Directed evolution of phages in biofilms enhances Pseudomonas aeruginosa control through improved lipopolysaccharide recognition
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
41266316
PubMed Central
PMC12635225
DOI
10.1038/s41467-025-65014-5
PII: 10.1038/s41467-025-65014-5
Knihovny.cz E-zdroje
- MeSH
- bakteriofágy * genetika fyziologie MeSH
- biofilmy * růst a vývoj MeSH
- cystická fibróza mikrobiologie MeSH
- elektronová kryomikroskopie MeSH
- fágová terapie metody MeSH
- fágy pseudomonád * genetika fyziologie MeSH
- lidé MeSH
- lipopolysacharidy * metabolismus MeSH
- mutace MeSH
- pseudomonádové infekce terapie mikrobiologie MeSH
- Pseudomonas aeruginosa * virologie fyziologie genetika MeSH
- řízená evoluce molekul * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- lipopolysacharidy * MeSH
Pseudomonas aeruginosa is a leading cause of chronic lung infections in cystic fibrosis (CF) patients. While bacteriophages hold potential as a treatment for antibiotic-resistant infections, the complex structure and heterogeneity of P. aeruginosa biofilms pose significant challenges to phage therapy. In this study, we investigate the adaptive evolution of the Pbunavirus phage PE1 to biofilms formed by a CF-derived P. aeruginosa isolate. Our findings reveal that biofilm-adapted PE1 mutants exhibit enhanced efficacy in controlling biofilms in vitro under conditions mimicking the CF lung environment. This improvement is attributed to the mutants' increased ability to recognize the diverse populations within the biofilm. Using a combination of cryo-EM, lipopolysaccharide (LPS) profiling, and adsorption assays, we demonstrate that mutations in tail fiber and baseplate genes of the phage improve adsorption and enable recognition of truncated LPS variants. This study highlights the critical role of biofilm heterogeneity in limiting phage effectiveness, identifies mechanisms to overcome this barrier, and pinpoints specific genomic targets for engineering phages tailored for therapeutic applications in CF patients.
CEB Centre of Biological Engineering University of Minho Braga Portugal
Central European Institute of Technology Masaryk University Brno Czech Republic
Department of Clinical Microbiology Rigshospitalet Copenhagen Denmark
Department of Molecular Bacteriology Helmholtz Centre for Infection Research Braunschweig Germany
LABBELS Associate Laboratory Braga Guimarães Portugal
Laboratory of Pharmaceutical Microbiology Ghent University Gent Belgium
Zobrazit více v PubMed
Stoltz, D. A., Meyerholz, D. K. & Welsh, M. J. Origins of cystic fibrosis lung disease. PubMed DOI PMC
Lyczak, J. B., Cannon, C. L. & Pier, G. B. Lung infections associated with cystic fibrosis. PubMed DOI PMC
Davies, J. C. Pseudomonas aeruginosa in cystic fibrosis: Pathogenesis and persistence. PubMed
Bonyadi, P., Saleh, N. T., Dehghani, M., Yamini, M. & Amini, K. Prevalence of antibiotic resistance of Pseudomonas aeruginosa in cystic fibrosis infection: a systematic review and meta-analysis. PubMed
Hahn, A. et al. Bacteriophage therapy for pan-drug-resistant pseudomonas aeruginosa in two persons with cystic fibrosis. PubMed PMC
Law, N. et al. Successful adjunctive use of bacteriophage therapy for treatment of multidrug-resistant Pseudomonas aeruginosa infection in a cystic fibrosis patient. PubMed DOI
Zaldastanishvili, E. et al. Phage therapy experience at the eliava phage therapy center: three cases of bacterial persistence. PubMed PMC
Pirnay, J. P. et al. Personalized bacteriophage therapy outcomes for 100 consecutive cases: a multicentre, multinational, retrospective observational study. PubMed DOI PMC
Tamma, P. D. et al. Safety and microbiological activity of phage therapy in persons with cystic fibrosis colonized with Pseudomonas aeruginosa: study protocol for a phase 1b/2, multicenter, randomized, double-blind, placebo-controlled trial. PubMed DOI PMC
Eiselt, V. A., Bereswill, S. & Heimesaat, M. M. Phage therapy in lung infections caused by multidrug-resistant Pseudomonas aeruginosa – a literature review. PubMed DOI PMC
Harper, D. R. et al. Bacteriophages and biofilms. DOI
Pires, D. P., Melo, L. D. R. & Azeredo, J. Understanding the complex phage-host interactions in biofilm communities. PubMed DOI
Rohde, C. et al. Expert opinion on three phage therapy related topics: bacterial phage resistance, phage training and prophages in bacterial production strains. PubMed DOI PMC
Appelmans, R. Le dosage du bactériophage.
Merabishvili, M., Pirnay, J. P. & De Vos, D. Guidelines to compose an ideal bacteriophage cocktail. PubMed DOI
Burrowes, B. H., Molineux, I. J. & Fralick, J. A. Directed in vitro evolution of therapeutic bacteriophages: the appelmans protocol. PubMed PMC
Høiby, N., Ciofu, O. & Bjarnsholt, T. Pseudomonas aeruginosa biofilms in cystic fibrosis. PubMed DOI
Tobias, S. et al. On-demand isolation of bacteriophages against drug-resistant bacteria for personalized phage therapy. PubMed PMC
Forti, F. et al. Design of a broad-range bacteriophage cocktail that reduces Pseudomonas aeruginosa biofilms and treats acute infections in two animal models. PubMed DOI PMC
Crabbé, A. et al. Antimicrobial efficacy against Pseudomonas aeruginosa biofilm formation in a three-dimensional lung epithelial model and the influence of fetal bovine serum. PubMed PMC
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. PubMed DOI
Li, F. et al. High-resolution cryo-EM structure of the Pseudomonas bacteriophage E217. PubMed PMC
Jarrell, K. & Kropinski, A. M. Identification of the cell wall receptor for bacteriophage E79 in Pseudomonas aeruginosa strain PAO. PubMed DOI PMC
Danis-Wlodarczyk, K. et al. Characterization of the newly isolated lytic bacteriophages KTN6 and KT28 and their efficacy against pseudomonas aeruginosa biofilm. PubMed DOI PMC
Khosravi, A., Chen, Q., Echterhof, A., Koff, J. L. & Bollyky, P. L. Phage therapy for respiratory infections: opportunities and challenges. PubMed DOI PMC
Borin, J. M., Avrani, S., Barrick, J. E., Petrie, K. L. & Meyer, J. R. Coevolutionary phage training leads to greater bacterial suppression and delays the evolution of phage resistance. PubMed PMC
Bjarnsholt, T. The role of bacterial biofilms in chronic infections. PubMed
Bjarnsholt, T. et al. Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients. PubMed DOI
Sauer, K. et al. The biofilm life cycle: expanding the conceptual model of biofilm formation. PubMed DOI PMC
Meneses, L. et al. A systematic review of the use of bacteriophages for in vitro biofilm control. PubMed DOI PMC
Davis, K. M. For the greater (bacterial) good: heterogeneous expression of energetically costly virulence factors. PubMed DOI PMC
Dewachter, L., Fauvart, M. & Michiels, J. Bacterial heterogeneity and antibiotic survival: understanding and combatting persistence and heteroresistance. PubMed DOI
Clark, S. T. et al. Phenotypic diversity within a Pseudomonas aeruginosa population infecting an adult with cystic fibrosis. PubMed DOI PMC
Mowat, E. et al. Pseudomonas aeruginosa population diversity and turnover in cystic fibrosis chronic infections. PubMed
Darch, S. E. et al. Recombination is a key driver of genomic and phenotypic diversity in a Pseudomonas aeruginosa population during cystic fibrosis infection. PubMed PMC
Maldonado, R. F., Sá-Correia, I. & Valvano, M. A. Lipopolysaccharide modification in gram-negative bacteria during chronic infection. PubMed PMC
Huszczynski, S. M., Lam, J. S. & Khursigara, C. M. The role of Pseudomonas aeruginosa lipopolysaccharide in bacterial pathogenesis and physiology. PubMed PMC
King, J. D., Kocíncová, D., Westman, E. L. & Lam, J. S. Lipopolysaccharide biosynthesis in Pseudomonas aeruginosa. PubMed
Makin, S. A. & Beveridge, T. J. The influence of A-band and B-band lipopolysaccharide on the surface characteristics and adhesion of Pseudomonas aeruginosa to surfaces. PubMed
Azimi, S. et al. O-specific antigen-dependent surface hydrophobicity mediates aggregate assembly type in pseudomonas aeruginosa. PubMed PMC
Nobrega, F. L. et al. Targeting mechanisms of tailed bacteriophages. PubMed DOI
Dunne, M. et al. Reprogramming bacteriophage host range through structure-guided design of chimeric receptor binding proteins. PubMed DOI
Huss, P., Meger, A., Leander, M., Nishikawa, K. & Raman, S. Mapping the functional landscape of the receptor binding domain of t7 bacteriophage by deep mutational scanning. PubMed PMC
Yehl, K. et al. Engineering phage host-range and suppressing bacterial resistance through phage tail fiber mutagenesis. PubMed DOI PMC
Habusha, M., Tzipilevich, E., Fiyaksel, O. & Ben-Yehuda, S. A mutant bacteriophage evolved to infect resistant bacteria gained a broader host range. PubMed DOI
Le, S. et al. Mapping the tail fiber as the receptor binding protein responsible for differential host specificity of pseudomonas aeruginosa bacteriophages PaP1 and JG004. PubMed DOI PMC
Uchiyama, J. et al. Improved adsorption of an Enterococcus faecalis bacteriophage ΦEF24C with a spontaneous point mutation. PubMed DOI PMC
Burmeister, A. R. et al. Experimental evolution of the TolC-receptor phage U136B functionally identifies a tail fiber protein involved in adsorption through strong parallel adaptation. PubMed DOI PMC
Sun, L. et al. Variants of a putative baseplate wedge protein extend the host range of Pseudomonas phage K8. PubMed PMC
Yang, Y. et al. Development of a bacteriophage cocktail to constrain the emergence of phage-resistant Pseudomonas aeruginosa. PubMed PMC
Turner, K. H., Wessel, A. K., Palmer, G. C., Murray, J. L. & Whiteley, M. Essential genome of Pseudomonas aeruginosa in cystic fibrosis sputum. PubMed DOI PMC
De Bleeckere, A. et al. High throughput determination of the biofilm prevention concentration for Pseudomonas aeruginosa biofilms using a synthetic cystic fibrosis sputum medium. PubMed PMC
Azeredo, J., Sillankorva, S. & Pires, D. P. Pseudomonas bacteriophage isolation and production. PubMed
Sambrook, J.
Olson, R. D. et al. Introducing the bacterial and viral bioinformatics resource center (BV-BRC): a resource combining PATRIC, IRD and ViPR. PubMed DOI PMC
Potter, S. C. et al. HMMER web server: 2018 update. PubMed DOI PMC
Blum, M. et al. The InterPro protein families and domains database: 20 years on. PubMed DOI PMC
Lu, S. et al. CDD/SPARCLE: the conserved domain database in 2020. PubMed DOI PMC
Sonnhammer, E. L., von Heijne, G. & Krogh, A. A hidden Markov model for predicting transmembrane helices in protein sequences. In PubMed
Käll, L., Krogh, A. & Sonnhammer, E. L. L. Advantages of combined transmembrane topology and signal peptide prediction-the Phobius web server. PubMed PMC
Teufel, F. et al. SignalP 6.0 predicts all five types of signal peptides using protein language models. PubMed PMC
Tsirigos, K. D., Peters, C., Shu, N., Käll, L. & Elofsson, A. The TOPCONS web server for consensus prediction of membrane protein topology and signal peptides. PubMed PMC
Söding, J., Biegert, A. & Lupas, A. N. The HHpred interactive server for protein homology detection and structure prediction. PubMed PMC
Johnson, M. et al. NCBI BLAST: a better web interface. PubMed PMC
Moraru, C., Varsani, A. & Kropinski, A. M. VIRIDIC—A novel tool to calculate the intergenomic similarities of prokaryote-infecting viruses. PubMed PMC
Meier-Kolthoff, J. P. & Göker, M. VICTOR: genome-based phylogeny and classification of prokaryotic viruses. PubMed PMC
Pires, D. P. et al. Designing P. aeruginosa synthetic phages with reduced genomes. PubMed PMC
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. PubMed DOI PMC
Evans, R. et al. Protein complex prediction with AlphaFold-Multimer.
Pettersen, E. F. et al. UCSF Chimera-a visualization system for exploratory research and analysis. PubMed DOI
Meneses, L., Sillankorva, S. & Azeredo, J. Bacteriophage control of infectious biofilms. PubMed DOI
Carterson, A. J. et al. A549 lung epithelial cells grown as three-dimensional aggregates: alternative tissue culture model for Pseudomonas aeruginosa pathogenesis. PubMed DOI PMC
Van den Bossche, S., Vandeplassche, E., Ostyn, L., Coenye, T. & Crabbé, A. Bacterial interference with lactate dehydrogenase assay leads to an underestimation of cytotoxicity. PubMed PMC
Kulikov, E. E., Golomidova, A. K., Prokhorov, N. S., Ivanov, P. A. & Letarov, A. V. High-throughput LPS profiling as a tool for revealing of bacteriophage infection strategies. PubMed DOI PMC
Hitchcock, P. J. Analyses of gonococcal lipopolysaccharide in whole-cell lysates by sodium dodecyl sulfate-polyacrylamide gel electrophoresis: stable association of lipopolysaccharide with the major outer membrane protein (protein I) of Neisseria gonorrhoeae. PubMed DOI PMC
Tsai, C. M. & Frasch, C. E. A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. PubMed DOI
Gaio, D. et al. Hackflex: low-cost, high-throughput, Illumina Nextera Flex library construction. PubMed PMC