Effect of Sacubitril/Valsartan, Ivabradine, and Captopril on Anxiety-like Behavior in Spontaneously Hypertensive Rats
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
VEGA 1/0048/23 APVV-20-0421.
The Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic, grant number VEGA 1/0048/23, and the Slovak Research and Development Agency, grant number APVV-20-0421.
PubMed
41303390
PubMed Central
PMC12652842
DOI
10.3390/ijms262210905
PII: ijms262210905
Knihovny.cz E-zdroje
- Klíčová slova
- anxiety, blood pressure, captopril, correlation analysis, heart rate, ivabradine, sacubitril/valsartan, spontaneously hypertensive rats,
- MeSH
- aminobutyráty * farmakologie terapeutické užití MeSH
- bifenylové sloučeniny * farmakologie MeSH
- chování zvířat * účinky léků MeSH
- fixní kombinace léků MeSH
- hypertenze * farmakoterapie MeSH
- ivabradin * farmakologie terapeutické užití MeSH
- kaptopril * farmakologie terapeutické užití MeSH
- krevní tlak účinky léků MeSH
- krysa rodu Rattus MeSH
- neprilysin antagonisté a inhibitory MeSH
- potkani inbrední SHR MeSH
- potkani Wistar MeSH
- srdeční frekvence účinky léků MeSH
- tetrazoly * farmakologie MeSH
- úzkost * farmakoterapie MeSH
- valsartan * farmakologie terapeutické užití MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aminobutyráty * MeSH
- bifenylové sloučeniny * MeSH
- fixní kombinace léků MeSH
- ivabradin * MeSH
- kaptopril * MeSH
- neprilysin MeSH
- sacubitril and valsartan sodium hydrate drug combination MeSH Prohlížeč
- tetrazoly * MeSH
- valsartan * MeSH
Cardiovascular disorders and the medications used to treat them can affect physiological patterns of behavior. The aim of the present study was to determine whether the dual inhibition of neprilysin and angiotensin II-sacubitril/valsartan (ARNI) can modify anxiety-like behavior in male spontaneously hypertensive rats (SHR). We compared ARNI with two other drugs in the portfolio of heart failure treatment, captopril and ivabradine. Six groups (n = 13) of 12-week-old rats were treated for six weeks: control (Wistar rats), control + ARNI, SHR, SHR + ARNI, SHR + captopril, and SHR + ivabradine. The elevated plus maze test, the open field test, and the light-dark box test were used to determine anxiety-like behavior. SHRs exhibited higher systolic blood pressure (SBP), heart rate (HR), left ventricular weight (LVW), and hydroxyproline concentration (LVHP) but displayed a reduced level of anxiety-like behavior in comparison to controls. ARNI reduced SBP, HR, and LVW but had no significant effect on the level of anxiety in SHR, and similar results were achieved by captopril and ivabradine. Additionally, correlation analysis indicated that anxiety-like behavior in Wistar rats or SHR, either with or without cardiovascular therapy, was independent of SBP, HR, LVW, or LVHP. The level of anxiety-like behavior can, therefore, be considered part of the inherent neurobehavioral traits unrelated to fundamental hemodynamic or structural cardiovascular parameters.
Department of Physiology Faculty of Medicine Charles University 500 03 Hradec Kralove Czech Republic
Institute of Pathophysiology Faculty of Medicine Comenius University 811 08 Bratislava Slovakia
Zobrazit více v PubMed
Apostolos A., Konstantinou K., Ktenopoulos N., Vlachakis P.K., Skalidis I., Chrysostomidis G., Panoulas V., Tsioufis K. Depression and Coronary Artery Disease-Where We Stand? J. Clin. Med. 2025;14:4281. doi: 10.3390/jcm14124281. PubMed DOI PMC
Chong R.J., Hao Y., Tan E.W.Q., Mok G.J.L., Sia C.-H., Ho J.S.Y., Chan M.Y.Y., Ho A.F.W. Prevalence of Depression, Anxiety and Post-Traumatic Stress Disorder (PTSD) After Acute Myocardial Infarction: A Systematic Review and Meta-Analysis. J. Clin. Med. 2025;14:1786. doi: 10.3390/jcm14061786. PubMed DOI PMC
Kang W., Malvaso A., Bruno F., Chan C.-K. Psychological Distress and Myocardial Infarction (MI): A Cross-Sectional and Longitudinal UK Population-Based Study. J. Affect. Disord. 2025;384:47–52. doi: 10.1016/j.jad.2025.05.016. PubMed DOI
Wu X., Zu Y., Li D., Yoshida Y. Psychosocial and Behavioral Risk Patterns and Risk of Cardiovascular Complications in People with Type 2 Diabetes. Diabetes Res. Clin. Pract. 2025;221:112037. doi: 10.1016/j.diabres.2025.112037. PubMed DOI PMC
Liu W., Wang S., Gu H., Li R. Heart Rate Variability, a Potential Assessment Tool for Identifying Anxiety, Depression, and Sleep Disorders in Elderly Individuals. Front. Psychiatry. 2025;16:1485183. doi: 10.3389/fpsyt.2025.1485183. PubMed DOI PMC
Repova K., Aziriova S., Kovacova D., Trubacova S., Baka T., Kanska R., Barta A., Stanko P., Zorad S., Molcan L., et al. Lisinopril Reverses Behavioural Alterations in Spontaneously Hypertensive Rats. Gen. Physiol. Biophys. 2019;38:265–270. doi: 10.4149/gpb_2019011. PubMed DOI
Calderone A., Marafioti G., Latella D., Corallo F., D’Aleo P., Quartarone A., Calabrò R.S. Effectiveness of Relaxation Techniques for Stress Management and Quality of Life Improvement in Cardiovascular Disease and Hypertensive Patients: A Systematic Review. Psychol. Health Med. 2025;30:1281–1352. doi: 10.1080/13548506.2025.2458255. PubMed DOI
Bordet S., Grasso L., Udovin L., Chevalier G., Otero-Losada M., Capani F., Perez-Lloret S. An Open-Label, Non-Randomized, Drug-Repurposing Study to Explore the Clinical Effects of Angiotensin II Type 1 (AT1) Receptor Antagonists on Anxiety and Depression in Parkinson’s Disease. Mov. Disord. Clin. Pract. 2025;12:653–658. doi: 10.1002/mdc3.14326. PubMed DOI PMC
Repova K., Aziriova S., Krajcirovicova K., Simko F. Cardiovascular Therapeutics: A New Potential for Anxiety Treatment? Med. Res. Rev. 2022;42:1202–1245. doi: 10.1002/med.21875. PubMed DOI PMC
Packer M. How Should Physicians View Heart Failure? The Philosophical and Physiological Evolution of Three Conceptual Models of the Disease. Am. J. Cardiol. 1993;71:C3–C11. doi: 10.1016/0002-9149(93)90081-M. PubMed DOI
Dube P., Weber K.T. Congestive Heart Failure: Pathophysiologic Consequences of Neurohormonal Activation and the Potential for Recovery: Part I. Am. J. Med. Sci. 2011;342:348–351. doi: 10.1097/MAJ.0b013e318232750d. PubMed DOI
Saavedra J.M., Armando I. Angiotensin II AT2 Receptors Contribute to Regulate the Sympathoadrenal and Hormonal Reaction to Stress Stimuli. Cell. Mol. Neurobiol. 2018;38:85–108. doi: 10.1007/s10571-017-0533-x. PubMed DOI PMC
Tashev R., Ivanova M. Involvement of Hippocampal Angiotensin 1 Receptors in Anxiety-like Behaviour of Olfactory Bulbectomized Rats. Pharmacol. Rep. 2018;70:847–852. doi: 10.1016/j.pharep.2018.03.001. PubMed DOI
Steenen S.A., Van Wijk A.J., Van Der Heijden G.J., Van Westrhenen R., De Lange J., De Jongh A. Propranolol for the Treatment of Anxiety Disorders: Systematic Review and Meta-Analysis. J. Psychopharmacol. 2016;30:128–139. doi: 10.1177/0269881115612236. PubMed DOI PMC
Erdem S., Özaçmak H.S., Turan İ., Ergenç M. The Protective Effect of Angiotensin II Type I Receptor Blocker (Valsartan) on Behavioral Impairment, NLRP3, BDNF, and Oxidative Stress in the Brain Tissue of Ovariectomized Female Rats. Physiol. Rep. 2024;12:e70003. doi: 10.14814/phy2.70003. PubMed DOI PMC
Hlavacova N., Bakos J., Jezova D. Eplerenone, a Selective Mineralocorticoid Receptor Blocker, Exerts Anxiolytic Effects Accompanied by Changes in Stress Hormone Release. J. Psychopharmacol. 2010;24:779–786. doi: 10.1177/0269881109106955. PubMed DOI
McMurray J.J.V. Neprilysin Inhibition to Treat Heart Failure: A Tale of Science, Serendipity, and Second Chances. Eur. J. Heart Fail. 2015;17:242–247. doi: 10.1002/ejhf.250. PubMed DOI
McMurray J.J.V., Packer M., Desai A.S., Gong J., Lefkowitz M.P., Rizkala A.R., Rouleau J.L., Shi V.C., Solomon S.D., Swedberg K., et al. Angiotensin-Neprilysin Inhibition versus Enalapril in Heart Failure. N. Engl. J. Med. 2014;371:993–1004. doi: 10.1056/NEJMoa1409077. PubMed DOI
Bozkurt B., Nair A.P., Misra A., Scott C.Z., Mahar J.H., Fedson S. Neprilysin Inhibitors in Heart Failure: The Science, Mechanism of Action, Clinical Studies, and Unanswered Questions. JACC Basic Transl. Sci. 2023;8:88–105. doi: 10.1016/j.jacbts.2022.05.010. PubMed DOI PMC
Aziriova S., Repova Bednarova K., Krajcirovicova K., Hrenak J., Rajkovicova R., Arendasova K., Kamodyova N., Celec P., Zorad S., Adamcova M., et al. Doxorubicin-Induced Behavioral Disturbances in Rats: Protective Effect of Melatonin and Captopril. Pharmacol. Biochem. Behav. 2014;124:284–289. doi: 10.1016/j.pbb.2014.06.021. PubMed DOI
Grossman E., Nadler M., Sharabi Y., Thaler M., Shachar A., Shamiss A. Antianxiety Treatment in Patients With Excessive Hypertension. Am. J. Hypertens. 2005;18:1174–1177. doi: 10.1016/j.amjhyper.2005.03.728. PubMed DOI
Braszko J.J., Karwowska-Polecka W., Halicka D., Gard P.R. Captopril and Enalapril Improve Cognition and Depressed Mood in Hypertensive Patients. J. Basic Clin. Physiol. Pharmacol. 2003;14:323–343. doi: 10.1515/JBCPP.2003.14.4.323. PubMed DOI
Wiedemann K., Jahn H., Kellner M. Effects of Natriuretic Peptides upon Hypothalamo-Pituitary-Adrenocortical System Activity and Anxiety Behaviour. Exp. Clin. Endocrinol. Diabetes Off. J. Ger. Soc. Endocrinol. Ger. Diabetes Assoc. 2000;108:5–13. doi: 10.1055/s-0032-1329209. PubMed DOI
Henry M.S., Gendron L., Tremblay M.-E., Drolet G. Enkephalins: Endogenous Analgesics with an Emerging Role in Stress Resilience. Neural Plast. 2017;2017:1546125. doi: 10.1155/2017/1546125. PubMed DOI PMC
Hasenöhrl R.U., Jentjens O., De Souza Silva M.A., Tomaz C., Huston J.P. Anxiolytic-like Action of Neurokinin Substance P Administered Systemically or into the Nucleus Basalis Magnocellularis Region. Eur. J. Pharmacol. 1998;354:123–133. doi: 10.1016/S0014-2999(98)00441-5. PubMed DOI
Rouhiainen A., Kulesskaya N., Mennesson M., Misiewicz Z., Sipilä T., Sokolowska E., Trontti K., Urpa L., McEntegart W., Saarnio S., et al. The Bradykinin System in Stress and Anxiety in Humans and Mice. Sci. Rep. 2019;9:19437. doi: 10.1038/s41598-019-55947-5. PubMed DOI PMC
Dereli S., Kılınçel O., Çerik İ.B., Kaya A. Impact of Sacubitril/Valsartan Treatment on Depression and Anxiety in Heart Failure with Reduced Ejection Fraction. Acta Cardiol. 2020;75:774–782. doi: 10.1080/00015385.2020.1730577. PubMed DOI
Malik J., Shahid A.W., Shah M., Rana G., Kamal A., Naeem H. Outcome of Angiotensin Receptor-Neprilysin Inhibitor on Anxiety and Depression in Heart Failure with Reduced Ejection Fraction vs. Heart Failure with Preserved Ejection Fraction. J. Community Hosp. Intern. Med. Perspect. 2021;11:629–634. doi: 10.1080/20009666.2021.1942623. PubMed DOI PMC
Kellner M., Yassouridis A., Górski D., Waheed S., Kähler J., Wiedemann K. Acute Anxiolytic Effects of Sacubitril/Valsartan in Patients with Heart Failure. J. Depress. Anxiety. 2023;12:499. doi: 10.35248/2167-1044.23.12.499. DOI
Player M.S., Peterson L.E. Anxiety Disorders, Hypertension, and Cardiovascular Risk: A Review. Int. J. Psychiatry Med. 2011;41:365–377. doi: 10.2190/PM.41.4.f. PubMed DOI
Warton F.L., Howells F.M., Russell V.A. Increased Glutamate-Stimulated Release of Dopamine in Substantia Nigra of a Rat Model for Attention-Deficit/Hyperactivity Disorder—Lack of Effect of Methylphenidate. Metab. Brain Dis. 2009;24:599–613. doi: 10.1007/s11011-009-9166-1. PubMed DOI
Tsai M.-L., Kozłowska A., Li Y.-S., Shen W.-L., Huang A.C.W. Social Factors Affect Motor and Anxiety Behaviors in the Animal Model of Attention-Deficit Hyperactivity Disorders: A Housing-Style Factor. Psychiatry Res. 2017;254:290–300. doi: 10.1016/j.psychres.2017.05.008. PubMed DOI
Ramos A., Pereira E., Martins G.C., Wehrmeister T.D., Izídio G.S. Integrating the Open Field, Elevated plus Maze and Light/Dark Box to Assess Different Types of Emotional Behaviors in One Single Trial. Behav. Brain Res. 2008;193:277–288. doi: 10.1016/j.bbr.2008.06.007. PubMed DOI
Söderpalm B. The SHR Exhibits Less “Anxiety” but Increased Sensitivity to the Anticonflict Effect of Clonidine Compared to Normotensive Controls. Pharmacol. Toxicol. 1989;65:381–386. doi: 10.1111/j.1600-0773.1989.tb01193.x. PubMed DOI
Mamedova D.I., Nedogreeva O.A., Manolova A.O., Ovchinnikova V.O., Kostryukov P.A., Lazareva N.A., Moiseeva Y.V., Tret’yakova L.V., Kvichansky A.A., Onufriev M.V., et al. The Impact of Long-Term Isolation on Anxiety, Depressive-like and Social Behavior in Aging Wistar-Kyoto (WKY) and Spontaneously Hypertensive (SHR) Male Rats. Sci. Rep. 2024;14:28135. doi: 10.1038/s41598-024-79677-5. PubMed DOI PMC
Womersley J.S., Hsieh J.H., Kellaway L.A., Gerhardt G.A., Russell V.A. Maternal Separation Affects Dopamine Transporter Function in the Spontaneously Hypertensive Rat: An in Vivo Electrochemical Study. Behav. Brain Funct. 2011;7:49. doi: 10.1186/1744-9081-7-49. PubMed DOI PMC
Simko F., Baka T., Stanko P., Repova K., Krajcirovicova K., Aziriova S., Domenig O., Zorad S., Adamcova M., Paulis L. Sacubitril/Valsartan and Ivabradine Attenuate Left Ventricular Remodelling and Dysfunction in Spontaneously Hypertensive Rats: Different Interactions with the Renin-Angiotensin-Aldosterone System. Biomedicines. 2022;10:1844. doi: 10.3390/biomedicines10081844. PubMed DOI PMC
Wang M., Han W., Zhang M., Fang W., Zhai X., Guan S., Qu X. Long-Term Renal Sympathetic Denervation Ameliorates Renal Fibrosis and Delays the Onset of Hypertension in Spontaneously Hypertensive Rats. Am. J. Transl. Res. 2018;10:4042–4053. PubMed PMC
Hendley E.D. WKHA Rats with Genetic Hyperactivity and Hyperreactivity to Stress: A Review. Neurosci. Biobehav. Rev. 2000;24:41–44. doi: 10.1016/S0149-7634(99)00050-0. PubMed DOI
Hill J.C., Herbst K., Sanabria F. Characterizing Operant Hyperactivity in the Spontaneously Hypertensive Rat. Behav. Brain Funct. 2012;8:5. doi: 10.1186/1744-9081-8-5. PubMed DOI PMC
Hendley E.D., Ohlsson W.G. Two New Inbred Rat Strains Derived from SHR: WKHA, Hyperactive, and WKHT, Hypertensive, Rats. Am. J. Physiol.-Heart Circ. Physiol. 1991;261:H583–H589. doi: 10.1152/ajpheart.1991.261.2.H583. PubMed DOI
Alsop B. Problems with Spontaneously Hypertensive Rats (SHR) as a Model of Attention-Deficit/Hyperactivity Disorder (AD/HD) J. Neurosci. Methods. 2007;162:42–48. doi: 10.1016/j.jneumeth.2006.12.002. PubMed DOI
Hendley E.D., Cierpial M.A., McCarty R. Sympathetic-Adrenal Medullary Response to Stress in Hyperactive and Hypertensive Rats. Physiol. Behav. 1988;44:47–51. doi: 10.1016/0031-9384(88)90344-7. PubMed DOI
Pechánová O., Bernátová I., Pelouch V., Simko F. Protein Remodelling of the Heart in NO-Deficient Hypertension: The Effect of Captopril. J. Mol. Cell. Cardiol. 1997;29:3365–3374. doi: 10.1006/jmcc.1997.0566. PubMed DOI
Simko F., Pechanova O., Repova Bednarova K., Krajcirovicova K., Celec P., Kamodyova N., Zorad S., Kucharska J., Gvozdjakova A., Adamcova M., et al. Hypertension and Cardiovascular Remodelling in Rats Exposed to Continuous Light: Protection by ACE-Inhibition and Melatonin. Mediators Inflamm. 2014;2014:703175. doi: 10.1155/2014/703175. PubMed DOI PMC
Simko F., Stanko P., Repova K., Baka T., Krajcirovicova K., Aziriova S., Domenig O., Zorad S., Adamcova M., Paulis L. Effect of Sacubitril/Valsartan on the Hypertensive Heart in Continuous Light-Induced and Lactacystin-Induced Pre-Hypertension: Interactions with the Renin-Angiotensin-Aldosterone System. Biomed. Pharmacother. 2024;173:116391. doi: 10.1016/j.biopha.2024.116391. PubMed DOI
Simko F., Pechanova O., Pelouch V., Krajcirovicova K., Celec P., Palffy R., Bednarova K., Vrankova S., Adamcova M., Paulis L. Continuous Light and L-NAME-Induced Left Ventricular Remodelling: Different Protection with Melatonin and Captopril. J. Hypertens. 2010;28((Suppl. S1)):S13–S18. doi: 10.1097/01.hjh.0000388489.28213.08. PubMed DOI
Simko F., Baka T., Poglitsch M., Repova K., Aziriova S., Krajcirovicova K., Zorad S., Adamcova M., Paulis L. Effect of Ivabradine on a Hypertensive Heart and the Renin-Angiotensin-Aldosterone System in L-NAME-Induced Hypertension. Int. J. Mol. Sci. 2018;19:3017. doi: 10.3390/ijms19103017. PubMed DOI PMC
Simko F., Baka T., Repova K., Aziriova S., Krajcirovicova K., Paulis L., Adamcova M. Ivabradine Improves Survival and Attenuates Cardiac Remodeling in Isoproterenol-induced Myocardial Injury. Fundam. Clin. Pharmacol. 2021;35:744–748. doi: 10.1111/fcp.12620. PubMed DOI PMC
Park H.-S., Han A., Yeo H.-L., Park M.-J., You M.-J., Choi H.J., Hong C.-W., Lee S.-H., Kim S.H., Kim B., et al. Chronic High Dose of Captopril Induces Depressive-like Behaviors in Mice: Possible Mechanism of Regulatory T Cell in Depression. Oncotarget. 2017;8:72528–72543. doi: 10.18632/oncotarget.19879. PubMed DOI PMC
Krajcirovicova K., Aziriova S., Baka T., Repova K., Adamcova M., Paulis L., Simko F. Ivabradine Does Not Impair Anxiety-like Behavior and Memory in Both Healthy and L-NAME-Induced Hypertensive Rats. Physiol. Res. 2018;67:S655–S664. doi: 10.33549/physiolres.934048. PubMed DOI
Woodman R., Student J., Miller C., Lockette W. Ivabradine-Induced Bradycardia Is Accompanied by Reduced Stress-Related Anxiety. Am. J. Hypertens. 2023;36:316–323. doi: 10.1093/ajh/hpad019. PubMed DOI
Borbélyová V., Domonkos E., Bábíčková J., Tóthová Ľ., Bosý M., Hodosy J., Celec P. No Effect of Testosterone on Behavior in Aged Wistar Rats. Aging. 2016;8:2848–2861. doi: 10.18632/aging.101096. PubMed DOI PMC
Borbélyová V., Renczés E., Chovanec M., Mego M., Celec P. Transient Effects of Chemotherapy for Testicular Cancer on Mouse Behaviour. Sci. Rep. 2020;10:10224. doi: 10.1038/s41598-020-67081-8. PubMed DOI PMC
Pelouch V., Kolář F., Khuchua Z.A., Elizarova G.V., Milerová M., Ošt’ádall B., Saks V.A. Cardiac Phosphocreatine Deficiency Induced by GPA during Postnatal Development in Rat. Mol. Cell. Biochem. 1996;163:67–76. doi: 10.1007/BF00408642. PubMed DOI
Kesava Reddy G., Enwemeka C.S. A Simplified Method for the Analysis of Hydroxyproline in Biological Tissues. Clin. Biochem. 1996;29:225–229. doi: 10.1016/0009-9120(96)00003-6. PubMed DOI
Tchekalarova J., Krushovlieva D., Ivanova P., Kortenska L. Spontaneously Hypertensive Rats vs. Wistar Kyoto and Wistar Rats: An Assessment of Anxiety, Motor Activity, Memory Performance, and Seizure Susceptibility. Physiol. Behav. 2023;269:114268. doi: 10.1016/j.physbeh.2023.114268. PubMed DOI
Tripp G., Wickens J.R. Research Review: Dopamine Transfer Deficit: A Neurobiological Theory of Altered Reinforcement Mechanisms in ADHD. J. Child Psychol. Psychiatry. 2008;49:691–704. doi: 10.1111/j.1469-7610.2007.01851.x. PubMed DOI
Sable H.J.K., Paige N.B., Nalan P.A., Pace R.L., Hicks C.B., Regan S.L., Williams M.T., Vorhees C.V., Lester D.B. Phasic Dopamine Release in Two Different Rat Models of Attention-Deficit/Hyperactivity Disorder: Spontaneously Hypertensive Rats (SHR) versus Lphn3 Knockout Rats. Neuroscience. 2025;567:150–162. doi: 10.1016/j.neuroscience.2024.12.037. PubMed DOI PMC
Leng Y., Wu N., Wang J., Geng L., Yue Y., Zhang Q. Astaxanthin Mitigates ADHD Symptoms in Spontaneously Hypertensive Rats via Dopaminergic Modulation and Brain–Gut Axis Regulation. Molecules. 2025;30:1637. doi: 10.3390/molecules30071637. PubMed DOI PMC
Stepanichev M.Y., Mamedova D.I., Gulyaeva N.V. Hippocampus under Pressure: Molecular Mechanisms of Development of Cognitive Impairments in SHR Rats. Biochem. Mosc. 2024;89:711–725. doi: 10.1134/S0006297924040102. PubMed DOI
Jackson L., Eldahshan W., Fagan S., Ergul A. Within the Brain: The Renin Angiotensin System. Int. J. Mol. Sci. 2018;19:876. doi: 10.3390/ijms19030876. PubMed DOI PMC
Xu P., Sriramula S., Lazartigues E. ACE2/ANG-(1-7)/Mas Pathway in the Brain: The Axis of Good. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011;300:R804–R817. doi: 10.1152/ajpregu.00222.2010. PubMed DOI PMC
Iliescu R., Yanes L.L., Bell W., Dwyer T., Baltatu O.C., Reckelhoff J.F. Role of the Renal Nerves in Blood Pressure in Male and Female SHR. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2006;290:R341–R344. doi: 10.1152/ajpregu.00035.2005. PubMed DOI
Elmarakby A.A., Sullivan J.C. Sex Differences in Hypertension: Lessons from Spontaneously Hypertensive Rats (SHR) Clin. Sci. 2021;135:1791–1804. doi: 10.1042/CS20201017. PubMed DOI PMC
Berger D.F., Sagvolden T. Sex Differences in Operant Discrimination Behaviour in an Animal Model of Attention-Deficit Hyperactivity Disorder. Behav. Brain Res. 1998;94:73–82. doi: 10.1016/S0166-4328(97)00171-X. PubMed DOI
Bowman R., Frankfurt M., Luine V. Sex Differences in Anxiety and Depression: Insights from Adult Rodent Models of Chronic Stress and Neural Plasticity. Front. Behav. Neurosci. 2025;19:1591973. doi: 10.3389/fnbeh.2025.1591973. PubMed DOI PMC