Milk Modulates the Gastrointestinal Stability of Tick-Borne Encephalitis Virus: Implications for Alimentary Transmission
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
Grantová podpora
Grantová Agentura České Republiky
23-07160S
Czech Science Foundation
PubMed
41439727
PubMed Central
PMC12730492
DOI
10.1002/jmv.70778
Knihovny.cz E-zdroje
- MeSH
- gastrointestinální trakt * virologie MeSH
- klíšťová encefalitida * přenos virologie MeSH
- lidé MeSH
- mikrobiální viabilita * MeSH
- mléko * virologie chemie MeSH
- skot MeSH
- teplota MeSH
- viry klíšťové encefalitidy * fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Tick-borne encephalitis virus (TBEV) can be transmitted alimentarily through contaminated dairy products, yet the mechanisms by which the virus survives the digestive tract remain poorly understood. In this study, we investigated the stability of TBEV in milk under simulated gastrointestinal conditions. While milk is known to preserve viral infectivity at low temperatures, our results demonstrate that in the gastric environment and at physiological temperature, it exerts a destabilizing effect, significantly reducing TBEV viability. All major milk fractions-whey, casein, and lipids-contribute to this effect. This highlights the necessity for rapid transit of virus-containing milk through the stomach to avoid inactivation. Conversely, in the intestinal environment, milk protects TBEV from bile salt-mediated inactivation, allowing viral persistence in the upper small intestine. Casein was identified as the primary protective component counteracting bile salt disruption. These findings offer new insights into how milk can simultaneously act as a transmission vehicle and modulator of TBEV stability, advancing our understanding of alimentary infection routes and their implications for public health.
Department of Experimental Biology Faculty of Science Masaryk University Brno Czechia
Laboratory of Emerging Viral Infections Veterinary Research Institute Brno Czechia
Zobrazit více v PubMed
Ruzek D., Avšič Županc T., Borde J., et al., “Tick‐Borne Encephalitis in Europe and Russia: Review of Pathogenesis, Clinical Features, Therapy, and Vaccines,” Antiviral Research 164 (2019): 23–51. PubMed
Chiffi G., Grandgirard D., Leib S. L., Chrdle A., and Růžek D., “Tick‐Borne Encephalitis: A Comprehensive Review of the Epidemiology, Virology, and Clinical Picture,” Reviews in Medical Virology 33, no. 5 (2023): e2470. PubMed
Elbaz M., Gadoth A., Shepshelovich D., Shasha D., Rudoler N., and Paran Y., “Systematic Review and Meta‐Analysis of Foodborne Tick‐Borne Encephalitis, Europe, 1980‐2021,” Emerging Infectious Diseases 28, no. 10 (2022): 1945–1954. PubMed PMC
Ličková M., Fumačová Havlíková S., Sláviková M., and Klempa B., “Alimentary Infections by Tick‐Borne Encephalitis Virus,” Viruses 14, no. 1 (2021): 56. PubMed PMC
Buczek A. M., Buczek W., Buczek A., and Wysokińska‐Miszczuk J., “Food‐Borne Transmission of Tick‐Borne Encephalitis Virus‐Spread, Consequences, and Prophylaxis,” International Journal of Environmental Research and Public Health 19, no. 3 (2022): 1812. PubMed PMC
Ruzek D. and Kaucka K., “A Brief Tale of Two Pioneering Moments: Europe's First Discovery of Tick‐Borne Encephalitis (TBE) Virus Beyond the Soviet Union and the Largest Alimentary TBE Outbreak in History,” Ticks and Tick‐Borne Diseases 15, no. 3 (2024): 102314. PubMed
Caini S., Szomor K., Ferenczi E., et al., “Tick‐Borne Encephalitis Transmitted by Unpasteurised Cow Milk in Western Hungary, September to October 2011,” Eurosurveillance 17, no. 12 (2012): 20128. PubMed
Ilic M., Barbic L., Bogdanic M., et al., “Tick‐Borne Encephalitis Outbreak Following Raw Goat Milk Consumption in a New Micro‐Location, Croatia, June 2019,” Ticks and Tick‐Borne Diseases 11, no. 6 (2020): 101513. PubMed
Gonzalez G., Bournez L., Moraes R. A., et al., “A One‐Health Approach to Investigating an Outbreak of Alimentary Tick‐Borne Encephalitis in a Non‐Endemic Area in France (Ain, Eastern France): A Longitudinal Serological Study in Livestock, Detection in Ticks, and the First Tick‐Borne Encephalitis Virus Isolation and Molecular Characterisation,” Frontiers in Microbiology 13 (2022): 863725. PubMed PMC
Kerlik J., Avdičová M., Štefkovičová M., et al., “Slovakia Reports Highest Occurrence of Alimentary Tick‐Borne Encephalitis in Europe: Analysis of Tick‐Borne Encephalitis Outbreaks in Slovakia During 2007‐2016,” Travel Medicine and Infectious Disease 26 (2018): 37–42. PubMed
Rónai Z. and Egyed L., “Survival of Tick‐Borne Encephalitis Virus in Goat Cheese and Milk,” Food and Environmental Virology 12, no. 3 (2020): 264–268. PubMed
Dobler G., Gniel D., Petermann R., and Pfeffer M., “Epidemiology and Distribution of Tick‐Borne Encephalitis,” Wiener Medizinische Wochenschrift 162, no. 11–12 (2012): 230–238. PubMed
Martello E., Gillingham E. L., Phalkey R., et al., “Systematic Review on the Non‐Vectorial Transmission of Tick‐Borne Encephalitis Virus (TBEV),” Ticks and Tick‐Borne Diseases 13, no. 6 (2022): 102028. PubMed
Kríz B., Benes C., and Daniel M., “Alimentary Transmission of Tick‐Borne Encephalitis in the Czech Republic (1997‐2008),” Epidemiologie, Mikrobiologie, Imunologie 58, no. 2 (2009): 98–103. PubMed
Yu C., Achazi K., Möller L., Schulzke J. D., Niedrig M., and Bücker R., “Tick‐Borne Encephalitis Virus Replication, Intracellular Trafficking, and Pathogenicity in Human Intestinal Caco‐2 Cell Monolayers,” PLoS One 9, no. 5 (2014): e96957. PubMed PMC
Pogodina V. V., “Resistance of Tick‐Borne Encephalitis Virus to Gastric Juice,” Voprosy Virusologii 3, no. 5 (1958): 271–275. PubMed
Wiesner L., Schmutte C., and Steffen I., “Susceptibility of Tick‐Borne Encephalitis Virus to Inactivation by Heat, Acidic pH, Chemical, or UV Treatment,” Journal of Infectious Diseases 223, no. 4 (2021): 714–718. PubMed
Balogh Z., Ferenczi E., Szeles K., et al., “Tick‐Borne Encephalitis Outbreak in Hungary Due to Consumption of Raw Goat Milk,” Journal of Virological Methods 163, no. 2 (2010): 481–485. PubMed
Offerdahl D. K., Clancy N. G., and Bloom M. E., “Stability of a Tick‐Borne Flavivirus in Milk,” Frontiers in Bioengineering and Biotechnology 4 (2016): 40. PubMed PMC
Saier R., Maier G., Atamer Z., and Hinrichs J., “Thermal Inactivation of Tickborne Encephalitis Virus in Milk,” International Journal of Dairy Technology 68, no. 3 (2015): 366–373.
Dressman J. B., Berardi R. R., Dermentzoglou L. C., et al., “Upper Gastrointestinal (GI) pH in Young, Healthy Men and Women,” Pharmaceutical Research 7, no. 7 (1990): 756–761. PubMed
McLauchlan G., Fullarton G. M., Crean G. P., and McColl K. E., “Comparison of Gastric Body and Antral pH: A 24 Hour Ambulatory Study in Healthy Volunteers,” Gut 30, no. 5 (1989): 573–578. PubMed PMC
Bergström C. A. S., Holm R., Jørgensen S. A., et al., “Early Pharmaceutical Profiling to Predict Oral Drug Absorption: Current Status and Unmet Needs,” European Journal of Pharmaceutical Sciences 57 (2014): 173–199. PubMed
Poquet L. and Wooster T. J., “Infant Digestion Physiology and the Relevance of In Vitro Biochemical Models to Test Infant Formula Lipid Digestion,” Molecular Nutrition & Food Research 60, no. 8 (2016): 1876–1895. PubMed
Riethorst D., Mols R., Duchateau G., Tack J., Brouwers J., and Augustijns P., “Characterization of Human Duodenal Fluids in Fasted and Fed State Conditions,” Journal of Pharmaceutical Sciences 105, no. 2 (2016): 673–681. PubMed
Bateman D. N., “Effects of Meal Temperature and Volume on the Emptying of Liquid From the Human Stomach,” Journal of Physiology 331 (1982): 461–467. PubMed PMC
Kunz P., Feinle C., Schwizer W., Fried M., and Boesiger P., “Assessment of Gastric Motor Function During the Emptying of Solid and Liquid Meals in Humans by MRI,” Journal of Magnetic Resonance Imaging 9, no. 1 (1999): 75–80. PubMed
Barbé F., Ménard O., Le Gouar Y., et al., “The Heat Treatment and the Gelation Are Strong Determinants of the Kinetics of Milk Proteins Digestion and of the Peripheral Availability of Amino Acids,” Food Chemistry 136, no. 3–4 (2013): 1203–1212. PubMed
Furlund C. B., Ulleberg E. K., Devold T. G., et al., “Identification of Lactoferrin Peptides Generated by Digestion With Human Gastrointestinal Enzymes,” Journal of Dairy Science 96, no. 1 (2013): 75–88. PubMed
Mandalari G., Mackie A. M., Rigby N. M., Wickham M. S., and Mills E. N., “Physiological Phosphatidylcholine Protects Bovine Beta‐Lactoglobulin From Simulated Gastrointestinal Proteolysis,” Molecular Nutrition & Food Research 53, no. Suppl 1 (2009): S131–S139. PubMed
Inglingstad R. A., Devold T. G., Eriksen E. K., et al., “Comparison of the Digestion of Caseins and Whey Proteins in Equine, Bovine, Caprine and Human Milks by Human Gastrointestinal Enzymes,” Dairy Science & Technology 90, no. 5 (2010): 549–563.
Pospisil L., Jandasek L., and Pesek J., “Isolation of New Strains of Meningoencephalitis Virus in the Brno Region During the Summer of 1953,” Lekarske Listy 9, no. 1 (1954): 3–5. PubMed
Blans K., Hansen M. S., Sørensen L. V., et al., “Pellet‐Free Isolation of Human and Bovine Milk Extracellular Vesicles by Size‐Exclusion Chromatography,” Journal of Extracellular Vesicles 6, no. 1 (2017): 1294340. PubMed PMC
Jensen H. B., Poulsen N. A., Møller H. S., Stensballe A., and Larsen L. B., “Comparative Proteomic Analysis of Casein and Whey as Prepared by Chymosin‐Induced Separation, Isoelectric Precipitation or Ultracentrifugation,” Journal of Dairy Research 79, no. 4 (2012): 451–458. PubMed
Månsson H. L., “Fatty Acids in Bovine Milk Fat,” Food & Nutrition Research 52 (2008): 1–3. PubMed PMC
De Madrid A. T. and Porterfield J. S., “A Simple Micro‐Culture Method for the Study of Group B Arboviruses,” Bulletin of the World Health Organization 40, no. 1 (1969): 113–121. PubMed PMC
Růžek D., Gritsun T. S., Forrester N. L., et al., “Mutations in the NS2B and NS3 Genes Affect Mouse Neuroinvasiveness of a Western European Field Strain of Tick‐Borne Encephalitis Virus,” Virology 374, no. 2 (2008): 249–255. PubMed
Goyal R. K., Guo Y., and Mashimo H., “Advances in the Physiology of Gastric Emptying,” Neurogastroenterology & Motility 31, no. 4 (2019): e13546. PubMed PMC
Hellström P. M., Grybäck P., and Jacobsson H., “The Physiology of Gastric Emptying,” Best Practice & Research Clinical Anaesthesiology 20, no. 3 (2006): 397–407. PubMed
Thormar H., Isaacs C. E., Brown H. R., Barshatzky M. R., and Pessolano T., “Inactivation of Enveloped Viruses and Killing of Cells by Fatty Acids and Monoglycerides,” Antimicrobial Agents and Chemotherapy 31, no. 1 (1987): 27–31. PubMed PMC
Leu G. Z., Lin T. Y., and Hsu J. T. A., “Anti‐HCV Activities of Selective Polyunsaturated Fatty Acids,” Biochemical and Biophysical Research Communications 318, no. 1 (2004): 275–280. PubMed
Bojsen A., Buesa J., Montava R., et al., “Inhibitory Activities of Bovine Macromolecular Whey Proteins on Rotavirus Infections In Vitro and In Vivo,” Journal of Dairy Science 90, no. 1 (2007): 66–74. PubMed
Gallo V., Giansanti F., Arienzo A., and Antonini G., “Antiviral Properties of Whey Proteins and Their Activity Against SARS‐CoV‐2 Infection,” Journal of Functional Foods 89 (2022): 104932. PubMed PMC
Alves N. S., Azevedo A. S., Dias B. M., et al., “Inhibition of SARS‐CoV‐2 Infection in Vero Cells by Bovine Lactoferrin Under Different Iron‐Saturation States,” Pharmaceuticals 16, no. 10 (2023): 1352. PubMed PMC
Inagaki M., Muranishi H., Yamada K., et al., “Bovine κ‐Casein Inhibits Human Rotavirus (HRV) Infection via Direct Binding of Glycans to HRV,” Journal of Dairy Science 97, no. 5 (2014): 2653–2661. PubMed
Rodríguez Saint‐Jean S., Pérez Prieto S.‐I., López‐Expósito I., Ramos M., de las Heras A. I., and Recio I., “Antiviral Activity of Dairy Proteins and Hydrolysates on Salmonid Fish Viruses,” International Dairy Journal 23, no. 1 (2012): 24–29.
Herold B. C., Kirkpatrick R., Marcellino D., et al., “Bile Salts: Natural Detergents for the Prevention of Sexually Transmitted Diseases,” Antimicrobial Agents and Chemotherapy 43, no. 4 (1999): 745–751. PubMed PMC
Kim D. K., Lee J. R., Kim A., et al., “Inhibition of Initiation of Simian Virus 40 DNA Replication In Vitro by the Ursodeoxycholic Acid and Its Derivatives,” Cancer Letters 146, no. 2 (1999): 147–153. PubMed
Chhatwal P., Bankwitz D., Gentzsch J., et al., “Bile Acids Specifically Increase Hepatitis C Virus RNA‐Replication,” PLoS One 7, no. 4 (2012): e36029. PubMed PMC
Patton J. B., George D., and Chang K. O., “Bile Acids Promote HCV Replication Through the EGFR/ERK Pathway in Replicon‐Harboring Cells,” Intervirology 54, no. 6 (2011): 339–348. PubMed PMC
Reese V. C., Moore D. D., and McLachlan A., “Limited Effects of Bile Acids and Small Heterodimer Partner on Hepatitis B Virus Biosynthesis In Vivo,” Journal of Virology 86, no. 5 (2012): 2760–2768. PubMed PMC
Euston S. R., Baird W. G., Campbell L., and Kuhns M., “Competitive Adsorption of Dihydroxy and Trihydroxy Bile Salts With Whey Protein and Casein in Oil‐in‐Water Emulsions,” Biomacromolecules 14, no. 6 (2013): 1850–1858. PubMed
Lanzini A., Fitzpatrick W. J. F., Pigozzi M. G., and Northfield T. C., “Bile Acid Binding to Dietary Casein: A Study In Vitro and In Vivo,” Clinical Science 73, no. 4 (1987): 343–350. PubMed