.1038/s41557-024-01453-9. PubMed DOI

Pavliček N., Mistry A., Majzik Z., Moll N., Meyer G., Fox D. J., Gross L.. Synthesis and Characterization of Triangulene. Nat. Nanotechnol. 2017;12(4):308–311. doi: 10.1038/nnano.2016.305. PubMed DOI

Mishra S., Beyer D., Eimre K., Kezilebieke S., Berger R., Gröning O., Pignedoli C. A., Müllen K., Liljeroth P., Ruffieux P., Feng X., Fasel R.. Topological Frustration Induces Unconventional Magnetism in a Nanographene. Nat. Nanotechnol. 2020;15(1):22–28. doi: 10.1038/s41565-019-0577-9. PubMed DOI

Muller P.. Glossary of Terms Used in Physical Organic Chemistry (IUPAC Recommendations 1994) Pure Appl. Chem. 1994;66(5):1077–1184. doi: 10.1351/pac199466051077. DOI

Gross L., Mohn F., Moll N., Liljeroth P., Meyer G.. The Chemical Structure of a Molecule Resolved by Atomic Force Microscopy. Science. 2009;325(5944):1110–1114. doi: 10.1126/science.1176210. PubMed DOI

Björk J., Hanke F.. Towards Design Rules for Covalent Nanostructures on Metal Surfaces. Chem.Eur. J. 2014;20(4):928–934. doi: 10.1002/chem.201303559. PubMed DOI

Björk J., Hanke F., Stafström S.. Mechanisms of Halogen-Based Covalent Self-Assembly on Metal Surfaces. J. Am. Chem. Soc. 2013;135(15):5768–5775. doi: 10.1021/ja400304b. PubMed DOI

Lackinger M.. Surface-Assisted Ullmann Coupling. Chem. Commun. 2017;53(56):7872–7885. doi: 10.1039/C7CC03402D. PubMed DOI

Calupitan J. P., Wang T., Pérez Paz A., Álvarez B., Berdonces-Layunta A., Angulo-Portugal P., Castrillo-Bodero R., Schiller F., Peña D., Corso M., Pérez D., de Oteyza D. G.. Room-Temperature C–C σ-Bond Activation of Biphenylene Derivatives on Cu(111) J. Phys. Chem. Lett. 2023;14(4):947–953. doi: 10.1021/acs.jpclett.2c03346. PubMed DOI PMC

Zhao X., Liu L., Zhang Z., Qin T., Hu J., Ying L., Zhu J., Wang T., Miao X.. On-Surface Synthesis of Organometallic Nanorings Linked by Unconventional Intermediates of the Ullmann Reaction. Chem. Sci. 2025;16:9348. doi: 10.1039/D5SC01269D. PubMed DOI PMC

Zhang C., Kazuma E., Kim Y.. Atomic-Scale Visualization of the Stepwise Metal-Mediated Dehalogenative Cycloaddition Reaction Pathways: Competition between Radicals and Organometallic Intermediates. Angew. Chem., Int. Ed. 2019;58(49):17736–17744. doi: 10.1002/anie.201909111. PubMed DOI

Bieri M., Nguyen M.-T., Gröning O., Cai J., Treier M., Aït-Mansour K., Ruffieux P., Pignedoli C. A., Passerone D., Kastler M., Müllen K., Fasel R.. Two-Dimensional Polymer Formation on Surfaces: Insight into the Roles of Precursor Mobility and Reactivity. J. Am. Chem. Soc. 2010;132(46):16669–16676. doi: 10.1021/ja107947z. PubMed DOI

Pérez-Elvira E., Barragán A., Chen Q., Soler-Polo D., Sánchez-Grande A., Vicent D. J., Lauwaet K., Santos J., Mutombo P., Mendieta-Moreno J. I., de la Torre B., Gallego J. M., Miranda R., Martín N., Jelínek P., Urgel J. I., Écija D.. Generating Antiaromaticity in Polycyclic Conjugated Hydrocarbons by Thermally Selective Skeletal Rearrangements at Interfaces. Nat. Synth. 2023;2:1159–1170. doi: 10.1038/s44160-023-00390-8. DOI

Björk J., Sánchez-Sánchez C., Chen Q., Pignedoli C. A., Rosen J., Ruffieux P., Feng X., Narita A., Müllen K., Fasel R.. The Role of Metal Adatoms in a Surface-Assisted Cyclodehydrogenation Reaction on a Gold Surface. Angew. Chem., Int. Ed. 2022;61(49):e202212354. doi: 10.1002/anie.202212354. PubMed DOI PMC

Lowe B., Hellerstedt J., Matěj A., Mutombo P., Kumar D., Ondráček M., Jelinek P., Schiffrin A.. Selective Activation of Aromatic C–H Bonds Catalyzed by Single Gold Atoms at Room Temperature. J. Am. Chem. Soc. 2022;144(46):21389–21397. doi: 10.1021/jacs.2c10154. PubMed DOI

Biswas K., Chen Q., Obermann S., Ma J., Soler-Polo D., Melidonie J., Barragán A., Sánchez-Grande A., Lauwaet K., Gallego J. M., Miranda R., Écija D., Jelínek P., Feng X., Urgel J. I.. On-Surface Synthesis of Non-Benzenoid Nanographenes Embedding Azulene and Stone-Wales Topologies. Angew. Chem. 2024;136(13):e202318185. doi: 10.1002/ange.202318185. PubMed DOI

Mendieta-Moreno J. I., Mallada B., de la Torre B., Cadart T., Kotora M., Jelínek P.. Unusual Scaffold Rearrangement in Polyaromatic Hydrocarbons Driven by Concerted Action of Single Gold Atoms on a Gold Surface. Angew. Chem., Int. Ed. 2022;61(50):e202208010. doi: 10.1002/anie.202208010. PubMed DOI

Urgel J. I., Hayashi H., Di Giovannantonio M., Pignedoli C. A., Mishra S., Deniz O., Yamashita M., Dienel T., Ruffieux P., Yamada H., Fasel R.. On-Surface Synthesis of Heptacene Organometallic Complexes. J. Am. Chem. Soc. 2017;139(34):11658–11661. doi: 10.1021/jacs.7b05192. PubMed DOI

Liu J., Chen Q., Xiao L., Shang J., Zhou X., Zhang Y., Wang Y., Shao X., Li J., Chen W., Xu G. Q., Tang H., Zhao D., Wu K.. Lattice-Directed Formation of Covalent and Organometallic Molecular Wires by Terminal Alkynes on Ag Surfaces. ACS Nano. 2015;9(6):6305–6314. doi: 10.1021/acsnano.5b01803. PubMed DOI

Romero K. J., Galliher M. S., Pratt D. A., Stephenson C. R. J.. Radicals in Natural Product Synthesis. Chem. Soc. Rev. 2018;47(21):7851–7866. doi: 10.1039/C8CS00379C. PubMed DOI PMC

Leifert D., Studer A.. The Persistent Radical Effect in Organic Synthesis. Angew. Chem., Int. Ed. 2020;59(1):74–108. doi: 10.1002/anie.201903726. PubMed DOI

Li D.-Y., Huang Z.-Y., Kang L.-X., Wang B.-X., Fu J.-H., Wang Y., Xing G.-Y., Zhao Y., Zhang X.-Y., Liu P.-N.. Room-Temperature Selective Cyclodehydrogenation on Au(111) via Radical Addition of Open-Shell Resonance Structures. Nat. Commun. 2024;15(1):9545. doi: 10.1038/s41467-024-53927-6. PubMed DOI PMC

Lawrence J., Mohammed M. S. G., Rey D., Aguilar-Galindo F., Berdonces-Layunta A., Peña D., de Oteyza D. G.. Reassessing Alkyne Coupling Reactions While Studying the Electronic Properties of Diverse Pyrene Linkages at Surfaces. ACS Nano. 2021;15(3):4937–4946. doi: 10.1021/acsnano.0c09756. PubMed DOI PMC

Colazzo L., Casarin M., Sambi M., Sedona F.. On-Surface Photochemistry of Pre-Ordered 1-Methyl-2-Phenyl-Acetylenes: C-H Bond Activation and Intermolecular Coupling on Highly Oriented Pyrolytic Graphite. ChemPhysChem. 2019;20(18):2317–2321. doi: 10.1002/cphc.201900382. PubMed DOI

Wang J., Niu K., Zhu H., Xu C., Deng C., Zhao W., Huang P., Lin H., Li D., Rosen J., Liu P., Allegretti F., Barth J. V., Yang B., Björk J., Li Q., Chi L.. Universal Inter-Molecular Radical Transfer Reactions on Metal Surfaces. Nat. Commun. 2024;15(1):3030. doi: 10.1038/s41467-024-47252-1. PubMed DOI PMC

Sun Q., Mateo L. M., Robles R., Lorente N., Ruffieux P., Bottari G., Torres T., Fasel R.. Bottom-up Fabrication and Atomic-Scale Characterization of Triply Linked, Laterally π-Extended Porphyrin Nanotapes. Angew. Chem. 2021;133(29):16344–16350. doi: 10.1002/ange.202105350. PubMed DOI PMC

Biswas K., Janeiro J., Gallardo A., Lozano M., Barragán A., Álvarez B., Soler-Polo D., Stetsovych O., Solé A. P., Lauwaet K., Gallego J. M., Pérez D., Miranda R., Urgel J. I., Jelínek P., Peña D., Écija D.. Designing Highly Delocalized Solitons by Harnessing the Structural Parity of π-Conjugated Polymers. Nat. Synth. 2025;4(2):233–242. doi: 10.1038/s44160-024-00665-8. DOI

Amick A. W., Scott L. T.. Trisannulated Benzene Derivatives by Acid Catalyzed Aldol Cyclotrimerizations of Cyclic Ketones. Methodology Development and Mechanistic Insight. J. Org. Chem. 2007;72(9):3412–3418. doi: 10.1021/jo070080q. PubMed DOI

Weigold S., Liu Y., Li H., Chen Q., Li X., Zhang H., Xie M., Rominger F., Freudenberg J., Bunz U. H. F., Müllen K., Chi L.. Ring Contraction of Cyclooctatetraenes toward Non-Benzenoid Polycyclic Aromatic Hydrocarbons by Au(111)-Catalysis and Bulk Pyrolysis. Chem. Eur. J. 2025;31(40):e202501101. doi: 10.1002/chem.202501101. PubMed DOI PMC

Villalobos F., Berger J., Matěj A., Nieman R., Sánchez-Grande A., Soler D., Solé A. P., Lischka H., Matoušek M., Brabec J., Veis L., Millan A., Sánchez-Sánchez C., Campaña A. G., Cuerva J. M., Jelínek P.. Globally Aromatic Odd-Electron π-Magnetic Macrocycle. Chem. 2025;11:102316. doi: 10.1016/j.chempr.2024.09.015. DOI

Su J., Telychko M., Hu P., Macam G., Mutombo P., Zhang H., Bao Y., Cheng F., Huang Z.-Q., Qiu Z., Tan S. J. R., Lin H., Jelínek P., Chuang F.-C., Wu J., Lu J.. Atomically Precise Bottom-up Synthesis of π-Extended [5]­Triangulene. Sci Adv. 2019;5(7):eaav7717. doi: 10.1126/sciadv.aav7717. PubMed DOI PMC

Labrum J. M., Kolc J., Michl J.. Energy Barriers in Photochemical Reactions. Photochemical Conversion of 6b,12c-Dehydrocyclobuta­[1,2-a:3,4-a’]­Bisacenaphthylene (Dehydroheptacyclene) to Dinaphth­[de-1,2,3:D’e’-5,6,7]­Aulene. J. Am. Chem. Soc. 1974;96(8):2636–2637. doi: 10.1021/ja00815a065. DOI

Krygowski T. M., Cyrański M. K.. Structural Aspects of Aromaticity. Chem. Rev. 2001;101(5):1385–1420. doi: 10.1021/cr990326u. PubMed DOI

Chen Z., Wannere C. S., Corminboeuf C., Puchta R., Schleyer P. von R.. Nucleus-Independent Chemical Shifts (NICS) as an Aromaticity Criterion. Chem. Rev. 2005;105(10):3842–3888. doi: 10.1021/cr030088+. PubMed DOI

Geuenich D., Hess K., Köhler F., Herges R.. Anisotropy of the Induced Current Density (ACID), a General Method To Quantify and Visualize Electronic Delocalization. Chem. Rev. 2005;105(10):3758–3772. doi: 10.1021/cr0300901. PubMed DOI

Warren G. I., Barker J. E., Zakharov L. N., Haley M. M.. Enhancing the Antiaromaticity of S-Indacene through Naphthothiophene Fusion. Org. Lett. 2021;23(13):5012–5017. doi: 10.1021/acs.orglett.1c01514. PubMed DOI

Usuba J., Hayakawa M., Yamaguchi S., Fukazawa A.. Dithieno­[a,e]­Pentalenes: Highly Antiaromatic Yet Stable π-Electron Systems without Bulky Substituents. Chem. Eur. J. 2021;27(5):1638–1647. doi: 10.1002/chem.202004244. PubMed DOI

Eiden S. C., Misselwitz E., Rominger F., Kivala M.. Cyclopentannulated Decacyclenes as Carbon-Based Multistage Electron Acceptors. Chem. Asian J. 2025;20(17):e00551. doi: 10.1002/asia.202500551. PubMed DOI PMC

Lavendomme R., Yamashina M.. Antiaromaticity in Molecular Assemblies and Materials. Chem. Sci. 2024;15(45):18677–18697. doi: 10.1039/D4SC05318D. PubMed DOI PMC

Sanchez-Valencia J. R., Dienel T., Gröning O., Shorubalko I., Mueller A., Jansen M., Amsharov K., Ruffieux P., Fasel R.. Controlled Synthesis of Single-Chirality Carbon Nanotubes. Nature. 2014;512(7512):61–64. doi: 10.1038/nature13607. PubMed DOI

Tomada J., Dienel T., Hampel F., Fasel R., Amsharov K.. Combinatorial Design of Molecular Seeds for Chirality-Controlled Synthesis of Single-Walled Carbon Nanotubes. Nat. Commun. 2019;10(1):3278. doi: 10.1038/s41467-019-11192-y. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...