Slater-Condon Rules and Spin-Orbit Couplings: 2‑(2-(2,5-Dimethoxybenzylidene)hydrazineyl)-4-(trifluoromethyl)thiazole a Test Case
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
41358086
PubMed Central
PMC12676368
DOI
10.1021/acsomega.5c10359
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Light-atom chromophores can display properties often associated with heavy-atom compounds, such as intersystem crossing, leading to phosphorescence and singlet oxygen generation, yet their use remains comparatively underexplored. Here, we report the synthesis of HM610, a derivative of the benzylidenehydrazinylthiazole light-atom chromophore backbone. Spin-orbit couplings (SOCs), computed with the sf-X2C-S-TDDFT method, follow Slater-Condon rules and predict moderate values. Trajectory surface hopping simulations further illustrate the role of dynamical effects in promoting ISC, yet these results together establish that HM610 has only limited potential as a triplet sensitizer without further structural modification, such as heavy atom substitution. Based on the benchmarked (TD)-DFT protocol, a computational set studying six systematic analogues allowed us to study the influence of electron-donating (-OMe) and electron-withdrawing (-CF3) substituents on the common backbone, revealing the impact of substitution on the geometry and photophysics of light atom analogues of HM610 and paving the way for future studies where the introduction of heavy atoms and their impact on triplet sensitization by this family of chromophores can be probed.
Department of Chemistry Mirpur University of Science and Technology 10250 Pakistan
Faculty of Mathematics and Physics Charles University Ke Karlovu 3 Prague 12116 Czech Republic
Zobrazit více v PubMed
Gupta V., Kant V.. A review on biological activity of imidazole and thiazole moieties and their derivatives. Int. J. Inf. Sci. 2013;1(7):253–260. doi: 10.17311/sciintl.2013.253.260. DOI
Abdu-Rahem L. R., Ahmad A. K., Abachi F. T.. Synthesis and medicinal attributes of thiazole derivatives: A review. Sys. Rev. Pharm. 2021;12:290–295. doi: 10.15406/mojboc.2018.02.0056. DOI
Mishra C. B., Kumari S., Tiwari M.. Thiazole: A promising heterocycle for the development of potent CNS active agents. Eur. J. Med. Chem. 2015;92:1–34. doi: 10.1016/j.ejmech.2014.12.031. PubMed DOI
Modrić M., Božičević M., Odak I., Talić S., Barić D., Mlakić M., Raspudić A., Škorić I.. The structure–activity relationship and computational studies of 1, 3-thiazole derivatives as cholinesterase inhibitors with anti-inflammatory activity. C. R. Chim. 2022;25(G1):267–279. doi: 10.5802/crchim.201. DOI
Mabkhot Y. N., Alharbi M. M., Al-Showiman S. S., Ghabbour H. A., Kheder N. A., Soliman S. M., Frey W.. Stereoselective synthesis, X-ray analysis, computational studies and biological evaluation of new thiazole derivatives as potential anticancer agents. Chem. Cent. J. 2018;12:56–59. doi: 10.1186/s13065-018-0420-7. PubMed DOI PMC
Yadav C. K., Nandeshwarappa B., Pasha K. M.. Synthesis, computational study, solvatochromism and biological studies of thiazole-owing hydrazone derivatives. Acta Polytech. Scand. Chem. Technol. Metall. Ser. 2023;10(1):202310110. doi: 10.15826/chimtech.2023.10.1.10. DOI
Siddiqui N., Arshad M. F., Ahsan W., Alam M. S.. Thiazoles: a valuable insight into the recent advances and biological activities. Int. J. Pharm. Sci. Drug Res. 2009;1(3):136–143. doi: 10.25004/IJPSDR.2009.010302. DOI
Kashyap M., Mazumder M. U., Patowary P., Talukdar A., Sahariah B. J., Majumder M.. An Overview of Synthetic Derivatives of Thiazole and Their Role in Therapeutics. Fabad J. Pharm. Sci. 2024;49(3):603–626. doi: 10.55262/fabadeczacilik.1479735. DOI
Singh I. P., Gupta S., Kumar S.. Thiazole compounds as antiviral agents: An update. Med. Chem. 2020;16(1):4–23. doi: 10.2174/1573406415666190614101253. PubMed DOI
Yurttaş, L. ; Özkay, Y. ; Karaca Gençer, H. ; Acar, U. . Synthesis of some new thiazole derivatives and their biological activity evaluation. J. Chem., 2015(1), 464379. 10.1155/2015/464379. DOI
Arora P., Narang R., Bhatia S., Nayak S. K., Singh S. K., Narasimhan B.. Synthesis, molecular docking and QSAR studies of 2, 4-disubstituted thiazoles as antimicrobial agents. J. Appl. Pharm. Sci. 2015;5(2):028–042. doi: 10.7324/JAPS.2015.50206. DOI
Fogel N.. Tuberculosis: a disease without boundaries. Tuberculosis. 2015;95(5):527–531. doi: 10.1016/j.tube.2015.05.017. PubMed DOI
Nagireddy P. K. R., Kommalapati V. K., Siva Krishna V., Sriram D., Tangutur A. D., Kantevari S.. Imidazo [2, 1-b] thiazole-coupled natural noscapine derivatives as anticancer agents. ACS Omega. 2019;4(21):19382–19398. doi: 10.1021/acsomega.9b02789. PubMed DOI PMC
Wu J., Ma Y., Zhou H., Zhou L., Du S., Sun Y., Li W., Dong W., Wang R.. Identification of protein tyrosine phosphatase 1B (PTP1B) inhibitors through De Novo Evolution, synthesis, biological evaluation and molecular dynamics simulation. Biochem. Biophys. Res. Commun. 2020;526(1):273–280. doi: 10.1016/j.bbrc.2020.03.075. PubMed DOI
Jacob P J., Manju S.. Identification and development of thiazole leads as COX-2/5-LOX inhibitors through in-vitro and in-vivo biological evaluation for anti-inflammatory activity. Bioorg. Chem. 2020;100:103882. doi: 10.1016/j.bioorg.2020.103882. PubMed DOI
Afifi O. S., Shaaban O. G., Abd El Razik H. A., Shams El-Dine S. E. D. A., Ashour F. A., El-Tombary A. A., Abu-Serie M. M.. Synthesis and biological evaluation of purine-pyrazole hybrids incorporating thiazole, thiazolidinone or rhodanine moiety as 15-LOX inhibitors endowed with anticancer and antioxidant potential. Bioorg. Chem. 2019;87:821–837. doi: 10.1016/j.bioorg.2019.03.076. PubMed DOI
Farghaly T. A., Alfaifi G. H., Gomha S. M.. Recent literature on the synthesis of thiazole derivatives and their biological activities. Mini Rev. Med. Chem. 2024;24(2):196–251. doi: 10.2174/1389557523666230726142459. PubMed DOI
Chen L., Liu X. Y., Zou Y. X.. Recent Advances in the Construction of Phosphorus-Substituted Heterocycles, 2009–2019. Adv. Synth. Catal. 2020;362(9):1724–1818. doi: 10.1002/adsc.201901540. DOI
Eltyshev A. K., Dzhumaniyazov T. H., Suntsova P. O., Minin A. S., Pozdina V. A., Dehaen W., Benassi E., Belskaya N. P.. 3-Aryl-2-(thiazol-2-yl) acrylonitriles assembled with aryl/hetaryl rings: Design of the optical properties and application prospects. Dyes Pigm. 2021;184:108836. doi: 10.1016/j.dyepig.2020.108836. DOI
Abdulrahman B. S., Nadr R. B., Omer R. A., Azeez Y. H., Kareem R. O., Safin D. A.. Synthesis, characterization and computational studies of a series of the thiazole-thiazolidinone hybrids. J. Mol. Struct. 2025;1324:140806. doi: 10.1016/j.molstruc.2024.140806. DOI
Siddique choudhry S., Mehmood H., Haroon M., Akhtar T., Tahir E., Ehsan M., Musa M.. Structure-Activity Relationship of Hydrazinylthiazole-5-Carbaldehydes as Potential Anti-Diabetic Agents. Chem. Biodivers. 2024;21(11):e202400305. doi: 10.1002/cbdv.202400305. PubMed DOI
Mehmood H., Haroon M., Akhtar T., Jamal S., Akhtar M. N., Khan M. U., Alhokbany N.. Exploring the optical properties of novel N-benzylated thiazoles-based chromophores: Spectroscopic insights and computational analysis. Synth. Met. 2024;307:117701. doi: 10.1016/j.synthmet.2024.117701. DOI
Roure B., Alonso M., Lonardi G., Yildiz D. B., Buettner C. S., dos Santos T., Xu Y., Bossart M., Derdau V., Méndez M., Llaveria J., Ruffoni A., Leonori D.. Photochemical permutation of thiazoles, isothiazoles and other azoles. Nature. 2025;637:860–867. doi: 10.1038/s41586-024-08342-8. PubMed DOI PMC
Srnec M., Chalupsky J., Fojta M., Zendlová L., Havran L., Hocek M., Kyvala M., Rulisek L.. Effect of Spin– Orbit Coupling on Reduction Potentials of Octahedral Ruthenium (II/III) and Osmium (II/III) Complexes. J. Am. Chem. Soc. 2008;130(33):10947–10954. doi: 10.1021/ja800616s. PubMed DOI
Wasif Baig M., Pederzoli M., Kývala M., Pittner J.. Quantum Chemical and Trajectory Surface Hopping Molecular Dynamics Study of Iodine-based BODIPY Photosensitizer. J. Comput. Chem. 2025;46(7):70026. doi: 10.1002/jcc.70026. PubMed DOI PMC
Wasif Baig M., Pederzoli M., Kývala M. r., Cwiklik L., Pittner J.. Theoretical investigation of the effect of alkylation and bromination on intersystem crossing in BODIPY-based photosensitizers. J. Phys. Chem. B. 2021;125(42):11617–11627. doi: 10.1021/acs.jpcb.1c05236. PubMed DOI
Plasser F., Lischka H., Shepard R., Szalay P. G., Pitzer R. M., Alves R. L., Aquino A. J., Autschbach J., Barbatti M., Carvalho J. R.. et al. COLUMBUS– An Efficient and General Program Package for Ground and Excited State Computations Including Spin–Orbit Couplings and Dynamics. J. Phys. Chem. A. 2025;129(28):6482–6517. doi: 10.1021/acs.jpca.5c02047. PubMed DOI PMC
Penfold T., Worth G.. The effect of molecular distortions on spin–orbit coupling in simple hydrocarbons. Chem. Phys. 2010;375(1):58–66. doi: 10.1016/j.chemphys.2010.07.019. DOI
Danilov D., Jenkins A. J., Bearpark M. J., Worth G. A., Robb M. A.. Coherent Mixing of Singlet and Triplet States in Acrolein and Ketene: A Computational Strategy for Simulating the Electron–Nuclear Dynamics of Intersystem Crossing. J. Phys. Chem. Lett. 2023;14(26):6127–6134. doi: 10.1021/acs.jpclett.3c01187. PubMed DOI PMC
Pal R., Chattaraj P. K.. Chemical Reactivity from a Conceptual Density Functional Theory Perspective. J. Indian Chem. Soc. 2021;98(1):100008. doi: 10.1016/j.jics.2021.100008. DOI
Baerends E. J., Gritsenko O. V.. A quantum chemical view of density functional theory. J. Phys. Chem. A. 1997;101(30):5383–5403. doi: 10.1021/jp9703768. DOI
Malik A. M., Rohrer J., Albe K.. Theoretical study of thermodynamic and magnetic properties of transition metal carbide and nitride MAX phases. Phys. Rev. Mater. 2023;7(4):044408. doi: 10.1103/PhysRevMaterials.7.044408. DOI
Hussain A., Baig M. W., Mustafa N.. DFT Studies of Indium Nanoclusters, Nanotubes and their Interaction with Molecular Hydrogen. Nucleus. 2020;52(4):185–191. doi: 10.71330/thenucleus.2015.638. DOI
Alotaibi N. O., Abdulhussein H. A., Alamri S. M., Hamza N. A., Abo Nasria A. H.. Computational insights into the physico-chemical properties of pure and single-atom copper–indium sub-nanometre clusters: a DFT-genetic algorithm approach. RSC Adv. 2025;15(8):5856–5875. doi: 10.1039/D4RA07404A. PubMed DOI PMC
Wasif Baig M., Pederzoli M., Jurkiewicz P., Cwiklik L., Pittner J.. Orientation of Laurdan in phospholipid bilayers influences its fluorescence: Quantum mechanics and classical molecular dynamics study. Molecules. 2018;23(7):1707. doi: 10.3390/molecules23071707. PubMed DOI PMC
Ahmad K., Khan B. A., Akram B., Khan J., Mahmood R., Roy S. K.. Theoretical investigations on copper catalyzed CN cross-coupling reaction between aryl chlorides and amines. J. Chem. Theor. Comput. 2018;1134:1–7. doi: 10.1016/j.comptc.2018.04.019. DOI
Amir M. K., Hogarth G., Khan Z., Imran M.. Platinum (II) dithiocarbamate complexes [Pt (S2CNR2) Cl (PAr3)] as anticancer and DNA-damaging agents. Inorg. Chim. Acta. 2020;512:119853. doi: 10.1016/j.ica.2020.119853. DOI
Ahmad K., Khan B. A., Akhtar T., Khan J., Roy S. K.. Deciphering the mechanism of copper-catalyzed N-arylation between aryl halides and nitriles: a DFT study. New J. Chem. 2019;43(48):19200–19207. doi: 10.1039/C9NJ03860D. DOI
Ahmad K., Khan B. A., Roy S. K., Mahmood R., Mahmood R., Khan J., Ashraf H.. Theoretical Insights on the C–C Bond Reductive Elimination from Co(III) Center. J. Chem. Theor. Comput. 2018;1130:140–147. doi: 10.1016/j.comptc.2018.03.025. DOI
Dinpajooh M., Intan N. N., Duignan T. T., Biasin E., Fulton J. L., Kathmann S. M., Schenter G. K., Mundy C. J.. Beyond the Debye–Hückel limit: Toward a general theory for concentrated electrolytes. J. Chem. Phys. 2024;161(23):230901. doi: 10.1063/5.0238708. PubMed DOI
Baig M. W., Siddiq M.. Quantum mechanics of in situ synthesis of metal nanoparticles within anionic microgels. J. Theor. Chem. 2013;2013(1):1–5. doi: 10.1155/2013/410417. DOI
Chew P. Y., Reinhardt A.. Phase diagramsWhy they matter and how to predict them. J. Chem. Phys. 2023;158(3):030902. doi: 10.1063/5.0131028. PubMed DOI
Bui A. T., Cox S. J.. Learning Classical Density Functionals for Ionic Fluids. Phys. Rev. Lett. 2025;134(14):148001. doi: 10.1103/PhysRevLett.134.148001. PubMed DOI
Laurent A. D., Jacquemin D.. TD-DFT Benchmarks: A Review. Int. J. Quantum Chem. 2013;113(17):2019–2039. doi: 10.1002/qua.24438. DOI
Kupfer S., Wächtler M., Guthmuller J., Popp J., Dietzek B., González L.. A Novel Ru(II) Polypyridine Black Dye Investigated by Resonance Raman Spectroscopy and TDDFT Calculations. J. Phys. Chem. C. 2012;116:19968–19977. doi: 10.1021/jp3067958. DOI
Pederzoli M., Wasif Baig M., Kyvala M., Pittner J., Cwiklik L.. Photophysics of BODIPY-based photosensitizer for photodynamic therapy: surface hopping and classical molecular dynamics. J. Chem. Theory Comput. 2019;15(9):5046–5057. doi: 10.1021/acs.jctc.9b00533. PubMed DOI
Christiansen O., Koch H., Jørgensen P.. The second-order approximate coupled cluster singles and doubles model CC2. Chem. Phys. Lett. 1995;243(5–6):409–418. doi: 10.1016/0009-2614(95)00841-Q. DOI
Schirmer J.. Beyond the random-phase approximation: A new approximation scheme for the polarization propagator. Phys. Rev. A. 1982;26(5):2395. doi: 10.1103/PhysRevA.26.2395. DOI
Loos P.-F., Scemama A., Jacquemin D.. The quest for highly accurate excitation energies: A computational perspective. J. Phys. Chem. Lett. 2020;11(6):2374–2383. doi: 10.1021/acs.jpclett.0c00014. PubMed DOI
Sülzner N., Hättig C.. Role of Singles Amplitudes in ADC (2) and CC2 for Low-Lying Electronically Excited States. J. Chem. Theory Comput. 2024;20(6):2462–2474. doi: 10.1021/acs.jctc.3c01355. PubMed DOI
Jacquemin D., Duchemin I., Blase X.. 0–0 energies using hybrid schemes: Benchmarks of TD-DFT, CIS (D), ADC (2), CC2, and BSE/GW formalisms for 80 real-life compounds. J. Chem. Theory Comput. 2015;11(11):5340–5359. doi: 10.1021/acs.jctc.5b00619. PubMed DOI PMC
Szabla R., Góra R. W., Šponer J.. Ultrafast excited-state dynamics of isocytosine. Phys. Chem. Chem. Phys. 2016;18(30):20208–20218. doi: 10.1039/C6CP01391K. PubMed DOI
Plasser F., Crespo-Otero R., Pederzoli M., Pittner J., Lischka H., Barbatti M.. Surface hopping dynamics with correlated single-reference methods: 9H-adenine as a case study. J. Chem. Theory Comput. 2014;10(4):1395–1405. doi: 10.1021/ct4011079. PubMed DOI
Minns R., Parker D., Penfold T., Worth G., Fielding H.. Competing ultrafast intersystem crossing and internal conversion in the “channel 3” region of benzene. Phys. Chem. Chem. Phys. 2010;12(48):15607–15615. doi: 10.1039/c001671c. PubMed DOI
Penfold T. J., Gindensperger E., Daniel C., Marian C. M.. Spin-vibronic mechanism for intersystem crossing. Chem. Rev. 2018;118(15):6975–7025. doi: 10.1021/acs.chemrev.7b00617. PubMed DOI
Liao C., Rosenbaum C., Glaudin A. M., Taub M., Banerjee Ghosh R., Pristash S., Schlenker C. W., Li X.. Spin–Vibronic Coupling Enhanced Intersystem Crossing beyond El-Sayed Restrictions. J. Am. Chem. Soc. 2025;147:22176–22184. doi: 10.1021/jacs.5c06949. PubMed DOI
Tatchen J., Gilka N., Marian C. M.. Intersystem crossing driven by vibronic spin–orbit coupling: a case study on psoralen. Phys. Chem. Chem. Phys. 2007;9(38):5209–5221. doi: 10.1039/b706410a. PubMed DOI
Albrecht A. C.. VibronicSpin-Orbit Perturbations and the Assignment of the Lowest Triplet State of Benzene. J. Chem. Phys. 1963;38(2):354–365. doi: 10.1063/1.1733665. DOI
Richter M., Marquetand P., González-Vázquez J., Sola I., González L.. SHARC: ab initio molecular dynamics with surface hopping in the adiabatic representation including arbitrary couplings. J. Chem. Theory Comput. 2011;7(5):1253–1258. doi: 10.1021/ct1007394. PubMed DOI
Mai S., Marquetand P., González L.. A general method to describe intersystem crossing dynamics in trajectory surface hopping. Int. J. Quantum Chem. 2015;115(18):1215–1231. doi: 10.1002/qua.24891. DOI
Sit M. K., Das S., Samanta K.. Semiclassical dynamics on machine-learned coupled multireference potential energy surfaces: application to the photodissociation of the simplest criegee intermediate. J. Phys. Chem. A. 2023;127(10):2376–2387. doi: 10.1021/acs.jpca.2c07229. PubMed DOI
Sit M. K., Das S., Samanta K.. Machine Learning-Assisted Mixed Quantum-Classical Dynamics without Explicit Nonadiabatic Coupling: Application to the Photodissociation of Peroxynitric Acid. J. Phys. Chem. A. 2024;128(38):8244–8253. doi: 10.1021/acs.jpca.4c02876. PubMed DOI
Heindl M., Hongyan J., Hua S.-A., Oelschlegel M., Meyer F., Schwarzer D., González L.. Excited-state dynamics of [Ru (S–Sbpy)(bpy)2] 2+ to form long-lived localized triplet states. Inorg. Chem. 2021;60(3):1672–1682. doi: 10.1021/acs.inorgchem.0c03163. PubMed DOI PMC
Atkins A. J., González L.. Trajectory surface-hopping dynamics including intersystem crossing in [Ru (bpy) 3] 2+ J. Phys. Chem. Lett. 2017;8(16):3840–3845. doi: 10.1021/acs.jpclett.7b01479. PubMed DOI
Liu W., Xiao Y.. Relativistic Time-Dependent Density Functional Theories. Chem. Soc. Rev. 2018;47(12):4481–4509. doi: 10.1039/C8CS00175H. PubMed DOI
TURBOMOLE . A development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, Version 7.3; TURBOMOLE GmbH, since 2007, 2010.
Liu W., Hong G., Dai D., Li L., Dolg M.. The Beijing four-component density functional program package (BDF) and its application to EuO, EuS, YbO and YbS. Theor. Chem. Acc. 1997;96:75–83. doi: 10.1007/s002140050207. DOI
Liu W., Wang F., Li L.. The Beijing density functional (BDF) program package: methodologies and applications. J. Theor. Comput. Chem. 2003;02(02):257–272. doi: 10.1142/s0219633603000471. DOI
Liu, W. ; Wang, F. ; Li, L. . Relativistic density functional theory: The BDF program package. In Recent Advances in Relativistic Molecular Theory; World Scientific, 2004; Vol. 5, pp 257–282.
Zhang Y., Suo B., Wang Z., Zhang N., Li Z., Lei Y., Zou W., Gao J., Peng D., Pu Z.. et al. BDF: A relativistic electronic structure program package. J. Chem. Phys. 2020;152(6):064113. doi: 10.1063/1.5143173. PubMed DOI
Frisch, M. J. ; Trucks, G. W. ; Schlegel, H. B. ; Scuseria, G. E. ; Robb, M. A. ; Cheeseman, J. R. ; Scalmani, G. ; Barone, V. ; Petersson, G. A. ; Nakatsuji, H. ; Li, X. ; Caricato, M. ; Marenich, A. ; Bloino, J. ; Janesko, B. G. ; Gomperts, R. ; Mennucci, B. ; Hratchian, H. P. ; Ortiz, J. V. ; Izmaylov, A. F. ; Sonnenberg, J. L. ; Williams-Young, D. ; Ding, F. ; Lipparini, F. ; Egidi, F. ; Goings, J. ; Peng, B. ; Petrone, A. ; Henderson, T. ; Ranasinghe, D. ; Zakrzewski, V. G. ; Gao, J. ; Rega, N. ; Zheng, G. ; Liang, W. ; Hada, M. ; Ehara, M. ; Toyota, K. ; Fukuda, R. ; Hasegawa, J. ; Ishida, M. ; Nakajima, T. ; Honda, Y. ; Kitao, O. ; Nakai, H. ; Vreven, T. ; Throssell, K. ; Montgomery, J. A., Jr. ; Peralta, J. E. ; Ogliaro, F. ; Bearpark, M. ; Heyd, J. J. ; Brothers, E. ; Kudin, K. N. ; Staroverov, V. N. ; Keith, T. ; Kobayashi, R. ; Normand, J. ; Raghavachari, K. ; Rendell, A. ; Burant, J. C. ; Iyengar, S. S. ; Tomasi, J. ; Cossi, M. ; Millam, J. M. ; Klene, M. ; Adamo, C. ; Cammi, R. ; Ochterski, J. W. ; Martin, R. L. ; Morokuma, K. ; Farkas, O. ; Foresman, J. B. ; Fox, D. J. . Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford CT, 2016.
Barbatti M., Ruckenbauer M., Plasser F., Pittner J., Granucci G., Persico M., Lischka H.. Newton-X: a surface-hopping program for nonadiabatic molecular dynamics. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2014;4(1):26–33. doi: 10.1002/wcms.1158. DOI
Barbatti M., Bondanza M., Crespo-Otero R., Demoulin B., Dral P. O., Granucci G., Kossoski F., Lischka H., Mennucci B., Mukherjee S.. et al. Newton-X platform: New software developments for surface hopping and nuclear ensembles. J. Chem. Theory Comput. 2022;18(11):6851–6865. doi: 10.1021/acs.jctc.2c00804. PubMed DOI PMC
Zhao Y., Truhlar D. G.. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008;120:215–241. doi: 10.1007/s00214-007-0310-x. DOI
Seeger Z. L., Izgorodina E. I.. A systematic study of DFT performance for geometry optimizations of ionic liquid clusters. J. Chem. Theory Comput. 2020;16(10):6735–6753. doi: 10.1021/acs.jctc.0c00549. PubMed DOI
Walker M., Harvey A. J. A., Sen A., Dessent C. E. H.. Performance of M06, M062X, and M06-HF Density Functionals for Conformationally Flexible Anionic Clusters: M06 Functionals Perform Better than B3LYP for a Model System with Dispersion and Ionic Hydrogen-Bonding Interactions. J. Phys. Chem. A. 2013;117(47):12590–12600. doi: 10.1021/jp408166m. PubMed DOI
Weigend F.. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 2006;8(9):1057–1065. doi: 10.1039/b515623h. PubMed DOI
Zheng J., Xu X., Truhlar D. G.. Minimally augmented Karlsruhe basis sets. Theor. Chem. Acc. 2011;128:295–305. doi: 10.1007/s00214-010-0846-z. DOI
Grimme S., Antony J., Ehrlich S., Krieg H.. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H–Pu. J. Chem. Phys. 2010;132(15):154104. doi: 10.1063/1.3382344. PubMed DOI
Krause, K. ; Klopper, W. . Implementation of the Bethe– Salpeter equation in the TURBOMOLE program; Wiley Online Library, 2017. PubMed
Becke A. D.. A new mixing of Hartree-Fock and local density-functional theories. J. Chem. Phys. 1993;98(2):1372–1377. doi: 10.1063/1.464304. DOI
Weigend F., Baldes A.. Segmented contracted basis sets for one-and two-component Dirac–Fock effective core potentials. J. Chem. Phys. 2010;133(17):174102. doi: 10.1063/1.3495681. PubMed DOI
Yanai T., Tew D. P., Handy N. C.. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP) Chem. Phys. Lett. 2004;393(1–3):51–57. doi: 10.1016/j.cplett.2004.06.011. DOI
Chai J.-D., Head-Gordon M.. Systematic optimization of long-range corrected hybrid density functionals. J. Chem. Phys. 2008;128(8):084106. doi: 10.1063/1.2834918. PubMed DOI
Jacquemin D., Perpete E. A., Ciofini I., Adamo C.. Assessment of the ωB97 family for excited-state calculations. Theor. Chem. Acc. 2011;128(1):127–136. doi: 10.1007/s00214-010-0783-x. DOI
Cossi M., Rega N., Scalmani G., Barone V.. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J. Comput. Chem. 2003;24(6):669–681. doi: 10.1002/jcc.10189. PubMed DOI
Li Z., Suo B., Zhang Y., Xiao Y., Liu W.. Combining spin-adapted open-shell TD-DFT with spin–orbit coupling. Mol. Phys. 2013;111(24):3741–3755. doi: 10.1080/00268976.2013.785611. DOI
Zhou Q., Suo B.. New implementation of spin-orbit coupling calculation on multi-configuration electron correlation theory. Int. J. Quantum Chem. 2021;121(20):e26772. doi: 10.1002/qua.26772. DOI
Luzanov A., Zhikol O.. Electron invariants and excited state structural analysis for electronic transitions within CIS, RPA, and TDDFT models. Int. J. Quantum Chem. 2010;110(4):902–924. doi: 10.1002/qua.22041. DOI
Brabec J., Brandejs J., Kowalski K., Xantheas S., Legeza Ö., Veis L.. Massively Parallel Quantum Chemical Density Matrix Renormalization Group Method. J. Comput. Chem. 2021;42(8):534–544. doi: 10.1002/jcc.26476. PubMed DOI
Kurashige Y.. Multireference Electron Correlation Methods with Density Matrix Renormalisation Group Reference Functions. Mol. Phys. 2014;112(11):1485–1494. doi: 10.1080/00268976.2013.843730. DOI
Pittner J.. Spin-Free Orbital Entropy, Mutual Information and Correlation Analysis. Mol. Phys. 2025:e2500632. doi: 10.1080/00268976.2025.2500632. DOI
Macarios C. M., Pittner J., Prasad V. K., Fekl U.. Heteroatom-Vacancy Centres in Molecular Nanodiamonds: A Computational Study of Organic Molecules Possessing Triplet Ground States through σ-Overlap. Phys. Chem. Chem. Phys. 2024;26(39):25412–25417. doi: 10.1039/D4CP02667E. PubMed DOI
Vrška D., Urban M., Neogrády P., Pittner J., Blaško M., Pitoňák M.. DFT Modeling of Polyethylene Chains Cross-Linked by Selected ns1 and ns2Metal Atoms. J. Phys. Chem. A. 2024;128(36):7634–7647. doi: 10.1021/acs.jpca.4c04755. PubMed DOI
Višňák J., Brandejs J., Máté M., Visscher L., Legeza O. ¨., Pittner J.. DMRG-tailored coupled cluster method in the 4c-relativistic domain: General implementation and application to the NUHFI and NUF3 molecules. J. Chem. Theory Comput. 2024;20(20):8862–8875. doi: 10.1021/acs.jctc.4c00641. PubMed DOI PMC
Višňák J., Brandejs J., Máté M., Visscher L., Legeza O. ¨., Pittner J.. DMRG-Tailored Coupled Cluster Method in the 4c-Relativistic Domain: General Implementation and Application to the NUHFI and NUF3 Molecules. J. Chem. Theory Comput. 2024;20(20):8862–8875. doi: 10.1021/acs.jctc.4c00641. PubMed DOI PMC
Crespo-Otero, R. ; Barbatti, M. . Spectrum simulation and decomposition with nuclear ensemble: formal derivation and application to benzene, furan and 2-phenylfuran. In Marco Antonio Chaer Nascimento: A Festschrift from Theoretical Chemistry Accounts; Springer, 2012; pp 89–102.
Barbatti M.. Nonadiabatic dynamics with trajectory surface hopping method. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2011;1(4):620–633. doi: 10.1002/wcms.64. DOI
Pittner J., Lischka H., Barbatti M.. Optimization of mixed quantum-classical dynamics: Time-derivative coupling terms and selected couplings. Chem. Phys. 2009;356(1–3):147–152. doi: 10.1016/j.chemphys.2008.10.013. DOI
Pederzoli M., Pittner J.. A new approach to molecular dynamics with non-adiabatic and spin-orbit effects with applications to QM/MM simulations of thiophene and selenophene. J. Chem. Phys. 2017;146(11):114101. doi: 10.1063/1.4978289. PubMed DOI
Hirata S., Head-Gordon M.. Time-dependent density functional theory within the Tamm–Dancoff approximation. Chem. Phys. Lett. 1999;314(3–4):291–299. doi: 10.1016/S0009-2614(99)01149-5. DOI
Peach M. J., Williamson M. J., Tozer D. J.. Influence of triplet instabilities in TDDFT. J. Chem. Theory Comput. 2011;7(11):3578–3585. doi: 10.1021/ct200651r. PubMed DOI
Yang Y., Shen L., Zhang D., Yang W.. Conical intersections from particle–particle random phase and Tamm–Dancoff approximations. J. Phys. Chem. Lett. 2016;7(13):2407–2411. doi: 10.1021/acs.jpclett.6b00936. PubMed DOI PMC
Park W., Komarov K., Lee S., Choi C. H.. Mixed-Reference Spin-Flip Time-Dependent Density Functional Theory: Multireference Advantages with the Practicality of Linear Response Theory. J. Phys. Chem. Lett. 2023;14(39):8896–8908. doi: 10.1021/acs.jpclett.3c02296. PubMed DOI PMC
Cakmak I.. GIAO calculations of chemical shifts in enantiometrically pure 1-trifluoromethyl tetrahydroisoquinoline alkaloids. J. Mol. Struct.:THEOCHEM. 2005;716(1–3):143–148. doi: 10.1016/j.theochem.2004.12.004. DOI
Tellgren E. I., Reine S. S., Helgaker T.. Analytical GIAO and hybrid-basis integral derivatives: application to geometry optimization of molecules in strong magnetic fields. Phys. Chem. Chem. Phys. 2012;14(26):9492–9499. doi: 10.1039/c2cp40965h. PubMed DOI
Wolinski K., Hinton J. F., Pulay P.. Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J. Am. Chem. Soc. 1990;112(23):8251–8260. doi: 10.1021/ja00179a005. DOI
Vieille L., Berlu L., Comborieu B., Hoggan P.. A Quantum Chemistry GIAO molecular site approach of NMR chemical shifts generalized to the whole periodic table. J. Theor. Comput. Chem. 2002;1(02):295–308. doi: 10.1142/s0219633602000245. DOI
Hättig C.. Optimization of auxiliary basis sets for RI-MP2 and RI-CC2 calculations: Core–valence and quintuple-ζ basis sets for H to Ar and QZVPP basis sets for Li to Kr. Phys. Chem. Chem. Phys. 2005;7(1):59–66. doi: 10.1039/B415208E. DOI
Weigend F., Ahlrichs R.. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005;7(18):3297–3305. doi: 10.1039/b508541a. PubMed DOI
Iron M. A.. Evaluation of the Factors Impacting the Accuracy of 13C NMR Chemical Shift Predictions using Density Functional Theory The Advantage of Long-Range Corrected Functionals. J. Chem. Theory Comput. 2017;13(11):5798–5819. doi: 10.1021/acs.jctc.7b00772. PubMed DOI
Abed A. A., Abid M. A., Turki A., Haroon M., Mehmood H., Akhtar T., Woodward S.. Synthesis of Substituted Arylidene Hydrazinyl Trifluoromethyl Thiazole Derivatives and their Antibacterial Studies using different Genes Expression. ChemistrySelect. 2024;9(17):e202401206. doi: 10.1002/slct.202401206. DOI
Haroon M., Akhtar T., Mehmood H., da Silva Santos A. C., da Conceição J. M., Brondani G. L., Silva Tibúrcio R. d., Galindo Bedor D. C., Viturino da Silva J. W., Sales Junior P. A.. et al. Synthesis of hydrazinyl–thiazole ester derivatives, in vitro trypanocidal and leishmanicidal activities. Future Med. Chem. 2024;16(3):221–238. doi: 10.4155/fmc-2023-0255. PubMed DOI
Mehmood H., Akhtar T., Haroon M., Shah M., Rashid U., Woodward S.. Synthesis of hydrazinylthiazole carboxylates: a mechanistic approach for treatment of diabetes and its complications. Future Med. Chem. 2023;15(13):1149–1165. doi: 10.4155/fmc-2023-0136. PubMed DOI
Taurins A., Fenyes J., Jones R. N.. Thiazoles: iii. Infrared spectra of methylthiazoles. Can. J. Chem. 1957;35(5):423–427. doi: 10.1139/v57-061. DOI
Veys K., Bousquet M. H., Jacquemin D., Escudero D.. Modeling the fluorescence quantum yields of aromatic compounds: benchmarking the machinery to compute intersystem crossing rates. J. Chem. Theory Comput. 2023;19(24):9344–9357. doi: 10.1021/acs.jctc.3c00931. PubMed DOI
Baig M. W., Mehmood H., Akhtar T.. Relativistic two-component density functional study of ethyl 2-(2-Iodobenzylidenehydrazinyl) thiazole-4-carboxylate. Comput. Theor. Chem. 2024:114670.
Mirza, W. B. Ab Initio Molecular Dynamics of Photo-Active Organic Molecules with Non-Adiabatic and Spin-Orbit Effects. Ph.D. Thesis, Charles University, 2025.
Haroon M., Baig M. W., Akhtar T., Tahir M. N., Ashfaq M.. Relativistic two-component time dependent density functional studies and Hirshfeld surface analysis of halogenated arylidenehydrazinylthiazole derivatives. J. Mol. Struct. 2023;1287:135692. doi: 10.1016/j.molstruc.2023.135692. DOI
Verbeek J., Van Lenthe J. H.. The generalized Slater–Condon rules. Int. J. Quantum Chem. 1991;40(2):201–210. doi: 10.1002/qua.560400204. DOI
Burton H. G.. Generalized nonorthogonal matrix elements: Unifying Wick’s theorem and the Slater–Condon rules. J. Chem. Phys. 2021;154(14):144109. doi: 10.1063/5.0045442. PubMed DOI
Višňák, J. A Mathematical Introduction and Identity Used for the Study of the Functional of the Mean Quadratic Fluctuation of Energy in an Initio of Quantum Mechanical Calculations, Bachelor’s Thesis, Charles University, 2010.
Talbot J. J., Cheshire T. P., Cotton S. J., Houle F. A., Head-Gordon M.. The Role of Spin–Orbit Coupling in the Linear Absorption Spectrum and Intersystem Crossing Rate Coefficients of Ruthenium Polypyridyl Dyes. J. Phys. Chem. A. 2024;128(37):7830–7842. doi: 10.1021/acs.jpca.4c04122. PubMed DOI
McClure D. S.. Spin-Orbit Interaction in Aromatic Molecules. J. Chem. Phys. 1952;20(4):682–686. doi: 10.1063/1.1700516. DOI
Mishima K., Kinoshita T., Hayashi M., Jono R., Segawa H., Yamashita K.. Theoretical investigation of [Ru (tpy) 2] 2+,[Ru (tpy)(bpy)(H2O)] 2+ and [Ru (tpy)(bpy)(Cl)]+ complexes in acetone revisited: Inclusion of strong spin–orbit couplings to quantum chemistry calculations. J. Theor. Comput. Chem. 2016;15(01):1650001. doi: 10.1142/S0219633616500012. DOI
Lin S. H.. Isotope Effect, Energy Gap Law and Temperature Effect in Resonance Energy Transfer. Mol. Phys. 1971;21(4):853–863. doi: 10.1080/00268977100102001. DOI
Komarov K., Park W., Lee S., Zeng T., Choi C. H.. Accurate Spin–Orbit Coupling by Relativistic Mixed-Reference Spin-Flip-TDDFT. J. Chem. Theory Comput. 2023;19(3):953–964. doi: 10.1021/acs.jctc.2c01036. PubMed DOI
Krylov A. I.. From Orbitals to Observables and Back. J. Chem. Phys. 2020;153(8):080901. doi: 10.1063/5.0018597. PubMed DOI
Pokhilko P., Krylov A. I.. Quantitative El Sayed Rules for Many Body Wave Functions from Spinless Transition Density Matrices. J. Phys. Chem. Lett. 2019;10(17):4857–4862. doi: 10.1021/acs.jpclett.9b02120. PubMed DOI
Lower S. K., El Sayed M. A.. The Triplet State and Molecular Electronic Processes in Organic Molecules. Chem. Rev. 1966;66(2):199–241. doi: 10.1021/cr60240a004. DOI
Shimakura N., Fujimura Y., Nakajima T.. Theory of Intersystem Crossing in Aromatic Compounds: Extension of the El Sayed Rule. Chem. Phys. 1977;19(2):155–163. doi: 10.1016/0301-0104(77)85128-8. DOI
Lin S. H.. Rate of Interconversion of Electronic and Vibrational Energy. J. Chem. Phys. 1966;44(10):3759–3767. doi: 10.1063/1.1726531. DOI
Heller E. J., Brown R. C.. Radiationless Transitions in a New Light. J. Chem. Phys. 1983;79(7):3336–3351. doi: 10.1063/1.446235. DOI
Manian A., Chen Z., Sullivan H. T., Russo S. P.. The Ups and Downs of Internal Conversion. Rev. Mod. Phys. 2025;97(3):035003. doi: 10.1103/jgpv-232f. DOI
Zhao Z., Cao S., Li H., Li D., He Y., Wang X., Chen J., Zhang S., Xu J., Knutson J. R.. Ultrafast Excited-State Dynamics of Thiazole Orange. Chem. Phys. 2022;553:111392. doi: 10.1016/j.chemphys.2021.111392. PubMed DOI PMC
Berezin M. Y., Achilefu S.. Fluorescence Lifetime Measurements and Biological Imaging. Chem. Rev. 2010;110(5):2641–2684. doi: 10.1021/cr900343z. PubMed DOI PMC
Cheeseman J. R., Trucks G. W., Keith T. A., Frisch M. J.. A Comparison of Models for Calculating Nuclear Magnetic Resonance Shielding Tensors. J. Chem. Phys. 1996;104(14):5497–5509. doi: 10.1063/1.471789. DOI
Barone V.. Structure, Magnetic Properties, and Reactivities of Open-Shell Species from Density Functional and Self-Consistent Hybrid Methods. J. Chem. Phys. 1995;102(1):364–377. doi: 10.1142/9789812830586_0008. DOI
Zhao Y., Truhlar D. G.. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals. Phys. Chem. Chem. Phys. 2008;10(15):10757–10816.