Generalist vs. specialist strategy shapes microbiomes in blood feeding parasite Polyplax serrata
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
41356486
PubMed Central
PMC12679383
DOI
10.3389/fmicb.2025.1720127
Knihovny.cz E-zdroje
- Klíčová slova
- beta diversity, generalist and specialist, insect symbionts, lice, microbiome,
- Publikační typ
- časopisecké články MeSH
Insects live in association with bacterial communities, collectively referred to as the microbiome. Microbiome composition varies widely across insect taxa and is shaped by multiple factors, including host phylogeny, environmental conditions, geographic distribution, and nutritional ecology. One hypothesis is that microbiome composition may also reflect whether the host adopts a generalist or specialist ecological strategy. We tested this hypothesis using the sucking louse Polyplax serrata, which offers several advantages as a model system. First, as permanent ectoparasites, lice inhabit a relatively stable and simplified environment, thereby minimizing potential confounding variables. Second, within P. serrata, two closely related lineages have been identified: one restricted to a single rodent host (Apodemus flavicollis), and the other exploiting two hosts (A. flavicollis and A. sylvaticus). We analyzed and compared microbiome structure in these two lineages using 16S rRNA gene amplicon sequencing. While alpha diversity did not differ between the lineages, beta diversity differed significantly, particularly in pairwise dissimilarities among individual samples. These results suggest that in P. serrata, host specialization strategy influences microbiome diversity, with the "generalist" lineage harboring more heterogeneous communities. This finding extends previous observations on ecological divergence between the two lineages, showing that closely related cryptic species with highly similar genomes, living sympatrically in the same environment, can rapidly evolve distinct life strategies that, in turn, shape both their genetic structure and their microbiomes.
Department of Parasitology Faculty of Science University of South Bohemia České Budějovice Czechia
Institute of Parasitology Biology Centre ASCR v v i České Budějovice Czechia
Zobrazit více v PubMed
Agany D., Potts R., Hernandez J., Gnimpieba E., Pietri J. (2020). Microbiome differences between human head and body lice ecotypes revealed by 16S RRNA gene amplicon sequencing. J. Parasitol. 106, 14–24. doi: 10.1645/19-132 PubMed DOI
Bankevich A., Nurk S., Antipov D., Gurevich A. A., Dvorkin M., Kulikov A. S., et al. (2012). SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477. doi: 10.1089/cmb.2012.0021, PMID: PubMed DOI PMC
Brunetti M., Magoga G., Gionechetti F., De Biase A., Montagna M. (2022). Does diet breadth affect the complexity of the phytophagous insect microbiota? The case study of Chrysomelidae. Environ. Microbiol. 24, 3565–3579. doi: 10.1111/1462-2920.15847, PMID: PubMed DOI PMC
Deng Y., Yao C., Fu Y., Zhuo Y., Zou J., Pan H., et al. (2024). Analyses of the gut microbial composition of domestic pig louse PubMed DOI
Dona J., Herrera S., Nyman T., Kunnasranta M., Johnson K. (2021). Patterns of microbiome variation among infrapopulations of permanent bloodsucking parasites. Front. Microbiol. 12:642543. doi: 10.3389/fmicb.2021.642543 PubMed DOI PMC
Durden L., Musser G. (1994). “The sucking lice (Insecta, Anoplura) of the world: a taxonomic checklist with records of mammalian hosts and geographical distributions” in Bulletin of the AMNH in Sucking Lice and Hosts; no. 218.
Duron O., Gottlieb Y. (2020). Convergence of nutritional symbioses in obligate blood feeders. Trends Parasitol. 36, 816–825. doi: 10.1016/j.pt.2020.07.007, PMID: PubMed DOI
Edgar R. C. (2013). UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998. doi: 10.1038/nmeth.2604, PMID: PubMed DOI
Gaithuma A., Yamagishi J., Hayashida K., Kawai N., Namangala B., Sugimoto C. (2020). Blood meal sources and bacterial microbiome diversity in wild-caught tsetse flies. Sci. Rep. 10:5005. doi: 10.1038/s41598-020-61817-2, PMID: PubMed DOI PMC
Gupta A., Nair S. (2020). Dynamics of insect-microbiome interaction influence host and microbial symbiont. Front. Microbiol. 11:1357. doi: 10.3389/fmicb.2020.01357, PMID: PubMed DOI PMC
Ito K., Murphy D. (2013). Application of ggplot2 to pharmacometric graphics. CPT Pharmacometrics Syst. Pharmacol. 2:e79. doi: 10.1038/psp.2013.56, PMID: PubMed DOI PMC
Jackson R., Patapiou P., Golding G., Helanterä H., Economou C., Chapuisat M., et al. (2023). Evidence of phylosymbiosis in PubMed DOI PMC
Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., et al. (2012). Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649. doi: 10.1093/bioinformatics/bts199, PMID: PubMed DOI PMC
Knaus B., Grünwald N. (2017). VCFR: a package to manipulate and visualize variant call format data in R. Mol. Ecol. Resour. 17, 44–53. doi: 10.1111/1755-0998.12549, PMID: PubMed DOI
Lange C., Boyer S., Bezemer T., Lefort M., Dhami M., Biggs E., et al. (2023). Impact of intraspecific variation in insect microbiomes on host phenotype and evolution. ISME J. 17, 1798–1807. doi: 10.1038/s41396-023-01500-2, PMID: PubMed DOI PMC
Langmead B., Salzberg S. (2012). Fast gapped-read alignment with bowtie 2. Nat. Methods 9, 357–U54. doi: 10.1038/nmeth.1923 PubMed DOI PMC
Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., et al. (2009). The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079. doi: 10.1093/bioinformatics/btp352, PMID: PubMed DOI PMC
Li S., Jovelin R., Yoshiga T., Tanaka R., Cutter A. (2014). Specialist versus generalist life histories and nucleotide diversity in PubMed DOI PMC
Lim L., Ab Majid A. H. (2021). Characterization of bacterial communities associated with blood-fed and starved tropical bed bugs, PubMed DOI PMC
Liu C., Cui Y., Li X., Yao M. (2021). Microeco: an R package for data mining in microbial community ecology. FEMS Microbiol. Ecol. 97:fiaa255. doi: 10.1093/femsec/fiaa255, PMID: PubMed DOI
Martin Říhová J., Gupta S., Darby A., Nováková E., Hypša V. (2023). PubMed DOI PMC
Martinů J., Hypša V., Štefka J. (2018). Host specificity driving genetic structure and diversity in ectoparasite populations: Coevolutionary patterns in PubMed DOI PMC
Martinů J., Štefka J., Poosakkannu A., Hypša V. (2020). "parasite turnover zone" at secondary contact: A new pattern in host-parasite population genetics. Mol. Ecol. 29, 4653–4664. doi: 10.1111/mec.15653, PMID: PubMed DOI
Martinů J., Štefka J., Vránková K., Hypša V. (2025). Different life strategies of closely related louse species in sympatry: specialist and "generalist" lineages of PubMed DOI
Martinů J., Tarabai H., Štefka J., Hypša V. (2023). Highly resolved genomes as a tool for studying speciation history of two closely related louse lineages with different host specificities. Genome Biol. Evol. 16:evae045. doi: 10.1093/gbe/evae045, PMID: PubMed DOI PMC
Martoni F., Bulman S., Piper A., Pitman A., Taylor G., Armstrong K. (2023). Insect phylogeny structures the bacterial communities in the microbiome of psyllids (Hemiptera: Psylloidea) in Aotearoa New Zealand. PLoS One 18:e0285587. doi: 10.1371/journal.pone.0285587, PMID: PubMed DOI PMC
Nadler S. (1995). Microevolution and the genetic structure of parasite populations. J. Parasitol. 81, 395–403. doi: 10.2307/3283821, PMID: PubMed DOI
Oksanen J., Blanchet F.G., Kindt R., Legendre P., Minchin P.R., O’Hara R.B., et al. (2025). Vegan: community ecology package. Vienna, Austria: The Comprehensive R Archive Network (CRAN).
Purcell S., Neale B., Todd-Brown K., Thomas L., Ferreira M., Bender D., et al. (2007). PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575. doi: 10.1086/519795 PubMed DOI PMC
R Core Team (2014). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Available onlne at: https://www.R-project.org/.
Reinhardt K., Siva-Jothy M. (2007). Biology of the bed bugs (Cimicidae). Annu. Rev. Entomol. 52, 351–374. doi: 10.1146/annurev.ento.52.040306.133913, PMID: PubMed DOI
Říhová J., Batani G., Rodriguez-Ruano S. M., Martinů J., Vácha F., Nováková E., et al. (2021). A new symbiotic lineage related to PubMed DOI
Říhová J., Bell K., Nováková E., Hypša V. (2022). PubMed DOI PMC
Říhová J., Gupta S., Nováková E., Hypša V. (2024). Fur microbiome as a putative source of symbiotic bacteria in sucking lice. Sci. Rep. 14:22326. doi: 10.1038/s41598-024-73026-2 PubMed DOI PMC
Říhová J., Nováková E., Husník F., Hypša V. (2017). PubMed DOI PMC
Říhová J., Vodička R., Hypša V. (2025). An obligate symbiont of PubMed DOI PMC
Sasaki-Fukatsu K., Koga R., Nikoh N., Yoshizawa K., Kasai S., Mihara M., et al. (2006). Symbiotic bacteria associated with stomach discs of human lice. Appl. Environ. Microbiol. 72, 7349–7352. doi: 10.1128/AEM.01429-06, PMID: PubMed DOI PMC
Schaub G. A., Kollien A. H., Balczun C. (2012). “Lice as vectors of bacterial diseases” in Arthropods as vectors of emerging diseases. ed. Mehlhorn H. (Berlin, Heidelberg: Springer Berlin Heidelberg; ), 255–274.
Serrato-Salas J., Gendrin M. (2023). Involvement of microbiota in insect physiology: focus on B vitamins. MBio 14:e0222522. doi: 10.1128/mbio.02225-22, PMID: PubMed DOI PMC
Štefka J., Hypša V. (2008). Host specificity and genealogy of the louse PubMed DOI
Trifinopoulos J., Nguyen L., von Haeseler A., Minh B. (2016). W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 44, W232–W235. doi: 10.1093/nar/gkw256 PubMed DOI PMC
Van der Auwera G. A., Carneiro M. O., Hartl C., Poplin R., Del Angel G., Levy-Moonshine A., et al. (2013). From fastQ data to high confidence variant calls: the genome analysis toolkit best practices pipeline. Curr. Protoc. Bioinformatics 43, 11.10.1–11.10.33. doi: 10.1002/0471250953.bi1110s43, PMID: PubMed DOI PMC
Virtanen P., Gommers R., Oliphant T., Haberland M., Reddy T., Cournapeau D., et al. (2020). Scipy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272. doi: 10.1038/s41592-020-0772-5 PubMed DOI PMC
Wang W., Durden L., Shao R. (2020). Rapid host expansion of an introduced parasite, the spiny rat louse PubMed DOI PMC
Yun J., Roh S., Whon T., Jung M., Kim M., Park D., et al. (2014). Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl. Environ. Microbiol. 80, 5254–5264. doi: 10.1128/AEM.01226-14, PMID: PubMed DOI PMC