Effect of Sacubitril/Valsartan, Ivabradine, and Captopril on Anxiety-like Behavior in Spontaneously Hypertensive Rats

. 2025 Nov 10 ; 26 (22) : . [epub] 20251110

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41303390

Grantová podpora
VEGA 1/0048/23 APVV-20-0421. The Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic, grant number VEGA 1/0048/23, and the Slovak Research and Development Agency, grant number APVV-20-0421.

Cardiovascular disorders and the medications used to treat them can affect physiological patterns of behavior. The aim of the present study was to determine whether the dual inhibition of neprilysin and angiotensin II-sacubitril/valsartan (ARNI) can modify anxiety-like behavior in male spontaneously hypertensive rats (SHR). We compared ARNI with two other drugs in the portfolio of heart failure treatment, captopril and ivabradine. Six groups (n = 13) of 12-week-old rats were treated for six weeks: control (Wistar rats), control + ARNI, SHR, SHR + ARNI, SHR + captopril, and SHR + ivabradine. The elevated plus maze test, the open field test, and the light-dark box test were used to determine anxiety-like behavior. SHRs exhibited higher systolic blood pressure (SBP), heart rate (HR), left ventricular weight (LVW), and hydroxyproline concentration (LVHP) but displayed a reduced level of anxiety-like behavior in comparison to controls. ARNI reduced SBP, HR, and LVW but had no significant effect on the level of anxiety in SHR, and similar results were achieved by captopril and ivabradine. Additionally, correlation analysis indicated that anxiety-like behavior in Wistar rats or SHR, either with or without cardiovascular therapy, was independent of SBP, HR, LVW, or LVHP. The level of anxiety-like behavior can, therefore, be considered part of the inherent neurobehavioral traits unrelated to fundamental hemodynamic or structural cardiovascular parameters.

Zobrazit více v PubMed

Apostolos A., Konstantinou K., Ktenopoulos N., Vlachakis P.K., Skalidis I., Chrysostomidis G., Panoulas V., Tsioufis K. Depression and Coronary Artery Disease-Where We Stand? J. Clin. Med. 2025;14:4281. doi: 10.3390/jcm14124281. PubMed DOI PMC

Chong R.J., Hao Y., Tan E.W.Q., Mok G.J.L., Sia C.-H., Ho J.S.Y., Chan M.Y.Y., Ho A.F.W. Prevalence of Depression, Anxiety and Post-Traumatic Stress Disorder (PTSD) After Acute Myocardial Infarction: A Systematic Review and Meta-Analysis. J. Clin. Med. 2025;14:1786. doi: 10.3390/jcm14061786. PubMed DOI PMC

Kang W., Malvaso A., Bruno F., Chan C.-K. Psychological Distress and Myocardial Infarction (MI): A Cross-Sectional and Longitudinal UK Population-Based Study. J. Affect. Disord. 2025;384:47–52. doi: 10.1016/j.jad.2025.05.016. PubMed DOI

Wu X., Zu Y., Li D., Yoshida Y. Psychosocial and Behavioral Risk Patterns and Risk of Cardiovascular Complications in People with Type 2 Diabetes. Diabetes Res. Clin. Pract. 2025;221:112037. doi: 10.1016/j.diabres.2025.112037. PubMed DOI PMC

Liu W., Wang S., Gu H., Li R. Heart Rate Variability, a Potential Assessment Tool for Identifying Anxiety, Depression, and Sleep Disorders in Elderly Individuals. Front. Psychiatry. 2025;16:1485183. doi: 10.3389/fpsyt.2025.1485183. PubMed DOI PMC

Repova K., Aziriova S., Kovacova D., Trubacova S., Baka T., Kanska R., Barta A., Stanko P., Zorad S., Molcan L., et al. Lisinopril Reverses Behavioural Alterations in Spontaneously Hypertensive Rats. Gen. Physiol. Biophys. 2019;38:265–270. doi: 10.4149/gpb_2019011. PubMed DOI

Calderone A., Marafioti G., Latella D., Corallo F., D’Aleo P., Quartarone A., Calabrò R.S. Effectiveness of Relaxation Techniques for Stress Management and Quality of Life Improvement in Cardiovascular Disease and Hypertensive Patients: A Systematic Review. Psychol. Health Med. 2025;30:1281–1352. doi: 10.1080/13548506.2025.2458255. PubMed DOI

Bordet S., Grasso L., Udovin L., Chevalier G., Otero-Losada M., Capani F., Perez-Lloret S. An Open-Label, Non-Randomized, Drug-Repurposing Study to Explore the Clinical Effects of Angiotensin II Type 1 (AT1) Receptor Antagonists on Anxiety and Depression in Parkinson’s Disease. Mov. Disord. Clin. Pract. 2025;12:653–658. doi: 10.1002/mdc3.14326. PubMed DOI PMC

Repova K., Aziriova S., Krajcirovicova K., Simko F. Cardiovascular Therapeutics: A New Potential for Anxiety Treatment? Med. Res. Rev. 2022;42:1202–1245. doi: 10.1002/med.21875. PubMed DOI PMC

Packer M. How Should Physicians View Heart Failure? The Philosophical and Physiological Evolution of Three Conceptual Models of the Disease. Am. J. Cardiol. 1993;71:C3–C11. doi: 10.1016/0002-9149(93)90081-M. PubMed DOI

Dube P., Weber K.T. Congestive Heart Failure: Pathophysiologic Consequences of Neurohormonal Activation and the Potential for Recovery: Part I. Am. J. Med. Sci. 2011;342:348–351. doi: 10.1097/MAJ.0b013e318232750d. PubMed DOI

Saavedra J.M., Armando I. Angiotensin II AT2 Receptors Contribute to Regulate the Sympathoadrenal and Hormonal Reaction to Stress Stimuli. Cell. Mol. Neurobiol. 2018;38:85–108. doi: 10.1007/s10571-017-0533-x. PubMed DOI PMC

Tashev R., Ivanova M. Involvement of Hippocampal Angiotensin 1 Receptors in Anxiety-like Behaviour of Olfactory Bulbectomized Rats. Pharmacol. Rep. 2018;70:847–852. doi: 10.1016/j.pharep.2018.03.001. PubMed DOI

Steenen S.A., Van Wijk A.J., Van Der Heijden G.J., Van Westrhenen R., De Lange J., De Jongh A. Propranolol for the Treatment of Anxiety Disorders: Systematic Review and Meta-Analysis. J. Psychopharmacol. 2016;30:128–139. doi: 10.1177/0269881115612236. PubMed DOI PMC

Erdem S., Özaçmak H.S., Turan İ., Ergenç M. The Protective Effect of Angiotensin II Type I Receptor Blocker (Valsartan) on Behavioral Impairment, NLRP3, BDNF, and Oxidative Stress in the Brain Tissue of Ovariectomized Female Rats. Physiol. Rep. 2024;12:e70003. doi: 10.14814/phy2.70003. PubMed DOI PMC

Hlavacova N., Bakos J., Jezova D. Eplerenone, a Selective Mineralocorticoid Receptor Blocker, Exerts Anxiolytic Effects Accompanied by Changes in Stress Hormone Release. J. Psychopharmacol. 2010;24:779–786. doi: 10.1177/0269881109106955. PubMed DOI

McMurray J.J.V. Neprilysin Inhibition to Treat Heart Failure: A Tale of Science, Serendipity, and Second Chances. Eur. J. Heart Fail. 2015;17:242–247. doi: 10.1002/ejhf.250. PubMed DOI

McMurray J.J.V., Packer M., Desai A.S., Gong J., Lefkowitz M.P., Rizkala A.R., Rouleau J.L., Shi V.C., Solomon S.D., Swedberg K., et al. Angiotensin-Neprilysin Inhibition versus Enalapril in Heart Failure. N. Engl. J. Med. 2014;371:993–1004. doi: 10.1056/NEJMoa1409077. PubMed DOI

Bozkurt B., Nair A.P., Misra A., Scott C.Z., Mahar J.H., Fedson S. Neprilysin Inhibitors in Heart Failure: The Science, Mechanism of Action, Clinical Studies, and Unanswered Questions. JACC Basic Transl. Sci. 2023;8:88–105. doi: 10.1016/j.jacbts.2022.05.010. PubMed DOI PMC

Aziriova S., Repova Bednarova K., Krajcirovicova K., Hrenak J., Rajkovicova R., Arendasova K., Kamodyova N., Celec P., Zorad S., Adamcova M., et al. Doxorubicin-Induced Behavioral Disturbances in Rats: Protective Effect of Melatonin and Captopril. Pharmacol. Biochem. Behav. 2014;124:284–289. doi: 10.1016/j.pbb.2014.06.021. PubMed DOI

Grossman E., Nadler M., Sharabi Y., Thaler M., Shachar A., Shamiss A. Antianxiety Treatment in Patients With Excessive Hypertension. Am. J. Hypertens. 2005;18:1174–1177. doi: 10.1016/j.amjhyper.2005.03.728. PubMed DOI

Braszko J.J., Karwowska-Polecka W., Halicka D., Gard P.R. Captopril and Enalapril Improve Cognition and Depressed Mood in Hypertensive Patients. J. Basic Clin. Physiol. Pharmacol. 2003;14:323–343. doi: 10.1515/JBCPP.2003.14.4.323. PubMed DOI

Wiedemann K., Jahn H., Kellner M. Effects of Natriuretic Peptides upon Hypothalamo-Pituitary-Adrenocortical System Activity and Anxiety Behaviour. Exp. Clin. Endocrinol. Diabetes Off. J. Ger. Soc. Endocrinol. Ger. Diabetes Assoc. 2000;108:5–13. doi: 10.1055/s-0032-1329209. PubMed DOI

Henry M.S., Gendron L., Tremblay M.-E., Drolet G. Enkephalins: Endogenous Analgesics with an Emerging Role in Stress Resilience. Neural Plast. 2017;2017:1546125. doi: 10.1155/2017/1546125. PubMed DOI PMC

Hasenöhrl R.U., Jentjens O., De Souza Silva M.A., Tomaz C., Huston J.P. Anxiolytic-like Action of Neurokinin Substance P Administered Systemically or into the Nucleus Basalis Magnocellularis Region. Eur. J. Pharmacol. 1998;354:123–133. doi: 10.1016/S0014-2999(98)00441-5. PubMed DOI

Rouhiainen A., Kulesskaya N., Mennesson M., Misiewicz Z., Sipilä T., Sokolowska E., Trontti K., Urpa L., McEntegart W., Saarnio S., et al. The Bradykinin System in Stress and Anxiety in Humans and Mice. Sci. Rep. 2019;9:19437. doi: 10.1038/s41598-019-55947-5. PubMed DOI PMC

Dereli S., Kılınçel O., Çerik İ.B., Kaya A. Impact of Sacubitril/Valsartan Treatment on Depression and Anxiety in Heart Failure with Reduced Ejection Fraction. Acta Cardiol. 2020;75:774–782. doi: 10.1080/00015385.2020.1730577. PubMed DOI

Malik J., Shahid A.W., Shah M., Rana G., Kamal A., Naeem H. Outcome of Angiotensin Receptor-Neprilysin Inhibitor on Anxiety and Depression in Heart Failure with Reduced Ejection Fraction vs. Heart Failure with Preserved Ejection Fraction. J. Community Hosp. Intern. Med. Perspect. 2021;11:629–634. doi: 10.1080/20009666.2021.1942623. PubMed DOI PMC

Kellner M., Yassouridis A., Górski D., Waheed S., Kähler J., Wiedemann K. Acute Anxiolytic Effects of Sacubitril/Valsartan in Patients with Heart Failure. J. Depress. Anxiety. 2023;12:499. doi: 10.35248/2167-1044.23.12.499. DOI

Player M.S., Peterson L.E. Anxiety Disorders, Hypertension, and Cardiovascular Risk: A Review. Int. J. Psychiatry Med. 2011;41:365–377. doi: 10.2190/PM.41.4.f. PubMed DOI

Warton F.L., Howells F.M., Russell V.A. Increased Glutamate-Stimulated Release of Dopamine in Substantia Nigra of a Rat Model for Attention-Deficit/Hyperactivity Disorder—Lack of Effect of Methylphenidate. Metab. Brain Dis. 2009;24:599–613. doi: 10.1007/s11011-009-9166-1. PubMed DOI

Tsai M.-L., Kozłowska A., Li Y.-S., Shen W.-L., Huang A.C.W. Social Factors Affect Motor and Anxiety Behaviors in the Animal Model of Attention-Deficit Hyperactivity Disorders: A Housing-Style Factor. Psychiatry Res. 2017;254:290–300. doi: 10.1016/j.psychres.2017.05.008. PubMed DOI

Ramos A., Pereira E., Martins G.C., Wehrmeister T.D., Izídio G.S. Integrating the Open Field, Elevated plus Maze and Light/Dark Box to Assess Different Types of Emotional Behaviors in One Single Trial. Behav. Brain Res. 2008;193:277–288. doi: 10.1016/j.bbr.2008.06.007. PubMed DOI

Söderpalm B. The SHR Exhibits Less “Anxiety” but Increased Sensitivity to the Anticonflict Effect of Clonidine Compared to Normotensive Controls. Pharmacol. Toxicol. 1989;65:381–386. doi: 10.1111/j.1600-0773.1989.tb01193.x. PubMed DOI

Mamedova D.I., Nedogreeva O.A., Manolova A.O., Ovchinnikova V.O., Kostryukov P.A., Lazareva N.A., Moiseeva Y.V., Tret’yakova L.V., Kvichansky A.A., Onufriev M.V., et al. The Impact of Long-Term Isolation on Anxiety, Depressive-like and Social Behavior in Aging Wistar-Kyoto (WKY) and Spontaneously Hypertensive (SHR) Male Rats. Sci. Rep. 2024;14:28135. doi: 10.1038/s41598-024-79677-5. PubMed DOI PMC

Womersley J.S., Hsieh J.H., Kellaway L.A., Gerhardt G.A., Russell V.A. Maternal Separation Affects Dopamine Transporter Function in the Spontaneously Hypertensive Rat: An in Vivo Electrochemical Study. Behav. Brain Funct. 2011;7:49. doi: 10.1186/1744-9081-7-49. PubMed DOI PMC

Simko F., Baka T., Stanko P., Repova K., Krajcirovicova K., Aziriova S., Domenig O., Zorad S., Adamcova M., Paulis L. Sacubitril/Valsartan and Ivabradine Attenuate Left Ventricular Remodelling and Dysfunction in Spontaneously Hypertensive Rats: Different Interactions with the Renin-Angiotensin-Aldosterone System. Biomedicines. 2022;10:1844. doi: 10.3390/biomedicines10081844. PubMed DOI PMC

Wang M., Han W., Zhang M., Fang W., Zhai X., Guan S., Qu X. Long-Term Renal Sympathetic Denervation Ameliorates Renal Fibrosis and Delays the Onset of Hypertension in Spontaneously Hypertensive Rats. Am. J. Transl. Res. 2018;10:4042–4053. PubMed PMC

Hendley E.D. WKHA Rats with Genetic Hyperactivity and Hyperreactivity to Stress: A Review. Neurosci. Biobehav. Rev. 2000;24:41–44. doi: 10.1016/S0149-7634(99)00050-0. PubMed DOI

Hill J.C., Herbst K., Sanabria F. Characterizing Operant Hyperactivity in the Spontaneously Hypertensive Rat. Behav. Brain Funct. 2012;8:5. doi: 10.1186/1744-9081-8-5. PubMed DOI PMC

Hendley E.D., Ohlsson W.G. Two New Inbred Rat Strains Derived from SHR: WKHA, Hyperactive, and WKHT, Hypertensive, Rats. Am. J. Physiol.-Heart Circ. Physiol. 1991;261:H583–H589. doi: 10.1152/ajpheart.1991.261.2.H583. PubMed DOI

Alsop B. Problems with Spontaneously Hypertensive Rats (SHR) as a Model of Attention-Deficit/Hyperactivity Disorder (AD/HD) J. Neurosci. Methods. 2007;162:42–48. doi: 10.1016/j.jneumeth.2006.12.002. PubMed DOI

Hendley E.D., Cierpial M.A., McCarty R. Sympathetic-Adrenal Medullary Response to Stress in Hyperactive and Hypertensive Rats. Physiol. Behav. 1988;44:47–51. doi: 10.1016/0031-9384(88)90344-7. PubMed DOI

Pechánová O., Bernátová I., Pelouch V., Simko F. Protein Remodelling of the Heart in NO-Deficient Hypertension: The Effect of Captopril. J. Mol. Cell. Cardiol. 1997;29:3365–3374. doi: 10.1006/jmcc.1997.0566. PubMed DOI

Simko F., Pechanova O., Repova Bednarova K., Krajcirovicova K., Celec P., Kamodyova N., Zorad S., Kucharska J., Gvozdjakova A., Adamcova M., et al. Hypertension and Cardiovascular Remodelling in Rats Exposed to Continuous Light: Protection by ACE-Inhibition and Melatonin. Mediators Inflamm. 2014;2014:703175. doi: 10.1155/2014/703175. PubMed DOI PMC

Simko F., Stanko P., Repova K., Baka T., Krajcirovicova K., Aziriova S., Domenig O., Zorad S., Adamcova M., Paulis L. Effect of Sacubitril/Valsartan on the Hypertensive Heart in Continuous Light-Induced and Lactacystin-Induced Pre-Hypertension: Interactions with the Renin-Angiotensin-Aldosterone System. Biomed. Pharmacother. 2024;173:116391. doi: 10.1016/j.biopha.2024.116391. PubMed DOI

Simko F., Pechanova O., Pelouch V., Krajcirovicova K., Celec P., Palffy R., Bednarova K., Vrankova S., Adamcova M., Paulis L. Continuous Light and L-NAME-Induced Left Ventricular Remodelling: Different Protection with Melatonin and Captopril. J. Hypertens. 2010;28((Suppl. S1)):S13–S18. doi: 10.1097/01.hjh.0000388489.28213.08. PubMed DOI

Simko F., Baka T., Poglitsch M., Repova K., Aziriova S., Krajcirovicova K., Zorad S., Adamcova M., Paulis L. Effect of Ivabradine on a Hypertensive Heart and the Renin-Angiotensin-Aldosterone System in L-NAME-Induced Hypertension. Int. J. Mol. Sci. 2018;19:3017. doi: 10.3390/ijms19103017. PubMed DOI PMC

Simko F., Baka T., Repova K., Aziriova S., Krajcirovicova K., Paulis L., Adamcova M. Ivabradine Improves Survival and Attenuates Cardiac Remodeling in Isoproterenol-induced Myocardial Injury. Fundam. Clin. Pharmacol. 2021;35:744–748. doi: 10.1111/fcp.12620. PubMed DOI PMC

Park H.-S., Han A., Yeo H.-L., Park M.-J., You M.-J., Choi H.J., Hong C.-W., Lee S.-H., Kim S.H., Kim B., et al. Chronic High Dose of Captopril Induces Depressive-like Behaviors in Mice: Possible Mechanism of Regulatory T Cell in Depression. Oncotarget. 2017;8:72528–72543. doi: 10.18632/oncotarget.19879. PubMed DOI PMC

Krajcirovicova K., Aziriova S., Baka T., Repova K., Adamcova M., Paulis L., Simko F. Ivabradine Does Not Impair Anxiety-like Behavior and Memory in Both Healthy and L-NAME-Induced Hypertensive Rats. Physiol. Res. 2018;67:S655–S664. doi: 10.33549/physiolres.934048. PubMed DOI

Woodman R., Student J., Miller C., Lockette W. Ivabradine-Induced Bradycardia Is Accompanied by Reduced Stress-Related Anxiety. Am. J. Hypertens. 2023;36:316–323. doi: 10.1093/ajh/hpad019. PubMed DOI

Borbélyová V., Domonkos E., Bábíčková J., Tóthová Ľ., Bosý M., Hodosy J., Celec P. No Effect of Testosterone on Behavior in Aged Wistar Rats. Aging. 2016;8:2848–2861. doi: 10.18632/aging.101096. PubMed DOI PMC

Borbélyová V., Renczés E., Chovanec M., Mego M., Celec P. Transient Effects of Chemotherapy for Testicular Cancer on Mouse Behaviour. Sci. Rep. 2020;10:10224. doi: 10.1038/s41598-020-67081-8. PubMed DOI PMC

Pelouch V., Kolář F., Khuchua Z.A., Elizarova G.V., Milerová M., Ošt’ádall B., Saks V.A. Cardiac Phosphocreatine Deficiency Induced by GPA during Postnatal Development in Rat. Mol. Cell. Biochem. 1996;163:67–76. doi: 10.1007/BF00408642. PubMed DOI

Kesava Reddy G., Enwemeka C.S. A Simplified Method for the Analysis of Hydroxyproline in Biological Tissues. Clin. Biochem. 1996;29:225–229. doi: 10.1016/0009-9120(96)00003-6. PubMed DOI

Tchekalarova J., Krushovlieva D., Ivanova P., Kortenska L. Spontaneously Hypertensive Rats vs. Wistar Kyoto and Wistar Rats: An Assessment of Anxiety, Motor Activity, Memory Performance, and Seizure Susceptibility. Physiol. Behav. 2023;269:114268. doi: 10.1016/j.physbeh.2023.114268. PubMed DOI

Tripp G., Wickens J.R. Research Review: Dopamine Transfer Deficit: A Neurobiological Theory of Altered Reinforcement Mechanisms in ADHD. J. Child Psychol. Psychiatry. 2008;49:691–704. doi: 10.1111/j.1469-7610.2007.01851.x. PubMed DOI

Sable H.J.K., Paige N.B., Nalan P.A., Pace R.L., Hicks C.B., Regan S.L., Williams M.T., Vorhees C.V., Lester D.B. Phasic Dopamine Release in Two Different Rat Models of Attention-Deficit/Hyperactivity Disorder: Spontaneously Hypertensive Rats (SHR) versus Lphn3 Knockout Rats. Neuroscience. 2025;567:150–162. doi: 10.1016/j.neuroscience.2024.12.037. PubMed DOI PMC

Leng Y., Wu N., Wang J., Geng L., Yue Y., Zhang Q. Astaxanthin Mitigates ADHD Symptoms in Spontaneously Hypertensive Rats via Dopaminergic Modulation and Brain–Gut Axis Regulation. Molecules. 2025;30:1637. doi: 10.3390/molecules30071637. PubMed DOI PMC

Stepanichev M.Y., Mamedova D.I., Gulyaeva N.V. Hippocampus under Pressure: Molecular Mechanisms of Development of Cognitive Impairments in SHR Rats. Biochem. Mosc. 2024;89:711–725. doi: 10.1134/S0006297924040102. PubMed DOI

Jackson L., Eldahshan W., Fagan S., Ergul A. Within the Brain: The Renin Angiotensin System. Int. J. Mol. Sci. 2018;19:876. doi: 10.3390/ijms19030876. PubMed DOI PMC

Xu P., Sriramula S., Lazartigues E. ACE2/ANG-(1-7)/Mas Pathway in the Brain: The Axis of Good. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011;300:R804–R817. doi: 10.1152/ajpregu.00222.2010. PubMed DOI PMC

Iliescu R., Yanes L.L., Bell W., Dwyer T., Baltatu O.C., Reckelhoff J.F. Role of the Renal Nerves in Blood Pressure in Male and Female SHR. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2006;290:R341–R344. doi: 10.1152/ajpregu.00035.2005. PubMed DOI

Elmarakby A.A., Sullivan J.C. Sex Differences in Hypertension: Lessons from Spontaneously Hypertensive Rats (SHR) Clin. Sci. 2021;135:1791–1804. doi: 10.1042/CS20201017. PubMed DOI PMC

Berger D.F., Sagvolden T. Sex Differences in Operant Discrimination Behaviour in an Animal Model of Attention-Deficit Hyperactivity Disorder. Behav. Brain Res. 1998;94:73–82. doi: 10.1016/S0166-4328(97)00171-X. PubMed DOI

Bowman R., Frankfurt M., Luine V. Sex Differences in Anxiety and Depression: Insights from Adult Rodent Models of Chronic Stress and Neural Plasticity. Front. Behav. Neurosci. 2025;19:1591973. doi: 10.3389/fnbeh.2025.1591973. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...