A novel mechanism of auxin habituation: upregulation of auxin receptor TRANSPORT INHIBITOR RESPONSE 1 allows cell proliferation independent of external auxin
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
23-07813S
Grantová Agentura České Republiky
414022
Grantová Agentura, Univerzita Karlova
PubMed
41364974
PubMed Central
PMC12780323
DOI
10.1111/nph.70763
Knihovny.cz E-zdroje
- Klíčová slova
- Nicotiana tabacum, TIR1, auxin, auxin autonomy, cell division, cell line, habituation,
- MeSH
- buněčné linie MeSH
- kyseliny indoloctové * farmakologie metabolismus MeSH
- proliferace buněk účinky léků MeSH
- receptory buněčného povrchu * metabolismus genetika MeSH
- regulace genové exprese u rostlin účinky léků MeSH
- rostlinné proteiny * metabolismus genetika MeSH
- tabák * genetika cytologie účinky léků metabolismus MeSH
- up regulace * účinky léků genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kyseliny indoloctové * MeSH
- receptory buněčného povrchu * MeSH
- rostlinné proteiny * MeSH
Exogenně aplikovaný rostlinný hormon auxin je nezbytný pro založení buněčných linií v tkáňových kulturách a pro udržení jejich proliferace. Některé buněčné linie však mohou získat schopnost růst i v médiu bez přídavku auxinu – stávají se tzv. habituované. Tato studie se zabývala mechanismy, které tento proces navozují. U dvou nezávisle habituovaných tabákových buněčných linií, BY‐2H a VBI‐2, odvozených od auxin‐závislých linií Bright Yellow (BY‐2) a Virginia Bright Italia (VBI‐0), jsme provedli komplexní profilování metabolismu auxinu, farmakologické testy inhibitorové odezvy a transkriptomické porovnání. Naše výsledky ukazují, že obě habituované linie vyvinuly odlišný mechanismus auxinové autonomie. Zatímco v případě VBI‐2 linie, kde zvýšená exprese genů transkripčních faktorů rodiny MADS naznačuje epigeneticky determinovanou dráhu, v linii BY‐2H bylo identifikováno masivní pomnožení genomové oblasti obsahující gen kodující receptor auxinu TRANSPORT INHIBITOR RESPONSE1 (TIR1), které vedlo k jeho výrazné nadregulaci. Napodobením tohoto jevu expresí indukovatelným TIR1 v auxin‐závislé linii BY‐2 bylo dosaženo schopnosti jejího dělení bez přítomnosti vnějšího auxinu. Kompenzace nedostatku auxinu zvýšením hladiny jeho receptoru je velmi zajímavým jevem. Amplifikace genomové oblasti TIR1 je jedinečným příkladem mikroevoluce v laboratorních podmínkách pod silným selekčním tlakem, a může mít významný potenciál pro biotechnologické aplikace.
Exogenously applied auxins are essential for establishing cell lines in tissue cultures and maintaining their proliferation. Cell lines may develop the ability to proliferate even in media lacking auxin, they may become auxin-habituated. This study investigated the mechanisms underlying this process. Here, we conducted comprehensive auxin metabolic profilings, pharmacological treatments and transcriptomic comparisons in two independently habituated tobacco cell lines, BY-2H and VBI-2, derived from cell lines of cultivars Bright Yellow (BY-2) and Virginia Bright Italia (VBI-0). Our results show that both habituated lines developed different mechanisms of auxin autonomy. In VBI-2, increased expression of MADS-domain transcription factor genes suggests epigenetically determined habituation. By contrast, in BY-2H, genome resequencing identified a massive amplification of the genomic region containing the TRANSPORT INHIBITOR RESPONSE 1 (TIR1) gene, causing its strong upregulation. Mimicking this by inducible overexpression of TIR1 in the auxin-dependent BY-2 line allowed its proliferation in the absence of exogenous auxin. Compensating for auxin deficiency by increasing level of its receptor is a very intriguing phenomenon. The amplification of the TIR1 genomic region is a unique example of in-flask microevolution under strong selection pressure with potential interest for biotechnological applications.
Zobrazit více v PubMed
An G, Watson BD, Stachel S, Gordon MP, Nester EW. 1985. New cloning vehicles for transformation of higher plants. EMBO Journal 4: 277–284. PubMed PMC
Bairoch A. 2018. The Cellosaurus, a Cell‐Line Knowledge Resource. Journal of Biomolecular Techniques 29: 25–38. PubMed PMC
Bapat VA, Kavi Kishor PB, Jalaja N, Jain SM, Penna S. 2023. Plant Cell Cultures: Biofactories for the Production of Bioactive Compounds. Agronomy 13: 858.
Binns A, Meins F. 1973. Habituation of tobacco pith cells for factors promoting cell division is heritable and potentially reversible. Proceedings of the National Academy of Sciences, USA 70: 2660–2662. PubMed PMC
Binns AN, Labriola J, Black RC. 1987. Initiation of auxin autonomy in PubMed
Binns AN, Sciaky D, Wood HN. 1982. Variation in hormone autonomy and regenerative potential of cells transformed by strain A66 of PubMed
Blevins WR, Ruiz‐Orera J, Messeguer X, Blasco‐Moreno B, Villanueva‐Cañas JL, Espinar L, Díez J, Carey LB, Albà MM. 2021. Uncovering PubMed PMC
Bowles AMC, Williamson CJ, Williams TA, Lenton TM, Donoghue PCJ. 2023. The origin and early evolution of plants. Trends in Plant Science 28: 312–329. PubMed
Bozdag GO, Zamani‐Dahaj SA, Day TC, Kahn PC, Burnetti AJ, Lac DT, Tong K, Conlin PL, Balwani AH, Dyer EL PubMed PMC
Brumos J, Robles LM, Yun J, Vu TC, Jackson S, Alonso JM, Stepanova AN. 2018. Local auxin biosynthesis is a key regulator of plant development. Developmental Cell 47: 306–318. PubMed
Campell BR, Su L‐Y, Pengelly WL. 1992. Auxin autonomy in cultured tobacco teratoma tissues transformed by an auxin‐mutant strain of PubMed
Campell BR, Town CD. 1991. Physiology of hormone autonomous tissue lines derived from radiation‐induced tumors of PubMed PMC
Cao X, Yang H, Shang C, Ma S, Liu L, Cheng J. 2019. The roles of auxin biosynthesis YUCCA gene family in plants. International Journal of Molecular Sciences 20: 6343. PubMed PMC
Casanova‐Sáez R, Mateo‐Bonmatí E, Ljung K. 2021. Auxin metabolism in plants. Cold Spring Harbor Perspectives in Biology 13: a039867. PubMed PMC
Chen H, Li L, Zou M, Qi L, Friml J. 2023. Distinct functions of TIR1 and AFB1 receptors in auxin signaling. Molecular Plant 16: 1117–1119. PubMed
Chen S. 2023. Ultrafast one‐pass FASTQ data preprocessing, quality control, and deduplication using fastp . iMeta 2: e107. PubMed PMC
Chen Z, Li M, Yuan Y, Hu J, Yang Y, Pang J, Wang L. 2017. Ectopic expression of cucumber (
Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, Whitwham A, Keane T, McCarthy SA, Davies RM PubMed PMC
Dharmasiri N, Dharmasiri S, Estelle M. 2005a. The F‐box protein TIR1 is an auxin receptor. Nature 435: 441–445. PubMed
Dharmasiri N, Dharmasiri S, Weijers D, Lechner E, Yamada M, Hobbie L, Ehrismann JS, Jürgens G, Estelle M. 2005b. Plant development is regulated by a family of auxin receptor F box proteins. Developmental Cell 9: 109–119. PubMed
Dobrev PI, Filepová R, Lacek J, Vondráková Z, Müller K, Maršík P, Drašarová L, Talacko P, Hošek P, Petrášek J. 2023. Study of auxin metabolism using stable isotope labeling and LCMS: evidence for DOI
Dobrev PI, Hoyerová K, Petrášek J. 2017. Analytical determination of auxins and cytokinins. Methods in Molecular Biology 1569: 31–39. PubMed
Dobrev PI, Kamínek M. 2002. Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed‐mode solid‐phase extraction. Journal of Chromatography A 950: 21–29. PubMed
Dodueva IE, Lebedeva MA, Kuznetsova KA, Gancheva MS, Paponova SS, Lutova LL. 2020. Plant tumors: a hundred years of study. Planta 251: 82. PubMed
Dubey SM, Han S, Stutzman N, Prigge MJ, Medvecká E, Platre MP, Busch W, Fendrych M, Estelle M. 2023. The AFB1 auxin receptor controls the cytoplasmic auxin response pathway in PubMed PMC
Edwards KD, Fernandez‐Pozo N, Drake‐Stowe K, Humphry M, Evans AD, Bombarely A, Allen F, Hurst R, White B, Kernodle SP PubMed PMC
Frank M, Rupp H‐M, Prinsen E, Motyka V, Van Onckelen H, Schmülling T. 2000. Hormone autotrophic growth and differentiation identifies mutant lines of Arabidopsis with altered cytokinin and auxin content or signaling. Plant Physiology 122: 721–729. PubMed PMC
Friml J, Gallei M, Gelová Z, Johnson A, Mazur E, Monzer A, Rodriguez L, Roosjen M, Verstraeten I, Živanović BD PubMed
Goldbeter A, Wolpert L. 1990. Covalent modification of proteins as a threshold mechanism in development. Journal of Theoretical Biology 142: 243–250. PubMed
Hammes UZ, Pedersen BP. 2024. Structure and function of auxin transporters. Annual Review of Plant Biology 75: 185–209. PubMed
Hayashi K, Arai K, Aoi Y, Tanaka Y, Hira H, Guo R, Hu Y, Ge C, Zhao Y, Kasahara H PubMed PMC
Hayashi K, Neve J, Hirose M, Kuboki A, Shimada Y, Kepinski S, Nozaki H. 2012. Rational design of an auxin antagonist of the SCF(TIR1) auxin receptor complex. ACS Chemical Biology 7: 590–593. PubMed
Hayashi K, Tan X, Zheng N, Hatate T, Kimura Y, Kepinski S, Nozaki H. 2008. Small‐molecule agonists and antagonists of F‐box protein–substrate interactions in auxin perception and signaling. Proceedings of the National Academy of Sciences, USA 105: 5632–5637. PubMed PMC
He W, Brumos J, Li H, Ji Y, Ke M, Gong X, Zeng Q, Li W, Zhang X, An F PubMed PMC
Heller R. 1953. Recherches sur la nutrition minérale des tissus végétaux cultivés
Hernández‐García J, Carrillo‐Carrasco VP, Rienstra J, Tanaka K, De Roij M, Dipp‐Álvarez M, Freire‐Ríos A, Crespo I, Boer R, Van Den Berg WAM PubMed PMC
Ikeuchi M, Iwase A, Rymen B, Lambolez A, Kojima M, Takebayashi Y, Heyman J, Watanabe S, Seo M, De Veylder L PubMed PMC
Jaiswal S, Tripathi DK, Wang Y, Singh VP, Gupta R. 2024. ABLs and transmembrane kinases shape extracellular auxin perception. Trends in Plant Science 29: 1162–1164. PubMed
Kato K, Matsumoto T, Koiwai A, Mizusaki S, Nishida K, Noguchi M, Tamaki E. 1972. Liquid suspension culture of tobacco cells. In: Gyozo T, ed. International fermentation symposium. Fermentation technology today. Osaka, Japan: Society of Fermentation Technology, 689–695.
Kim SY, Lee J, Eshed‐Williams L, Zilberman D, Sung ZR. 2012. EMF1 and PRC2 Cooperate to Repress Key Regulators of Arabidopsis Development. PLoS Genetics 8: e1002512. PubMed PMC
Kim SY, Zhu T, Sung ZR. 2010. Epigenetic regulation of gene programs by EMF1 and EMF2 in Arabidopsis. Plant Physiology 152: 516–528. PubMed PMC
LeClere S, Tellez R, Rampey RA, Matsuda SPT, Bartel B. 2002. Characterization of a family of IAA‐amino acid conjugate hydrolases from Arabidopsis. Journal of Biological Chemistry 277: 20446–20452. PubMed
Leyser O. 2018. Auxin signaling. Plant Physiology 176: 465–479. PubMed PMC
Li H, Durbin R. 2010. Fast and accurate long‐read alignment with Burrows–Wheeler transform. Bioinformatics 26: 589–595. PubMed PMC
Lu B, Wang S, Feng H, Wang J, Zhang K, Li Y, Wu P, Zhang M, Xia Y, Peng C PubMed
Maruyama S, Shibuya N, Kaku H, Desaki Y. 2020. Arabidopsis cell culture for comparable physiological and genetic studies. Plant Signaling & Behavior 15: 1781384. PubMed PMC
Marzi D, Brunetti P, Saini SS, Yadav G, Puglia GD, Dello Ioio R. 2024. Role of transcriptional regulation in auxin‐mediated response to abiotic stresses. Frontiers in Genetics 15: 1394091. PubMed PMC
Mashiguchi K, Tanaka K, Sakai T, Sugawara S, Kawaide H, Natsume M, Hanada A, Yaeno T, Shirasu K, Yao H PubMed PMC
Matsumoto T, Okunishi K, Nishida K, Noguchi M, Tamaki E. 1971. Studies on the culture conditions of higher plant cells in suspension culture: Part II. Effect of nutritional factors on the growth. Agricultural and Biological Chemistry 35: 543–551.
Mayerni R, Satria B, Wardhani D, Chan S. 2020. Effect of auxin (2,4‐D) and cytokinin (BAP) in callus induction of local patchouli plants (
Mi H, Muruganujan A, Ebert D, Huang X, Thomas PD. 2019. PANTHER v.14: more genomes, a new PANTHER GO‐slim and improvements in enrichment analysis tools. Nucleic Acids Research 47: D419–D426. PubMed PMC
Müller K, Dobrev PI, Pěnčík A, Hošek P, Vondráková Z, Filepová R, Malínská K, Brunoni F, Helusová L, Moravec T PubMed PMC
Murashige T, Skoog F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 15: 473–497.
Muthu Lakshmi Bavithra C, Murugan M, Pavithran S, Naveena K. 2023. Enthralling genetic regulatory mechanisms meddling insecticide resistance development in insects: role of transcriptional and post‐transcriptional events. Frontiers in Molecular Biosciences 10: 1257859. PubMed PMC
Nagata T. 2023. Hidden history of the tobacco BY‐2 cell line. Journal of Plant Research 136: 781–786. PubMed PMC
Nagata T, Hasezawa S, Inzé D. 2004. Tobacco BY‐2 cells. Berlin, Heidelberg, Germany: Springer Berlin Heidelberg.
Nagata T, Nemoto Y, Hasezawa S. 1992. Tobacco BY‐2 cell line as the “HeLa” cell in the cell biology of higher plants. In: Jeon KW, Friedlander M, eds. International Review of Cytology. San Diego, CA: Elsevier, vol. 132, 1–30.
Ngomuo M, Mneney E, Ndakidemi P. 2013. The effects of auxins and cytokinin on growth and development of (
Noguchi M, Matsumoto T, Hirata Y, Yamamoto K, Katsuyama A, Kato A, Azechi S. 1977. Improvement of growth rates of plant cell cultures. In: Barz W, Reinhard E, Zenk MH, eds. Proceedings in life sciences. Plant tissue culture and its bio‐technological application. Berlin, Heidelberg, Germany: Springer Berlin Heidelberg, 85–94.
Opatrný Z, Opatrná J. 1976. The specificity of the effect of 2,4‐D and NAA of the growth, micromorphology, and occurrence of starch in long‐term Nicotiana tabacum L. cell strains. Biologia Plantarum 18: 359–365.
Parikh SB, Houghton C, Van Oss SB, Wacholder A, Carvunis A. 2022. Origins, evolution, and physiological implications of PubMed PMC
Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. 2017. Salmon provides fast and bias‐aware quantification of transcript expression. Nature Methods 14: 417–419. PubMed PMC
Petrášek J, Černá A, Schwarzerová K, Elčkner M, Morris DA, Zažímalová E. 2003. Do phytotropins inhibit auxin efflux by impairing vesicle traffic? Plant Physiology 131: 254–263. PubMed PMC
Pimentel H, Bray NL, Puente S, Melsted P, Pachter L. 2017. Differential analysis of RNA‐seq incorporating quantification uncertainty. Nature Methods 14: 687–690. PubMed
Pischke MS, Huttlin EL, Hegeman AD, Sussman MR. 2006. A transcriptome‐based characterization of habituation in plant tissue culture. Plant Physiology 140: 1255–1278. PubMed PMC
Prigge MJ, Platre M, Kadakia N, Zhang Y, Greenham K, Szutu W, Pandey BK, Bhosale RA, Bennett MJ, Busch W PubMed PMC
Qi L, Kwiatkowski M, Chen H, Hoermayer L, Sinclair S, Zou M, Del Genio CI, Kubeš MF, Napier R, Jaworski K PubMed
Qi L, Kwiatkowski M, Kulich I, Chen H, Gao Y, Yun P, Li L, Shabala S, Farmer EE, Jaworski K DOI
Qiao F, Petrasek J, Nick P. 2010. Light can rescue auxin‐dependent synchrony of cell division in a tobacco cell line. Journal of Experimental Botany 61: 503–510. PubMed PMC
Rappsilber J, Mann M, Ishihama Y. 2007. Protocol for micro‐purification, enrichment, pre‐fractionation and storage of peptides for proteomics using StageTips . Nature Protocols 2: 1896–1906. PubMed
Rodriguez L, Fiedler L, Zou M, Giannini C, Monzer A, Vladimirtsev D, Randuch M, Yu Y, Gelová Z, Verstraeten I, 2025. ABP1/ABL3‐TMK1 cell‐surface auxin signaling targets PIN2‐mediated auxin fluxes for root gravitropism. Cell 188: 6138–6150. PubMed
Salehin M, Li B, Tang M, Katz E, Song L, Ecker JR, Kliebenstein DJ, Estelle M. 2019. Auxin‐sensitive Aux/IAA proteins mediate drought tolerance in Arabidopsis by regulating glucosinolate levels. Nature Communications 10: 4021. PubMed PMC
Sarrion‐Perdigones A, Vazquez‐Vilar M, Palaci J, Castelijns B, Forment J, Ziarsolo P, Blanca J, Granell A, Orzaez D. 2013. GoldenBraid 2.0: a comprehensive DNA assembly framework for plant synthetic biology. Plant Physiology 162: 1618–1631. PubMed PMC
Serre NBC, Kralík D, Yun P, Slouka Z, Shabala S, Fendrych M. 2021. AFB1 controls rapid auxin signalling through membrane depolarization in PubMed PMC
Shimizu T, Eguchi K, Nishida I, Laukens K, Witters E, Van Onckelen H, Nagata T. 2006. A novel cell division factor from tobacco 2B‐13 cells that induced cell division in auxin‐starved tobacco BY‐2 cells. Naturwissenschaften 93: 278–285. PubMed
Shimotohno A, Aki SS, Takahashi N, Umeda M. 2021. Regulation of the plant cell cycle in response to hormones and the environment. Annual Review of Plant Biology 72: 273–296. PubMed
Sierro N, Battey JND, Ouadi S, Bakaher N, Bovet L, Willig A, Goepfert S, Peitsch MC, Ivanov NV. 2014. The tobacco genome sequence and its comparison with those of tomato and potato. Nature Communications 5: 1–9. PubMed PMC
Simon S, Petrášek J. 2011. Why plants need more than one type of auxin. Plant Science 180: 454–460. PubMed
Song L, Florea L. 2015. Rcorrector: efficient and accurate error correction for Illumina RNA‐seq reads. GigaScience 4: 48. PubMed PMC
Staswick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT, Maldonado MC, Suza W. 2005. Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole‐3‐acetic acid. Plant Cell 17: 616–627. PubMed PMC
Syono K, Fujita T. 1994. Habituation as a tumorous state that is interchangeable with a normal state in plant cells. In: Jeon KW, Jarvik J, eds. International Review of Cytology. San Diego, CA: Elsevier, vol. 152, 265–299.
Syono K, Furuya T. 1974. Induction of auxin‐nonrequiring tobacco calluses and its reversal by treatments with auxins. Plant and Cell Physiology 15: 7–17.
Thorpe TA. 2007. History of plant tissue culture. Molecular Biotechnology 37: 169–180. PubMed
Tomanek I, Grah R, Lagator M, Andersson AMC, Bollback JP, Tkačik G, Guet CC. 2020. Gene amplification as a form of population‐level gene expression regulation. Nature Ecology & Evolution 4: 612–625. PubMed
Tsugafune S, Mashiguchi K, Kosuke F, Takebayashi Y, Nishimura T, Sakai T, Shimada Y, Kasahara H, Koshiba T, Hayashi K‐I. 2017. Yucasin DF, a potent and persistent inhibitor of auxin biosynthesis in plants. Scientific Reports 7: 1–13. PubMed PMC
Vanneste S, Pei Y, Friml J. 2025. Mechanisms of auxin action in plant growth and development. Nature Reviews Molecular Cell Biology 26: 648–666. PubMed
Wend S, Bosco CD, Kämpf MM, Ren F, Palme K, Weber W, Dovzhenko A, Zurbriggen MD. 2013. A quantitative ratiometric sensor for time‐resolved analysis of auxin dynamics. Scientific Reports 3: 2052. PubMed PMC
Xie Q, Frugis G, Colgan D, Chua N‐H. 2000. PubMed PMC
Xu J, PerezSanchez P, Sadravi S. 2025. Unlocking the full potential of plant cell‐based production for valuable proteins: challenges and innovative strategies. Biotechnology Advances 79: 108526. PubMed PMC
Yang C, Deng W, Tang N, Wang X, Yan F, Lin D, Li Z. 2013. Overexpression of ZmAFB2, the maize homologue of AFB2 gene, enhances salt tolerance in transgenic tobacco. Plant Cell, Tissue and Organ Culture 112: 171–179.
Yokoya NS, Handro W. 1996. Effects of auxins and cytokinins on tissue culture of
Yu Y, Tang W, Lin W, Li W, Zhou X, Li Y, Chen R, Zheng R, Qin G, Cao W PubMed PMC
Zuo J, Niu Q‐W, Chua N‐H. 2000. Technical advance: an estrogen receptor‐based transactivator XVE mediates highly inducible gene expression in transgenic plants. The Plant Journal 24: 265–273. PubMed