Transcriptome-guided discovery of novel plant-associated genes in a rhizosphere Pseudomonas

. 2025 Dec 05 ; 14 (1) : 20. [epub] 20251205

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41345977

Grantová podpora
101090267 HORIZON-TMA-MSCA-PF-EF
PID2023-150384NB-I00 European Union NextGenerationEU/PRTR
TED2021-129157B-100 MICIU/AEI/10.1309/501100011033
CLU-2025-2-04 Escalera de Excelencia - Consejería de Educación de Castilla y León - ERDF
RYC2023-045204-I MCIU/AEI/10.13039/501100011033 and ESF+
750795 EUROPEAN UNION'S HORIZON 2020

Odkazy

PubMed 41345977
PubMed Central PMC12798123
DOI 10.1186/s40168-025-02277-6
PII: 10.1186/s40168-025-02277-6
Knihovny.cz E-zdroje

BACKGROUND: Microorganisms play important ecological roles during interactions with plants, with some strains promoting plant performance. However, the molecular basis of bacterial adaptation to the plant environment remains poorly understood. Microbial plant growth promotion is a complex process that likely involves numerous bacterial genes, many of which remain uncharacterized. In this study, we aimed to identify genes tightly associated with the bacterial adaptation to plant hosts by integrating transcriptomic data from bacteria colonizing roots with comparative genomic and metagenomic analyses. RESULTS: Here, we identified a set of bacterial genes that were significantly upregulated during root colonization and are more abundant in rhizosphere communities than in bulk soils. Many of these genes had not been previously linked to plant-bacteria interactions. Comparative genomic analyses revealed some of these genes as more prevalent in plant-associated Pseudomonas genomes than in genomes from other environments. We argue that these genes may play relevant biological roles in this host, although only a few have been previously associated with plant colonization. Among them, we focused on a gene homologous to yafL, which encodes a cysteine peptidase of the NlpC/P60 family, known for its role in peptidoglycan remodelling. This gene is more abundant in rhizosphere microbiomes than in bulk soils, and it showed induced expression on the root surface, supporting its ecological relevance in root-associated environments. Functional validation using a knockout mutant confirmed its contribution to plant-bacteria interactions by affecting root architecture and plant growth. CONCLUSIONS: This study provides new insights into the genetic basis of bacterial adaptation to the plant root environment. By integrating transcriptomic and comparative genomic analyses, we identified numerous genes upregulated during root colonization that are enriched in plant-associated Pseudomonas genomes. Our findings highlight previously overlooked bacterial functions with potential roles in plant-microbe interactions. The functional validation of a protein of the NlpC/P60 family supports its involvement in plant-bacteria interactions and underscores the importance of uncharacterized genes in shaping beneficial associations in the rhizosphere. Video Abstract.

Zobrazit více v PubMed

French E, Kaplan I, Iyer-Pascuzzi A, Nakatsu CH, Enders L. Emerging strategies for precision microbiome management in diverse agroecosystems. Nat Plants. 2021;7(3):256–67. PubMed DOI

Chen QL, Hu HW, He ZY, Cui L, Zhu YG, He JZ. Potential of indigenous crop microbiomes for sustainable agriculture. Nat Food. 2021;2(4):233–40. PubMed DOI

Knights HE, Jorrin B, Haskett TL, Poole PS. Deciphering bacterial mechanisms of root colonization. Environ Microbiol Rep. 2021;13(4):428–44. PubMed DOI PMC

Levy A, Conway JM, Dangl JL, Woyke T. Elucidating bacterial gene functions in the plant microbiome. Cell Host Microbe. 2018;24(4):475–85. PubMed DOI

Han Q, Ma Q, Chen Y, Tian B, Xu L, Bai Y, et al. Variation in rhizosphere microbial communities and its association with the symbiotic efficiency of rhizobia in soybean. ISME J. 2020;14(8):1915–28. PubMed DOI PMC

Wang D, Jin R, Shi X, Guo H, Tan X, Zhao A, et al. A kinase mediator of rhizobial symbiosis and immunity in PubMed DOI

Jarzyniak K, Banasiak J, Jamruszka T, Pawela A, Di Donato M, Novák O, et al. Early stages of legume–rhizobia symbiosis are controlled by ABCG-mediated transport of active cytokinins. Nat Plants. 2021;7(4):428–36. PubMed DOI

Anthony MA, Crowther TW, van der Linde S, Suz LM, Bidartondo MI, Cox F, et al. Forest tree growth is linked to mycorrhizal fungal composition and function across Europe. ISME J. 2022;16(5):1327–36. PubMed DOI PMC

Garrido-Sanz D, Keel C. Seed-borne bacteria drive wheat rhizosphere microbiome assembly via niche partitioning and facilitation. Nat Microbiol. 2025;10:1130–44. PubMed PMC

Seitz VA, McGivern BB, Borton MA, Chaparro JM, Schipanski ME, Prenni JE, et al. Cover crop root exudates impact soil microbiome functional trajectories in agricultural soils. Microbiome. 2024;12(1):183. PubMed DOI PMC

Gu Y, Yan W, Chen Y, Liu S, Sun L, Zhang Z, et al. Plant growth-promotion triggered by extracellular polymer is associated with facilitation of bacterial cross-feeding networks of the rhizosphere. ISME J. 2025;19(1):wraf040. PubMed DOI PMC

Thomas J, Kim HR, Rahmatallah Y, Wiggins G, Yang Q, Singh R, et al. RNA-seq reveals differentially expressed genes in rice ( PubMed DOI PMC

Liu C, Bai Z, Luo Y, Zhang Y, Wang Y, Liu H, et al. Multiomics dissection of PubMed DOI PMC

Guerrero-Egido G, Pintado A, Bretscher KM, Arias-Giraldo LM, Paulson JN, Spaink HP, et al. bacLIFE: a user-friendly computational workflow for genome analysis and prediction of lifestyle-associated genes in bacteria. Nat Commun. 2024;15(1):2072. PubMed DOI PMC

Saati-Santamaría Z, Flores-Félix JD, Igual JM, Velázquez E, García-Fraile P, Martínez-Molina E. Speciation features of PubMed DOI PMC

Levy A, Salas Gonzalez I, Mittelviefhaus M, Clingenpeel S, Herrera Paredes S, Miao J, et al. Genomic features of bacterial adaptation to plants. Nat Genet. 2018;50(1):138–50. PubMed DOI PMC

Saati-Santamaría Z, Vicentefranqueira R, Kolařik M, Rivas R, García-Fraile P. Microbiome specificity and fluxes between two distant plant taxa in Iberian forests. Environ Microbiol. 2023;18(1):64. PubMed DOI PMC

Garrido-Sanz D, Čaušević S, Vacheron J, Heiman CM, Sentchilo V, van der Meer JR, et al. Changes in structure and assembly of a species-rich soil natural community with contrasting nutrient availability upon establishment of a plant-beneficial PubMed DOI PMC

Tao K, Jensen IT, Zhang S, Villa-Rodríguez E, Blahovska Z, Salomonsen CL, et al. Nitrogen and nod factor signaling determine PubMed DOI PMC

Gislason AS, de Kievit TR. Friend or foe? Exploring the fine line between PubMed DOI

Shalev O, Ashkenazy H, Neumann M, Weigel D. Commensal PubMed DOI PMC

Saati-Santamaría Z, Peral-Aranega E, Velázquez E, Rivas R, García-Fraile P. Phylogenomic analyses of the genus PubMed DOI PMC

Lurthy T, Gerin F, Rey M, Mercier PE, Comte G, Wisniewski-Dyé F, et al. PubMed DOI

Vesga P, Flury P, Vacheron J, Keel C, Croll D, Maurhofer M. Transcriptome plasticity underlying plant root colonization and insect invasion by PubMed DOI PMC

Rieusset L, Rey M, Wisniewski-Dyé F, Prigent-Combaret C, Comte G. Wheat metabolite interferences on fluorescent PubMed DOI PMC

Rieusset L, Rey M, Muller D, Vacheron J, Gerin F, Dubost A, et al. Secondary metabolites from plant-associated PubMed DOI PMC

Mavrodi OV, McWilliams JR, Peter JO, Berim A, Hassan KA, Elbourne LD, et al. Root exudates alter the expression of diverse metabolic, transport, regulatory, and stress response genes in rhizosphere PubMed DOI PMC

López-Pagán N, Rufián JS, Luneau J, Sánchez-Romero MA, Aussel L, van Vliet S, et al. PubMed DOI PMC

Tan J, Kerstetter JE, Turcotte MM. Eco-evolutionary interaction between microbiome presence and rapid biofilm evolution determines plant host fitness. Nat Ecol Evol. 2021;5(5):670–6. PubMed DOI

Großkinsky DK, Tafner R, Moreno MV, Stenglein SA, García de Salamone IE, Nelson LM, et al. Cytokinin production by PubMed DOI PMC

Vacheron J, Péchy-Tarr M, Brochet S, Heiman CM, Stojiljkovic M, Maurhofer M, et al. T6SS contributes to gut microbiome invasion and killing of an herbivorous pest insect by plant-beneficial PubMed DOI PMC

Blanco-Romero E, Durán D, Garrido-Sanz D, Rivilla R, Martín M, Redondo-Nieto M. Transcriptomic analysis of PubMed PMC

Jiménez-Gómez A, Saati-Santamaría Z, Kostovcik M, Rivas R, Velázquez E, Mateos PF, et al. Selection of the root endophyte DOI

Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun. 2019;10(1):2182. PubMed DOI PMC

Hoagland DR, Arnon DI. The water-culture method for growing plants without soil. Circ. - Calif Agric Exp Stn. 1950;347(2nd edit):1–32.

Nobori T, Wang Y, Wu J, Stolze SC, Tsuda Y, Finkemeier I, et al. Multidimensional gene regulatory landscape of a bacterial pathogen in plants. Nat Plants. 2020;6(7):883–96. PubMed DOI

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20. PubMed DOI PMC

Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17(1):10–2. DOI

Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357–9. PubMed DOI PMC

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–9. PubMed DOI PMC

Chung M, Adkins RS, Mattick JS, Bradwell KR, Shetty AC, Sadzewicz L, et al. FADU: a quantification tool for prokaryotic transcriptomic analyses. mSystems. 2021;6(1):e00917–20. PubMed DOI PMC

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. PubMed DOI PMC

Cantalapiedra CP, Hernández-Plaza A, Letunic I, Bork P, Huerta-Cepas J. EggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol Biol Evol. 2021;38(12):5825–9. PubMed DOI PMC

Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics. 2008;9(1):75. PubMed DOI PMC

Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 2019;47(W1):W81–7. PubMed DOI PMC

Aramaki T, Blanc-Mathieu R, Endo H, Ohkubo K, Kanehisa M, Goto S, et al. KofamKOALA: KEGG ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics. 2020;36(7):2251–2. PubMed DOI PMC

Armenteros JA, Tsirigos KD, Sønderby CK, Petersen TN, Winther O, Brunak S, et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol. 2019;37(4):420–3. PubMed DOI

Yu CS, Lin CJ, Hwan JK. Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositions. Protein Sci. 2004;13(5):1402–6. PubMed DOI PMC

Saati-Santamaría Z, Baroncelli R, Rivas R, García-Fraile P. Comparative Genomics of the Genus Pseudomonas Reveals Hostand Environment-Specific Evolution. Microbiol Spectr. 2022;10(6):e02370–22. PubMed PMC

Sun J, Wang Q, Jiang Y, Wen Z, Yang L, Wu J, et al. Genome editing and transcriptional repression in PubMed DOI PMC

Luo X, Yang Y, Ling W, Zhuang H, Li Q, Shang G. PubMed DOI

R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3–900051–07–0, 2012; URL http://www.R-project.org/

Camarero JJ, Colangelo M, Gazol A, Pizarro M, Valeriano C, Igual JM. Effects of windthrows on forest cover, tree growth and soil characteristics in drought-prone pine plantations. Forests. 2021;12(7):817. DOI

García-Fraile P, Carro L, Robledo M, Ramírez-Bahena MH, Flores-Félix JD, Fernández MT, et al. PubMed DOI PMC

Cheng HP, Walker GC. Succinoglycan is required for initiation and elongation of infection threads during nodulation of alfalfa by PubMed DOI PMC

Beringer JE. R factor transfer in PubMed

Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12(1):59–60. PubMed DOI

Chen S, Zhou Y, Chen Y, Gu J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34(17):i884–90. PubMed DOI PMC

Zhou Y, Liu YX, Li X. USEARCH 12: open-source software for sequencing analysis in bioinformatics and microbiome. Imeta. 2024;3(5):e236. PubMed DOI PMC

Shen W, Le S, Li Y, Hu F. SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS ONE. 2016;11(10):e0163962. PubMed DOI PMC

Paungfoo-Lonhienne C, Lonhienne TG, Yeoh YK, Donose BC, Webb RI, Parson J, et al. Crosstalk between sugarcane and a plant-growth promoting PubMed DOI PMC

Pankievicz VCS, Camilios-Neto D, Bonato P, Balsanelli E, Tadra-Sfeir MZ, Faoro H, et al. RNA-seq transcriptional profiling of PubMed DOI

Balsanelli E, Tadra-Sfeir MZ, Faoro H, Pankievicz VC, de Baura VA, Pedrosa FO, et al. Molecular adaptations of PubMed DOI

Nobori T, Velásquez AC, Wu J, Kvitko BH, Kremer JM, Wang Y, et al. Transcriptome landscape of a bacterial pathogen under plant immunity. Proc Natl Acad Sci. 2018;115(13):E3055–64. PubMed DOI PMC

Wiesmann CL, Wang NR, Zhang Y, Liu Z, Haney CH. Origins of symbiosis: shared mechanisms underlying microbial pathogenesis, commensalism and mutualism of plants and animals. FEMS Microbiol Rev. 2022;47(6):fuac048. PubMed PMC

Feng H, Zhang N, Fu R, Liu Y, Krell T, Du W, et al. Recognition of dominant attractants by key chemoreceptors mediates recruitment of plant growth-promoting rhizobacteria. Environ Microbiol. 2019;21(1):402–15. PubMed DOI

Yost CK, Del Bel KL, Quandt J, Hynes MF. PubMed DOI

Chai R, Li R, Li Y, Li T, Li Y, Gao Y, et al. Chemotactic rhizocompetence is strengthened by efficient adaptational methylation modification of the 1-aminocyclopropane-1-carboxylic acid chemoreceptor in DOI

Tumewu SA, Matsui H, Yamamoto M, Noutoshi Y, Toyoda K, Ichinose Y. Identification of chemoreceptor proteins for amino acids involved in host plant infection in PubMed DOI

Oku S, Komatsu A, Nakashimada Y, Tajima T, Kato J. Identification of PubMed DOI PMC

Lo YL, Chen CL, Shen L, Chen YC, Wang YH, Lee CC, et al. Characterization of the role of global regulator FliA in the pathophysiology of PubMed DOI

Bardoel BW, van der Ent S, Pel MJ, Tommassen J, Pieterse CM, van Kessel KP, et al. PubMed DOI PMC

Sanguankiattichai N, Buscaill P, Preston GM. How bacteria overcome flagellin pattern recognition in plants. Curr Opin Plant Biol. 2022;67:102224. PubMed DOI

Cotter PA, Chepuri V, Gennis RB, Gunsalus RP. Cytochrome o (cyoABCDE) and d (cydAB) oxidase gene expression in PubMed DOI PMC

Lunak ZR, Noel KD. A quinol oxidase, encoded by PubMed DOI PMC

Lunak ZR, Noel KD. Quinol oxidase encoded by PubMed DOI PMC

Su YB, Peng B, Li H, Cheng ZX, Zhang TT, Zhu JX, et al. Pyruvate cycle increases aminoglycoside efficacy and provides respiratory energy in bacteria. Proc Natl Acad Sci. 2018;115(7):E1578–87. PubMed DOI PMC

Panchal P, Preece C, Peñuelas J, Giri J. Soil carbon sequestration by root exudates. Trends Plant Sci. 2022;27(8):749–57. PubMed DOI

McLaughlin S, Zhalnina K, Kosina S, Northen TR, Sasse J. The core metabolome and root exudation dynamics of three phylogenetically distinct plant species. Nat Commun. 2023;14(1):1649. PubMed DOI PMC

Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B. The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res. 2009;37(suppl_1):D233–8. PubMed DOI PMC

López-Mondéjar R, Zühlke D, Becher D, Riedel K, Baldrian P. Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems. Sci Rep. 2016;6(1):25279. PubMed DOI PMC

Robledo M, Jiménez-Zurdo JI, Velázquez E, Trujillo ME, Zurdo-Piñeiro JL, Ramírez-Bahena MH, et al. PubMed DOI PMC

Matin A. The molecular basis of carbon-starvation-induced general resistance in PubMed DOI

Schultz JE, Matin A. Molecular and functional characterization of a carbon starvation gene of PubMed DOI

Dubey AK, Baker CS, Suzuki K, Jones AD, Pandit P, Romeo T, et al. CsrA regulates translation of the PubMed DOI PMC

Villanueva L, Del Campo J, Guerrero R. Diversity and physiology of polyhydroxyalkanoate-producing and-degrading strains in microbial mats. FEMS Microbiol Ecol. 2010;74(1):42–54. PubMed DOI

Wong HL, White RA, Visscher PT, Charlesworth JC, Vázquez-Campos X, Burns BP. Disentangling the drivers of functional complexity at the metagenomic level in Shark Bay microbial mat microbiomes. ISME J. 2018;12(11):2619–39. PubMed DOI PMC

Gasser I, Müller H, Berg G. Ecology and characterization of polyhydroxyalkanoate-producing microorganisms on and in plants. FEMS Microbiol Ecol. 2009;70(1):142–50. PubMed DOI

Zhao M, Zhao J, Yuan J, Hale L, Wen T, Huang Q, et al. Root exudates drive soil-microbe-nutrient feedbacks in response to plant growth. Plant Cell Environ. 2021;44(2):613–28. PubMed DOI

Haskett TL, Tkacz A, Poole PS. Engineering rhizobacteria for sustainable agriculture. ISME J. 2011;15(4):949–64. PubMed DOI PMC

Menendez E, Garcia-Fraile P. Plant probiotic bacteria: solutions to feed the world. AIMS Microbiol. 2017;3(3):502. PubMed DOI PMC

An R, Moe LA. Regulation of pyrroloquinoline quinone-dependent glucose dehydrogenase activity in the model rhizosphere-dwelling bacterium PubMed DOI PMC

Khourchi S, Elhaissoufi W, Loum M, Ibnyasser A, Haddine M, Ghani R, et al. Phosphate solubilizing bacteria can significantly contribute to enhance P availability from polyphosphates and their use efficiency in wheat. Microbiol Res. 2022;262:127094. PubMed DOI

Newman MM, Lorenz N, Hoilett N, Lee NR, Dick RP, Liles MR, et al. Changes in rhizosphere bacterial gene expression following glyphosate treatment. Sci Total Environ. 2016;553:32–41. PubMed DOI

Hermenau R, Ishida K, Gama S, Hoffmann B, Pfeifer-Leeg M, Plass W, et al. Gramibactin is a bacterial siderophore with a diazeniumdiolate ligand system. Nat Chem Biol. 2018;14(9):841–3. PubMed DOI

Gu S, Wei Z, Shao Z, Friman VP, Cao K, Yang T, et al. Competition for iron drives phytopathogen control by natural rhizosphere microbiomes. Nat Microbiol. 2020;5(8):1002–10. PubMed DOI PMC

Vick SH, Fabian BK, Dawson CJ, Foster C, Asher A, Hassan KA, et al. Delving into defence: identifying the PubMed PMC

Tostado-Islas O, Mendoza-Ortiz A, Ramírez-García G, Cabrera-Takane ID, Loarca D, Pérez-González C, et al. Iron limitation by transferrin promotes simultaneous cheating of pyoverdine and exoprotease in PubMed DOI PMC

Andrić S, Rigolet A, Argüelles Arias A, Steels S, Hoff G, Balleux G, et al. Plant-associated PubMed DOI PMC

Liu Y, Dai C, Zhou Y, Qiao J, Tang B, Yu W, et al. Pyoverdines are essential for the antibacterial activity of PubMed DOI PMC

Gu S, Yang T, Shao Z, Wang T, Cao K, Jousset A, et al. Siderophore-mediated interactions determine the disease suppressiveness of microbial consortia. mSystems. 2020;5(3):10–1128. PubMed DOI PMC

Getzke F, Hassani MA, Crüsemann M, Malisic M, Zhang P, Ishigaki Y, et al. Cofunctioning of bacterial exometabolites drives root microbiota establishment. Proc Natl Acad Sci U S A. 2023;120(15):e2221508120. PubMed DOI PMC

Kramer J, Özkaya Ö, Kümmerli R. Bacterial siderophores in community and host interactions. Nat Rev Microbiol. 2020;18(3):152–63. PubMed DOI PMC

Haas D, Défago G. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol. 2005;3(4):307–19. PubMed DOI

Siegień I, Bogatek R. Cyanide action in plants—from toxic to regulatory. Acta Physiol Plant. 2006;28(5):483–97. DOI

Anand A, Falquet L, Abou-Mansour E, L’Haridon F, Keel C, Weisskopf L. Biological hydrogen cyanide emission globally impacts the physiology of both HCN-emitting and HCN-perceiving PubMed DOI PMC

Deepika S, Mittal A, Kothamasi D. HCN-producing PubMed DOI

Durán D, Bernal P, Vazquez-Arias D, Blanco-Romero E, Garrido-Sanz D, Redondo-Nieto M, et al. PubMed DOI PMC

Allsopp LP, Wood TE, Howard SA, Maggiorelli F, Nolan LM, Wettstadt S, et al. RsmA and AmrZ orchestrate the assembly of all three type VI secretion systems in PubMed DOI PMC

Poveda J, Rodríguez VM, Díaz-Urbano M, Sklenář F, Saati-Santamaría Z, Menéndez E, et al. Endophytic fungi from kale (Brassica oleracea var. acephala) modify roots-glucosinolate profile and promote plant growth in cultivated Brassica species. First description of Pyrenophora gallaeciana. Front Microbiol. 2022;13:981507. PubMed PMC

Zhang Z, Zhang L, Zhang L, Chu H, Zhou J, Ju F. Diversity and distribution of biosynthetic gene clusters in agricultural soil microbiomes. MSystems. 2024;9(4):e01263–23. PubMed DOI PMC

Saati-Santamaría Z. Global map of specialized metabolites encoded in prokaryotic plasmids. Microbiol Spectr. 2023;11(4):e01523-e1623. PubMed DOI PMC

Li X, Jousset A, de Boer W, Carrión VJ, Zhang T, Wang X, et al. Legacy of land use history determines reprogramming of plant physiology by soil microbiome. ISME J. 2019;13(3):738–51. PubMed DOI PMC

Raetz CR, Reynolds CM, Trent MS, Bishop RE. Lipid a modification systems in gram-negative bacteria. Annu Rev Biochem. 2007;76:295. PubMed DOI PMC

Hernández-Esquivel AA, Castro-Mercado E, García-Pineda E. Comparative effects of DOI

Russo DM, Abdian PL, Posadas DM, Williams A, Vozza N, Giordano W, et al. Lipopolysaccharide O-chain core region required for cellular cohesion and compaction of in vitro and root biofilms developed by PubMed DOI PMC

Vanderlinde EM, Muszynski A, Harrison JJ, Koval SF, Foreman DL, Ceri H, et al. PubMed DOI PMC

Song Y, Wilson AJ, Zhang XC, Thoms D, Sohrabi R, Song S, et al. FERONIA restricts PubMed DOI

Zipfel C, Oldroyd GE. Plant signalling in symbiosis and immunity. Nature. 2017;543(7645):328–36. PubMed DOI

Li JH, Aslam MM, Gao YY, Dai L, Hao GF, Wei Z, et al. Microbiome-mediated signal transduction within the plant holobiont. Trends Microbiol. 2023;31(6):616–28. PubMed DOI

Binder BM. Ethylene signaling in plants. J Biol Chem. 2020;295(22):7710–25. PubMed DOI PMC

Gontia-Mishra I, Sapre S, Kachare S, Tiwari S. Molecular diversity of 1-aminocyclopropane-1-carboxylate (ACC) deaminase producing PGPR from wheat ( DOI

Vlot AC, Dempsey DMA, Klessig DF. Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol. 2009;47:177–206. PubMed DOI

Westfall CS, Sherp AM, Zubieta C, Alvarez S, Schraft E, Marcellin R, et al. PubMed DOI PMC

Singh RP, Ma Y, Shadan A. Perspective of ACC-deaminase producing bacteria in stress agriculture. J Biotechnol. 2022;352:36–46. PubMed DOI

Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B. Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci. 2007;26(5–6):227–42. DOI

Nascimento F, Brígido C, Alho L, Glick BR, Oliveira S. Enhanced chickpea growth-promotion ability of a DOI

Lebeis SL, Paredes SH, Lundberg DS, Breakfield N, Gehring J, McDonald M, et al. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science. 2015;349(6250):860–4. PubMed DOI

Hecht K, Kowalchuk GA, Ford Denison R, Kahmen A, Xiong W, Jousset A, et al. Deletion of ACC deaminase in symbionts converts the host plant from water waster to water saver. Plant Cell Environ. 2025;48(3):1919–31. PubMed DOI PMC

Chen D, Shao Q, Yin L, Younis, Zheng B. Polyamine function in plants: metabolism, regulation on development, and roles in abiotic stress responses. Front Plant Sci. 2019;9:1945. PubMed PMC

Liu Z, Hossain SS, Morales Moreira Z, Haney CH. Putrescine and its metabolic precursor arginine promote biofilm and c-di-GMP synthesis in PubMed DOI PMC

Camejo D, Guzmán-Cedeño A, Vera-Macias L, Jiménez A. Oxidative post-translational modifications controlling plant-pathogen interaction. Plant Physiol Biochem. 2019;144:110–7. PubMed DOI

Imlay JA. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat Rev Microbiol. 2013;11(7):443–54. PubMed DOI PMC

Thede GL, Arthur DC, Edwards RA, Buelow DR, Wong JL, Raivio TL, et al. Structure of the periplasmic stress response protein CpxP. J Bacteriol. 2011;193(9):2149–57. PubMed DOI PMC

Fones H, Preston GM. Reactive oxygen and oxidative stress tolerance in plant pathogenic PubMed DOI

Howden AJ, Jill Harrison C, Preston GM. A conserved mechanism for nitrile metabolism in bacteria and plants. Plant J. 2009;57(2):243–53. PubMed DOI

Martinez JL, Sánchez MB, Martínez-Solano L, Hernandez A, Garmendia L, Fajardo A, et al. Functional role of bacterial multidrug efflux pumps in microbial natural ecosystems. FEMS Microbiol Rev. 2009;33(2):430–49. PubMed DOI

Stoitsova SO, Braun Y, Ullrich MS, Weingart H. Characterization of the RND-type multidrug efflux pump MexAB-OprM of the plant pathogen PubMed DOI PMC

Helmann TC, King DM, Lindow SE. Differential virulence contributions of the efflux transporter MexAB-OprM in PubMed DOI

Vermeij P, Kertesz MA. Pathways of assimilative sulfur metabolism in PubMed DOI PMC

Bakaeva M, Kuzina E, Vysotskaya L, Kudoyarova G, Arkhipova TY, Rafikova G, et al. Capacity of PubMed DOI PMC

Pimviriyakul P, Wongnate T, Tinikul R, Chaiyen P. Microbial degradation of halogenated aromatics: molecular mechanisms and enzymatic reactions. Microb Biotechnol. 2020;13(1):67–86. PubMed DOI PMC

He W, Li C, Lu CD. Regulation and characterization of the PubMed DOI PMC

Vranova V, Zahradnickova H, Janous D, Skene KR, Matharu AS, Rejsek K, et al. The significance of D-amino acids in soil, fate and utilization by microbes and plants: review and identification of knowledge gaps. Plant Soil. 2012;354:21–39. DOI

Lee JS, Heo YJ, Lee JK, Cho YH. KatA, the major catalase, is critical for osmoprotection and virulence in PubMed DOI PMC

Zboralski A, Filion M. Genetic factors involved in rhizosphere colonization by phytobeneficial Pseudomonas spp. Comput Struct Biotechnol J. 2020;18:3539–54. PubMed DOI PMC

Xu Q, Rawlings ND, Chiu HJ, Jaroszewski L, Klock HE, Knuth MW, et al. Structural analysis of papain-like NlpC/P60 superfamily enzymes with a circularly permuted topology reveals potential lipid binding sites. PLoS ONE. 2011;6(7):e22013. PubMed DOI PMC

Pel MJ, Pieterse CM. Microbial recognition and evasion of host immunity. J Exp Bot. 2013;64(5):1237–48. PubMed DOI

Kim B, Wang YC, Hespen CW, Espinosa J, Salje J, Rangan KJ, et al. PubMed DOI PMC

Rangan KJ, Pedicord VA, Wang YC, Kim B, Lu Y, Shaham S, et al. A secreted bacterial peptidoglycan hydrolase enhances tolerance to enteric pathogens. Science. 2016;353(6306):1434–7. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...