Blastocrithidia-A Genetic Alien from the Planet Earth
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
40721315
PubMed Central
PMC12667401
DOI
10.1101/cshperspect.a041868
PII: cshperspect.a041868
Knihovny.cz E-zdroje
- MeSH
- Euglenozoa * genetika MeSH
- genetický kód * MeSH
- RNA transferová genetika MeSH
- terminační kodon MeSH
- Země (planeta) MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- RNA transferová MeSH
- terminační kodon MeSH
The standard genetic code, which applies almost without exception, is the key to our understanding of molecular biological processes. Although it is close to impossible to imagine that sparse code changes occur naturally given proteomic constraints, specific cases of codon usage alterations have been documented, mostly in unicellular eukaryotes. Here, we summarize what we have learned about Blastocrithidia, a little-known parasitic flagellate with all three stop codons reassigned to sense codons, which uses UAA as the only universal stop codon. We first describe its origin, life cycle, morphology, cultivation, and transformation, the combination of which predisposes it to become the first tractable eukaryote with a noncanonical genetic code. Next, we present our across-the-genome analysis revealing uneven distribution of in-frame stops and discuss the features distinguishing in-frame and genuine stop codons that allow for so-called position-specific termination. Finally, given what is known about stop codon readthrough by near-cognate transfer RNAs (tRNAs) and the fidelity of stop codon recognition by eukaryotic release factor 1 (eRF1), we propose a model illuminating how unique properties of Blastocrithidia tRNAs, combined with specific alterations of its eRF1, enable this massive deviation from the standard genetic code.
Faculty of Science University of South Bohemia 370 05 České Budějovice Czechia
Institute of Microbiology Czech Academy of Sciences 142 20 Prague Czechia
Institute of Parasitology Biology Centre Czech Academy of Sciences 370 05 České Budějovice Czechia
Life Science Research Centre Faculty of Science University of Ostrava 710 00 Ostrava Czechia
Zobrazit více v PubMed
Afonin DA, Gerasimov ES, Škodová-Sveráková I, Záhonová K, Gahura O, Albanaz ATS, Myšková E, Bykova A, Paris Z, Lukeš J, et al. 2024. PubMed DOI PMC
Alfonzo JD, Blanc V, Estévez AM, Rubio MA, Simpson L. 1999. C to U editing of the anticodon of imported mitochondrial tRNA(Trp) allows decoding of the UGA stop codon in PubMed DOI PMC
Alkalaeva E, Mikhailova T. 2017. Reassigning stop codons via translation termination: how a few eukaryotes broke the dogma. Bioessays 39: 1600213. 10.1002/bies.201600213 PubMed DOI
Alkalaeva EZ, Pisarev AV, Frolova LY, Kisselev LL, Pestova TV. 2006. In vitro reconstitution of eukaryotic translation reveals cooperativity between release factors eRF1 and eRF3. Cell 125: 1125–1136. 10.1016/j.cell.2006.04.035 PubMed DOI
Allmang C, Wurth L, Krol A. 2009. The selenium to selenoprotein pathway in eukaryotes: more molecular partners than anticipated. Biochim Biophys Acta 1790: 1415–1423. 10.1016/j.bbagen.2009.03.003 PubMed DOI
Amrani N, Ganesan R, Kervestin S, Mangus DA, Ghosh S, Jacobson A. 2004. A faux 3′-UTR promotes aberrant termination and triggers nonsense-mediated mRNA decay. Nature 432: 112–118. 10.1038/nature03060 PubMed DOI
Bachvaroff TR. 2019. A precedented nuclear genetic code with all three termination codons reassigned as sense codons in the syndinean PubMed DOI PMC
Baejen C, Torkler P, Gressel S, Essig K, Söding J, Cramer P. 2014. Transcriptome maps of mRNP biogenesis factors define pre-mRNA recognition. Mol Cell 55: 745–757. 10.1016/j.molcel.2014.08.005 PubMed DOI
Baranov PV, Atkins JF. 2023. No stopping with a short-stem transfer RNA. Nature 613: 631–632. 10.1038/d41586-022-04585-5 PubMed DOI
Beznosková P, Pavlíková Z, Zeman J, Aitken CE, Valášek LS. 2019. Yeast applied readthrough inducing system (YARIS): an in vivo assay for the comprehensive study of translational readthrough. Nucleic Acids Res 47: 6339–6350. 10.1093/nar/gkz346 PubMed DOI PMC
Beznosková P, Bidou L, Namy O, Valášek LS. 2021. Increased expression of tryptophan and tyrosine tRNAs elevates stop codon readthrough of reporter systems in human cell lines. Nucleic Acids Res 49: 5202–5215. 10.1093/nar/gkab315 PubMed DOI PMC
Blanchet S, Rowe M, Von der Haar T, Fabret C, Demais S, Howard MJ, Namy O. 2015. New insights into stop codon recognition by eRF1. Nucleic Acids Res 43: 3298–3308. 10.1093/nar/gkv154 PubMed DOI PMC
Blanchet S, Cornu D, Hatin I, Grosjean H, Bertin P, Namy O. 2018. Deciphering the reading of the genetic code by near-cognate tRNA. Proc Natl Acad Sci 115: 3018–3023. 10.1073/pnas.1715578115 PubMed DOI PMC
Böker CA, Schaub GA. 1984. Scanning electron microscopic studies of PubMed DOI
Bonilla M, Krull E, Irigoín F, Salinas G, Comini MA. 2016. Selenoproteins of African trypanosomes are dispensable for parasite survival in a mammalian host. Mol Biochem Parasitol 206: 13–19. 10.1016/j.molbiopara.2016.03.002 PubMed DOI
Brown A, Shao S, Murray J, Hegde RS, Ramakrishnan V. 2015. Structural basis for stop codon recognition in eukaryotes. Nature 524: 493–496. 10.1038/nature14896 PubMed DOI PMC
Čapková Pavlíková Z, Miletínová P, Roithová A, Pospíšilová K, Záhonová K, Kachale A, Becker T, Durante IM, Lukeš J, Paris Z, et al. 2025. Ribosomal A-site interactions with near-cognate tRNAs drive stop codon readthrough. Nat Struct Mol Biol 32: 662–674. 10.1038/s41594-024-01450-z PubMed DOI
Cerisola JA, Rohwedder R, Bozzini JP, Del Prado CE. 1971. PubMed DOI
Cheng Z, Saito K, Pisarev AV, Wada M, Pisareva VP, Pestova TV, Gajda M, Round A, Kong C, Lim M, et al. 2009. Structural insights into eRF3 and stop codon recognition by eRF1. Genes Dev 23: 1106–1118. 10.1101/gad.1770109 PubMed DOI PMC
Cohen J, Dupuis P, Viguès B. 1990. Expression of a ciliate gene in PubMed DOI
Crick FH. 1968. The origin of the genetic code. J Mol Biol 38: 367–379. PubMed
de la Torre D, Chin JW. 2021. Reprogramming the genetic code. Nat Rev Genet 22: 169–184. 10.1038/s41576-020-00307-7 PubMed DOI
DeMontigny W, Bachvaroff T. 2025. The nuclear and mitochondrial genomes of PubMed DOI PMC
Deo RC, Bonanno JB, Sonenberg N, Burley SK. 1999. Recognition of polyadenylate RNA by the poly(A)-binding protein. Cell 98: 835–845. 10.1016/S0092-8674(00)81517-2 PubMed DOI
Eigen M, Lindemann BF, Tietze M, Winkler-Oswatitsch R, Dress A, von Haeseler A. 1989. How old is the genetic code? Statistical geometry of tRNA provides an answer. Science 244: 673–679. 10.1126/science.2497522 PubMed DOI
Eliseev B, Kryuchkova P, Alkalaeva E, Frolova L. 2011. A single amino acid change of translation termination factor eRF1 switches between bipotent and omnipotent stop-codon specificity. Nucleic Acids Res 39: 599–608. 10.1093/nar/gkq759 PubMed DOI PMC
Forchhammer K, Leinfelder W, Böck A. 1989. Identification of a novel translation factor necessary for the incorporation of selenocysteine into protein. Nature 342: 453–456. 10.1038/342453a0 PubMed DOI
Frolov AO, Skarlato SO. 1988. Localization and modes of anchoring of the flagellates
Frolov AO, Malysheva MN, Ganyukova AI, Yurchenko V, Kostygov AY. 2017. Life cycle of PubMed DOI
Frolov AO, Malysheva MN, Ganyukova AI, Yurchenko V, Kostygov AY. 2018. Obligate development of PubMed DOI PMC
Frolov AO, Malysheva MN, Ganyukova AI, Spodareva VV, Králová J, Yurchenko V, Kostygov AY. 2020. If host is refractory, insistent parasite goes berserk: trypanosomatid PubMed DOI PMC
Frolov AO, Kostygov AY, Yurchenko V. 2021. Development of monoxenous trypanosomatids and phytomonads in insects. Trends Parasitol 37: 538–551. PubMed
Galan A, Kraeva N, Záhonová K, Butenko A, Kostygov AY, Paris Z, Pergner J, Bianchi C, Fakih F, Saura A, et al. 2025. Converting PubMed DOI PMC
Gaydukova SA, Moldovan MA, Vallesi A, Heaphy SM, Atkins JF, Gelfand MS, Baranov PV. 2023. Nontriplet feature of genetic code in PubMed DOI PMC
Geslain R, Pan T. 2010. Functional analysis of human tRNA isodecoders. J Mol Biol 396: 821–831. 10.1016/j.jmb.2009.12.018 PubMed DOI PMC
Giegé R, Eriani G. 2023. The tRNA identity landscape for aminoacylation and beyond. Nucleic Acids Res 51: 1528–1570. 10.1093/nar/gkad007 PubMed DOI PMC
Grosjean H, Westhof E. 2016. An integrated, structure- and energy-based view of the genetic code. Nucleic Acids Res 44: 8020–8040. 10.1093/nar/gkw608 PubMed DOI PMC
Hancock K, Hajduk SL. 1992. Sequence of PubMed DOI PMC
Heaphy SM, Mariotti M, Gladyshev VN, Atkins JF, Baranov PV. 2016. Novel ciliate genetic code variants including the reassignment of all three stop codons to sense codons in PubMed DOI PMC
Hellen CUT. 2018. Translation termination and ribosome recycling in eukaryotes. Cold Spring Harb Perspect Biol 10: a032656. 10.1101/cshperspect.a032656 PubMed DOI PMC
Heuer A, Gerovac M, Schmidt C, Trowitzsch S, Preis A, Kötter P, Berninghausen O, Becker T, Beckmann R, Tampe R. 2017. Structure of the 40S-ABCE1 post-splitting complex in ribosome recycling and translation initiation. Nat Struct Mol Biol 24: 453–460. 10.1038/nsmb.3396 PubMed DOI
Hirsh D. 1971. Tryptophan transfer RNA as the UGA suppressor. J Mol Biol 58: 439–458. 10.1016/0022-2836(71)90362-7 PubMed DOI
Inagaki Y, Blouin C, Doolittle WF, Roger AJ. 2002. Convergence and constraint in eukaryotic release factor 1 (eRF1) domain 1: the evolution of stop codon specificity. Nucleic Acids Res 30: 532–544. 10.1093/nar/30.2.532 PubMed DOI PMC
Ivanov A, Mikhailova T, Eliseev B, Yeramala L, Sokolova E, Susorov D, Shuvalov A, Schaffitzel C, Alkalaeva E. 2016. PABP enhances release factor recruitment and stop codon recognition during translation termination. Nucleic Acids Res 44: 7766–7776. 10.1093/nar/gkw635 PubMed DOI PMC
Jensen C, Schaub GA. 1991. Development of PubMed DOI
Kachale A, Pavlíková Z, Nenarokova A, Roithová A, Durante IM, Miletínová P, Záhonová K, Nenarokov S, Votýpka J, Horáková E, et al. 2023. Short tRNA anticodon stem and mutant eRF1 allow stop codon reassignment. Nature 613: 751–758. 10.1038/s41586-022-05584-2 PubMed DOI
Kemp AJ, Betney R, Ciandrini L, Schwenger AC, Romano MC, Stansfield I. 2013. A yeast tRNA mutant that causes pseudohyphal growth exhibits reduced rates of CAG codon translation. Mol Microbiol 87: 284–300. 10.1111/mmi.12096 PubMed DOI PMC
Kini HK, Silverman IM, Ji X, Gregory BD, Liebhaber SA. 2016. Cytoplasmic poly(A) binding protein-1 binds to genomically encoded sequences within mammalian mRNAs. RNA 22: 61–74. 10.1261/rna.053447.115 PubMed DOI PMC
Kleina LG, Masson JM, Normanly J, Abelson J, Miller JH. 1990. Construction of PubMed DOI
Komine Y, Inokuchi H. 1990. Importance of the G27-A43 mismatch at the anticodon stem of PubMed DOI
Kostygov AY, Karnkowska A, Votýpka J, Tashyreva D, Maciszewski K, Yurchenko V, Lukeš J. 2021. Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses. Open Biol 11: 200407. 10.1098/rsob.200407 PubMed DOI PMC
Kostygov AY, Albanaz ATS, Butenko A, Gerasimov ES, Lukeš J, Yurchenko V. 2024. Phylogenetic framework to explore trait evolution in Trypanosomatidae. Trends Parasitol 40: 96–99. 10.1016/j.pt.2023.11.009 PubMed DOI
Kothe U, Rodnina MV. 2007. Codon reading by tRNAAla with modified uridine in the wobble position. Mol Cell 25: 167–174. 10.1016/j.molcel.2006.11.014 PubMed DOI
Kryuchkova P, Grishin A, Eliseev B, Karyagina A, Frolova L, Alkalaeva E. 2013. Two-step model of stop codon recognition by eukaryotic release factor eRF1. Nucleic Acids Res 41: 4573–4586. 10.1093/nar/gkt113 PubMed DOI PMC
Kryukov GV, Castellano S, Novoselov SV, Lobanov AV, Zehtab O, Guigó R, Gladyshev VN. 2003. Characterization of mammalian selenoproteomes. Science 300: 1439–1443. 10.1126/science.1083516 PubMed DOI
Laird M. 1959. DOI
Lei L, Burton ZF. 2022. “Superwobbling” and tRNA-34 wobble and tRNA-37 anticodon loop modifications in evolution and devolution of the genetic code. Life 12: 252. 10.3390/life12020252 PubMed DOI PMC
Lekomtsev S, Kolosov P, Bidou L, Frolova L, Rousset JP, Kisselev L. 2007. Different modes of stop codon restriction by the PubMed DOI PMC
Lind C, Oliveira A, Åqvist J. 2017. Origin of the omnipotence of eukaryotic release factor 1. Nat Commun 8: 1425. 10.1038/s41467-017-01757-0 PubMed DOI PMC
Lobanov AV, Gromer S, Salinas G, Gladyshev VN. 2006. Selenium metabolism in PubMed DOI PMC
Lozupone CA, Knight RD, Landweber LF. 2001. The molecular basis of nuclear genetic code change in ciliates. Curr Biol 11: 65–74. 10.1016/S0960-9822(01)00028-8 PubMed DOI
Lukeš J, Butenko A, Hashimi H, Maslov DA, Votýpka J, Yurchenko V. 2018. Trypanosomatids are much more than just trypanosomes: clues from the expanded family tree. Trends Parasitol 34: 466–480. 10.1016/j.pt.2018.03.002 PubMed DOI
Lukeš J, Tesařová M, Yurchenko V, Votýpka J. 2021. Characterization of a new cosmopolitan genus of trypanosomatid parasites, PubMed DOI
Mancera-Martínez E, Brito Querido J, Valášek LS, Simonetti A, Hashem Y. 2017. ABCE1: a special factor that orchestrates translation at the crossroad between recycling and initiation. RNA Biol 14: 1279–1285. 10.1080/15476286.2016.1269993 PubMed DOI PMC
Mangus DA, Evans MC, Jacobson A. 2003. Poly(A)-binding proteins: multifunctional scaffolds for the post-transcriptional control of gene expression. Genome Biol 4: 223. 10.1186/gb-2003-4-7-223 PubMed DOI PMC
Massey SE. 2008. The proteomic constraint and its role in molecular evolution. Mol Biol Evol 25: 2557–2565. 10.1093/molbev/msn210 PubMed DOI
Matheisl S, Berninghausen O, Becker T, Beckmann R. 2015. Structure of a human translation termination complex. Nucleic Acids Res 43: 8615–8626. 10.1093/nar/gkv909 PubMed DOI PMC
McGowan J, Kilias ES, Alacid E, Lipscombe J, Jenkins BH, Gharbi K, Kaithakottil GG, Macaulay IC, McTaggart S, Warring SD, et al. 2023. Identification of a non-canonicalciliate nuclear genetic code where UAA and UAG code for different amino acids. PLoS Genet 19: e1010913. 10.1371/journal.pgen.1010913 PubMed DOI PMC
McGowan J, Richards TA, Hall N, Swarbreck D. 2024. Multiple independent genetic code reassignments of the UAG stop codon in phyllopharyngean ciliates. PLoS Genet 17: e1011512. 10.1371/journal.pgen PubMed DOI PMC
Nyerges A, Vinke S, Flynn R, Owen SV, Rand EA, Budnik B, Keen E, Narasimhan K, Marchand JA, Baas-Thomas M, et al. 2023. A swapped genetic code prevents viral infections and gene transfer. Nature 615: 720–727. 10.1038/s41586-023-05824-z PubMed DOI PMC
Ogle JM, Brodersen DE, Clemons WM Jr, Tarry MJ, Carter AP, Ramakrishnan V. 2001. Recognition of cognate transfer RNA by the 30 PubMed DOI
Ogle JM, Murphy FV, Tarry MJ, Ramakrishnan V. 2002. Selection of tRNA by the ribosome requires a transition from an open to a closed form. Cell 111: 721–732. 10.1016/S0092-8674(02)01086-3 PubMed DOI
Olejniczak M, Uhlenbeck OC. 2006. tRNA residues that have coevolved with their anticodon to ensure uniform and accurate codon recognition. Biochimie 88: 943–950. 10.1016/j.biochi.2006.06.005 PubMed DOI
Ortiz-Meoz RF, Green R. 2010. Functional elucidation of a key contact between tRNA and the large ribosomal subunit rRNA during decoding. RNA 16: 2002–2013. 10.1261/rna.2232710 PubMed DOI PMC
Osawa S, Jukes TH. 1989. Codon reassignment (codon capture) in evolution. J Mol Evol 28: 271–278. 10.1007/BF02103422 PubMed DOI
Pánek T, Žihala D, Sokol M, Derelle R, Klimeš V, Hradilová M, Zadrobílková E, Susko E, Roger AJ, Čepička I, et al. 2017. Nuclear genetic codes with a different meaning of the UAG and the UAA codon. BMC Biol 15: 8. 10.1186/s12915-017-0353-y PubMed DOI PMC
Paris Z, Svobodová M, Kachale A, Horáková E, Nenarokova A, Lukeš J. 2021. A mitochondrial cytidine deaminase is responsible for C to U editing of tRNATrp to decode the UGA codon in PubMed DOI PMC
Patton WS. 1908. The life cycle of a species of
Peng PLM, Wallace FG. 1981. The cultivation of DOI
Pisarev AV, Skabkin MA, Pisareva VP, Skabkina OV, Rakotondrafara AM, Hentze MW, Hellen CUT, Pestova TV. 2010. The role of ABCE1 in eukaryotic posttermination ribosomal recycling. Mol Cell 37: 196–210. 10.1016/j.molcel.2009.12.034 PubMed DOI PMC
Podlipaev S. 1988.
Preis A, Heuer A, Barrio-Garcia C, Hauser A, Eyler DE, Berninghausen O, Green R, Becker T, Beckmann R. 2014. Cryoelectron microscopic structures of eukaryotic translation termination complexes containing eRF1-eRF3 or eRF1-ABCE1. Cell Rep 8: 59–65. 10.1016/j.celrep.2014.04.058 PubMed DOI PMC
Raftery LA, Yarus M. 1987. Systematic alterations in the anticodon arm make tRNA(Glu)-Suoc a more efficient suppressor. EMBO J 6: 1499–1506. 10.1002/j.1460-2075.1987.tb02392.x PubMed DOI PMC
Reduth D, Schaub GA. 1988. The ultrastructure of the cysts of PubMed DOI
Reduth D, Schaub GA, Pudney M. 1989. Cultivation of PubMed DOI
Salman A, Biziaev N, Shuvalova E, Alkalaeva E. 2024. mRNA context and translation factors determine decoding in alternative nuclear genetic codes. Bioessays 46: e2400058. 10.1002/bies.202400058 PubMed DOI
Schaub GA, Lösch P. 1989. Parasite/host-interrelationships of the trypanosomatids PubMed DOI
Schaub GA, Neukirchen K, Golecki J. 1992. Attachment of PubMed DOI
Schmeing TM, Voorhees RM, Kelley AC, Ramakrishnan V. 2011. How mutations in tRNA distant from the anticodon affect the fidelity of decoding. Nat Struct Mol Biol 18: 432–436. 10.1038/nsmb.2003 PubMed DOI PMC
Schneider A, Martin J, Agabian N. 1994. A nuclear encoded tRNA of PubMed DOI PMC
Schultz DW, Yarus M. 1994a. tRNA structure and ribosomal function. I: tRNA nucleotide 27-43 mutations enhance first position wobble. J Mol Biol 235: 1381–1394. 10.1006/jmbi.1994.1095 PubMed DOI
Schultz DW, Yarus M. 1994b. tRNA structure and ribosomal function. II: Interaction between anticodon helix and other tRNA mutations. J Mol Biol 235: 1395–1405. 10.1006/jmbi.1994.1096 PubMed DOI
Schultz DW, Yarus M. 1994c. Transfer RNA mutation and the malleability of the genetic code. J Mol Biol 235: 1377–1380. 10.1006/jmbi.1994.1094 PubMed DOI
Seah BKB, Singh A, Swart EC. 2022. Karyorelict ciliates use an ambiguous genetic code with context-dependent stop/sense codons. Peer Community J 2: e42. 10.24072/pcjournal.141 DOI
Sengupta S, Higgs PG. 2005. A unified model of codon reassignment in alternative genetic codes. Genetics 170: 831–840. 10.1534/genetics.104.037887 PubMed DOI PMC
Shoemaker CJ, Green R. 2011. Kinetic analysis reveals the ordered coupling of translation termination and ribosome recycling in yeast. Proc Natl Acad Sci 108: E1392–E1398. 10.1073/pnas.1113956108 PubMed DOI PMC
Smith TJ, Giles RN, Koutmou KS. 2024. Anticodon stem-loop tRNA modifications influence codon decoding and frame maintenance during translation. Semin Cell Dev Biol 154: 105–113. 10.1016/j.semcdb.2023.06.003 PubMed DOI PMC
Slabodnick MM, Ruby JG, Reiff SB, Swart EC, Gosai S, Prabakaran S, Witkowska E, Larue GE, Fisher S, Freeman RM, et al. 2017. The macronuclear genome of PubMed DOI PMC
Sladic RT, Lagnado CA, Bagley CJ, Goodall GJ. 2004. Human PABP binds AU-rich RNA via RNA-binding domains 3 and 4. Eur J Biochem 271: 450–457. 10.1046/j.1432-1033.2003.03945.x PubMed DOI
Song H, Mugnier P, Das AK, Webb HM, Evans DR, Tuite MF, Hemmings BA, Barford D. 2000. The crystal structure of human eukaryotic release factor eRF1—mechanism of stop codon recognition and peptidyl-tRNA hydrolysis. Cell 100: 311–321. 10.1016/S0092-8674(00)80667-4 PubMed DOI
Stadtman TC. 1996. Selenocysteine. Annu Rev Biochem 65: 83–100. 10.1146/annurev.bi.65.070196.000503 PubMed DOI
Swart EC, Serra V, Petroni G, Nowacki M. 2016. Genetic codes with no dedicated stop codon: context-dependent translation termination. Cell 166: 691–702. 10.1016/j.cell.2016.06.020 PubMed DOI PMC
Swart EC, Emmerich C, Seah KBB, Singh M, Shulgina Y, Singh A. 2024. How did UGA codon translation as tryptophan evolve in certain ciliates? A critique of Kachale et al. 2023 DOI
Tieszen KL, Molyneux DH, Abdel-Hafez SK. 1986. Host–parasite relationships of DOI
Turanov AA, Lobanov AV, Fomenko DE, Morrison HG, Sogin ML, Klobutcher LA, Hatfield DL, Gladyshev VN. 2009. Genetic code supports targeted insertion of two amino acids by one codon. Science 323: 259–261. 10.1126/science.1164748 PubMed DOI PMC
Valášek LS, Zeman J, Wagner S, Beznosková P, Pavlíková Z, Mohammad MP, Hronová V, Herrmannová A, Hashem Y, Gunišová S. 2017. Embraced by eIF3: structural and functional insights into the roles of eIF3 across the translation cycle. Nucleic Acids Res 45: 10948–10968. 10.1093/nar/gkx805 PubMed DOI PMC
Valášek LS, Kučerová M, Zeman J, Beznosková P. 2023. Cysteine tRNA acts as a stop codon readthrough-inducing tRNA in the human HEK293T cell line. RNA 29: 1379–1387. 10.1261/rna.079688.123 PubMed DOI PMC
Valle M, Sengupta J, Swami NK, Grassucci RA, Burkhardt N, Nierhaus KH, Agrawal RK, Frank J. 2002. Cryo-EM reveals an active role for aminoacyl-tRNA in the accommodation process. EMBO J 21: 3557–3567. 10.1093/emboj/cdf326 PubMed DOI PMC
Valle M, Zavialov A, Li W, Stagg SM, Sengupta J, Nielsen RC, Nissen P, Harvey SC, Ehrenberg M, Frank J. 2003. Incorporation of aminoacyl-tRNA into the ribosome as seen by cryo-electron microscopy. Nat Struct Mol Biol 10: 899–906. 10.1038/nsb1003 PubMed DOI
Weixlbaumer A, Murphy FV IV, Dziergowska A, Malkiewicz A, Vendeix FA, Agris PF, Ramakrishnan V. 2007. Mechanism for expanding the decoding capacity of transfer RNAs by modification of uridines. Nat Struct Mol Biol 14: 498–502. 10.1038/nsmb1242 PubMed DOI PMC
Wohlgamuth-Benedum JM, Rubio MA, Paris Z, Long S, Poliak P, Lukes J, Alfonzo JD. 2009. Thiolation controls cytoplasmic tRNA stability and acts as a negative determinant for tRNA editing in mitochondria. J Biol Chem 284: 23947–23953. 10.1074/jbc.M109.029421 PubMed DOI PMC
Wong LE, Li Y, Pillay S, Frolova L, Pervushin K. 2012. Selectivity of stop codon recognition in translation termination is modulated by multiple conformations of GTS loop in eRF1. Nucleic Acids Res 40: 5751–5765. 10.1093/nar/gks192 PubMed DOI PMC
Wu C, Roy B, He F, Yan K, Jacobson A. 2020. Poly(A)-binding protein regulates the efficiency of translation termination. Cell Rep 33: 108399. 10.1016/j.celrep.2020.108399 PubMed DOI PMC
Yarus M. 1982. Translational efficiency of transfer RNA's: uses of an extended anticodon. Science 218: 646–652. 10.1126/science.6753149 PubMed DOI
Záhonová K, Kostygov AY, Ševčíková T, Yurchenko V, Eliáš M. 2016. An unprecedented non-canonical nuclear genetic code with all three termination codons reassigned as sense codons. Curr Biol 26: 2364–2369. 10.1016/j.cub.2016.06.064 PubMed DOI
Záhonová K, Füssy Z, Albanaz ATS, Butenko A, Kachale A, Kraeva K, Galan A, Zakharova A, Stojanova B, Votýpka J, et al. 2025. Comparative genomic analysis of trypanosomatid protists illuminates an extensive change in the nuclear genetic code. mBio 28: e0088525. 10.1128/mbio.00885-25 PubMed DOI PMC
Zürcher JF, Robertson WE, Kappes T, Petris G, Elliott TS, Salmond GPC, Chin JW. 2022. Refactored genetic codes enable bidirectional genetic isolation. Science 378: 516–523. 10.1126/science.add8943 PubMed DOI PMC