Enterohemorrhagic Escherichia coli O157 outer membrane vesicles administered by oral gavage cause renal tubular injury and acute kidney failure in mice

. 2025 ; 15 () : 1704731. [epub] 20251124

Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41368436

BACKGROUND: Outer membrane vesicles (OMVs) secreted by enterohemorrhagic Escherichia coli (EHEC) O157 contain Shiga toxin 2 (Stx2), the major virulence factor involved in the pathogenesis of EHEC-associated hemolytic uremic syndrome (EHEC-HUS). However, it remains unclear whether EHEC OMVs produced in the human intestine during infection play a role in EHEC-HUS development. Using a mouse model, we investigated whether EHEC O157 OMVs administered by oral gavage translocate from the gastrointestinal tract to the bloodstream, enter the kidneys, and induce signs of EHEC-HUS. Because mice, unlike humans, express the Stx2 receptor Gb3 on the renal tubular epithelium but not on the glomerular endothelium, we focused on the ability of EHEC O157 OMVs to cause tubular damage, which represents a mechanism that, alongside glomerular thrombotic microangiopathy (TMA), contributes to acute kidney failure in EHEC-HUS. METHODS: The sera and kidneys of BALB/c mice orally administered EHEC O157 OMVs were examined for OMVs by immunoelectron and confocal immunofluorescence microscopy. Histopathological evaluation of the kidneys was performed by light and electron microscopy, and blood analyses were conducted using standard methods. The cytotoxicity of EHEC O157 OMVs toward human renal glomerular endothelial cells (HRGECs) and tubular epithelial cells (HK-2) was determined by Cell Death ELISA. In addition, sera from patients with EHEC O157-associated HUS were examined for O157 OMVs by immunoelectron microscopy. RESULTS: EHEC O157 OMVs were detected in the sera and kidneys of mice orally administered 100-400 µg of OMVs. The mice exhibited renal tubular epithelial damage and had significantly increased serum creatinine and blood urea nitrogen levels, indicating acute kidney failure. EHEC O157 OMVs induced apoptosis in HRGECs and HK-2 cells, the primary targets in EHEC-HUS. Moreover, EHEC O157 OMVs were found in the sera of patients with EHEC O157-associated HUS. CONCLUSION: Orally administered EHEC O157 OMVs translocated from the gastrointestinal tract to the kidneys, where they caused tubular epithelial injury followed by acute kidney failure. Combined with their cytotoxicity toward HRGECs and HK-2 cells and detection in patient sera, these findings indicate that EHEC O157 OMVs contribute to the pathogenesis of EHEC-HUS.

Zobrazit více v PubMed

Ake J., Jelacic S., Ciol M., Watkins S., Murray K., Christie D., et al. (2005). Relative nephroprotection during Escherichia coli O157:H7 infections: association with intravenous volume expansion. Pediatrics 115, e673–e680. doi:  10.1542/peds.2004-2236, PMID: PubMed DOI

Alconcher L. F., Coccia P. A., Suarez A. D. C., Monteverde M. L., Perez Y., Gutiérrez M. G., et al. (2018). Hyponatremia: a new predictor of mortality in patients with Shiga toxin-producing Escherichia coli hemolytic uremic syndrome. Pediatr. Nephrol. 33, 1791–1798. doi:  10.1007/s00467-018-3991-6, PMID: PubMed DOI

Ardissino G., Daccò V., Testa S., Civitillo C. F., Tel F., Possenti I., et al. (2015). Hemoconcentration: a major risk factor for neurological involvement in hemolytic uremic syndrome. Pediatr. Nephrol. 30, 345–352. doi:  10.1007/s00467-014-2918-0, PMID: PubMed DOI

Ardissino G., Tel F., Possenti I., Testa S., Consonni D., Paglialonga F., et al. (2016). Early volume expansion and outcomes of hemolytic uremic syndrome. Pediatrics 137, 1–9. doi:  10.1542/peds.2015-2153, PMID: PubMed DOI

Bauwens A., Bielaszewska M., Kemper B., Langehanenberg P., Von Bally G., Reichelt R., et al. (2011). Differential cytotoxic actions of Shiga toxin 1 and Shiga toxin 2 on microvascular and macrovascular endothelial cells. Thromb. Haemost. 105, 515–528. doi:  10.1160/TH10-02-0140, PMID: PubMed DOI

Bauwens A., Kunsmann L., Marejková M., Zhang W., Karch H., Bielaszewska M., et al. (2017). Intrahost milieu modulates production of outer membrane vesicles, vesicle-associated Shiga toxin 2a and cytotoxicity in Escherichia coli O157:H7 and O104:H4. Environ. Microbiol. Rep. 9, 626–634. doi:  10.1111/1758-2229.12562, PMID: PubMed DOI

Bielaszewska M., Greune L., Bauwens A., Dersch P., Mellmann A., Rüter C. (2021). Virulence factor cargo and host cell interactions of Shiga toxin-producing PubMed DOI

Bielaszewska M., Marejková M., Bauwens A., Kunsmann-Prokscha L., Mellmann A., Karch H. (2018). Enterohemorrhagic Escherichia coli O157 outer membrane vesicles induce interleukin 8 production in human intestinal epithelial cells by signaling via Toll-like receptors TLR4 and TLR5 and activation of the nuclear factor NF-κB. Int. J. Med. Microbiol. 308, 882–889. doi:  10.1016/j.ijmm.2018.06.004, PMID: PubMed DOI

Bielaszewska M., Rüter C., Bauwens A., Greune L., Jarosch K. A., Steil D., et al. (2017). Host cell interactions of outer membrane vesicle-associated virulence factors of enterohemorrhagic Escherichia coli O157: Intracellular delivery, trafficking and mechanisms of cell injury. PloS Pathog. 13, e1006159. doi:  10.1371/journal.ppat.1006159, PMID: PubMed DOI PMC

Bielaszewska M., Rüter C., Kunsmann L., Greune L., Bauwens A., Zhang W., et al. (2013). Enterohemorrhagic Escherichia coli hemolysin employs outer membrane vesicles to target mitochondria and cause endothelial and epithelial apoptosis. PloS Pathog. 9, e1003797. doi:  10.1371/journal.ppat.1003797, PMID: PubMed DOI PMC

Bittel M., Reichert P., Sarfati I., Dressel A., Leikam S., Uderhardt S., et al. (2021). Visualizing transfer of microbial biomolecules by outer membrane vesicles in microbe-host-communication PubMed DOI PMC

Bláhová K., Janda J., Kreisinger J., Matejková E., Sedivá A. (2002). Long-term follow-up of Czech children with D+ hemolytic-uremic syndrome. Pediatr. Nephrol. 17, 400–403. doi:  10.1007/s00467-002-0836-z, PMID: PubMed DOI

Böckenhauer J., Schild R., Kemper M. J., Henne T., Stein M. V., Oh J., et al. (2024). Volume expansion mitigates Shiga toxin-producing E. coli-hemolytic uremic syndrome in children. Pediatr. Nephrol. 39, 1901–1907. doi:  10.1007/s00467-023-06276-3, PMID: PubMed DOI PMC

Caruana J. C., Walper S. A. (2020). Bacterial membrane vesicles as mediators of microbe – microbe and microbe – host community interactions. Front. Microbiol. 11. doi:  10.3389/fmicb.2020.00432, PMID: PubMed DOI PMC

Chen S., Lei Q., Zou X., Ma D. (2023. a). The role and mechanisms of gram-negative bacterial outer membrane vesicles in inflammatory diseases. Front. Immunol. 14. doi:  10.3389/fimmu.2023.1157813, PMID: PubMed DOI PMC

Chen P. P., Zhang J. X., Li X. Q., Li L., Wu Q. Y., Liu L., et al. (2023. b). Outer membrane vesicles derived from gut microbiota mediate tubulointerstitial inflammation: a potential new mechanism for diabetic kidney disease. Theranostics 13, 3988–4003. doi:  10.7150/thno.84650, PMID: PubMed DOI PMC

Choi Y., Kwon Y., Kim D. K., Jeon J., Jang S. C., Wang T., et al. (2015). Gut microbe-derived extracellular vesicles induce insulin resistance, thereby impairing glucose metabolism in skeletal muscle. Sci. Rep. 5, 15878. doi:  10.1038/srep15878, PMID: PubMed DOI PMC

Dennhardt S., Pirschel W., Wissuwa B., Daniel C., Gunzer F., Lindig S., et al. (2018). Modeling hemolytic-uremic syndrome: In-depth characterization of distinct murine models reflecting different features of human disease. Front. Immunol. 9. doi:  10.3389/fimmu.2018.01459, PMID: PubMed DOI PMC

Díaz-Garrido N., Badia J., Baldomà L. (2021). Microbiota-derived extracellular vesicles in interkingdom communication in the gut. J. Extracell. Vesicles 10, e12161. doi:  10.1002/jev2.12161, PMID: PubMed DOI PMC

Fitzpatrick M. M., Shah V., Trompeter R. S., Dillon M. J., Barratt T. M. (1992). Interleukin-8 and polymorphoneutrophil leucocyte activation in hemolytic uremic syndrome of childhood. Kidney Int. 42, 951–956. doi:  10.1038/ki.1992.372, PMID: PubMed DOI

Friedrich A. W., Lu S., Bielaszewska M., Prager R., Bruns P., Xu J. G., et al. (2006). Cytolethal distending toxin in Escherichia coli O157:H7: spectrum of conservation, structure, and endothelial toxicity. J. Clin. Microbiol. 44, 1844–1846. doi:  10.1128/JCM.44.5.1844-1846.2006, PMID: PubMed DOI PMC

Garg A. X., Suri R. S., Barrowman N., Rehman F., Matsell D., Rosas-Arellano M. P., et al. (2003). Long-term renal prognosis of diarrhea-associated hemolytic uremic syndrome: a systematic review, meta-analysis, and meta-regression. JAMA 290, 1360–1370. doi:  10.1001/jama.290.10.1360, PMID: PubMed DOI

Gerber A., Karch H., Allerberger F., Verweyen H. M., Zimmerhackl L. B. (2002). Clinical course and the role of Shiga toxin-producing Escherichia coli infection in the hemolytic-uremic syndrome in pediatric patients 1997–2000, in Germany and Austria: a prospective study. J. Infect. Dis. 186, 493–500. doi:  10.1086/341940, PMID: PubMed DOI

Griffin P. M., Olmstead L. C., Petras R. E. (1990). Escherichia coli O157:H7-associated colitis. A clinical and histological study of 11 cases. Gastroenterology 99, 142–149. doi:  10.1016/0016-5085(90)91241-w, PMID: PubMed DOI

Han F., Wang W., Shi M., Zhou H., Yao Y., Li C., et al. (2022). Outer membrane vesicles from bacteria: Role and potential value in the pathogenesis of chronic respiratory diseases. Front. Cell. Infect. Microbiol. 12. doi:  10.3389/fcimb.2022.1093327, PMID: PubMed DOI PMC

Jones E. J., Booth C., Fonseca S., Parker A., Cross K., Miquel-Clopés A., et al. (2020). The uptake, trafficking, and biodistribution of Bacteroides thetaiotaomicron generated outer membrane vesicles. Front. Microbiol. 11. doi:  10.3389/fmicb.2020.00057, PMID: PubMed DOI PMC

Karch H., Tarr P. I., Bielaszewska M. (2005). Enterohaemorrhagic Escherichia coli in human medicine. Int. J. Med. Microbiol. 295, 405–418. doi:  10.1016/j.ijmm.2005.06.009, PMID: PubMed DOI

Karpman D., Håkansson A., Perez M. T., Isaksson C., Carlemalm E., Caprioli A., et al. (1998). Apoptosis of renal cortical cells in the hemolytic-uremic syndrome: PubMed DOI PMC

Karpman D., Tontanahal A. (2021). Extracellular vesicles in renal inflammatory and infectious diseases. Free Radic. Biol. Med. 171, 42–54. doi:  10.1016/j.freeradbiomed.2021.04.032, PMID: PubMed DOI

Keepers T. R., Psotka M. A., Gross L. K., Obrig T. G. (2006). A murine model of HUS: Shiga toxin with lipopolysaccharide mimics the renal damage and physiologic response of human disease. J. Am. Soc Nephrol. 17, 3404–3414. doi:  10.1681/ASN.2006050419, PMID: PubMed DOI

Kelly J., Oryshak A., Wenetsek M., Grabiec J., Handy S. (1990). The colonic pathology of Escherichia coli O157:H7 infection. Am. J. Surg. Pathol. 14, 87–92. doi:  10.1097/00000478-199001000-00010, PMID: PubMed DOI

Kim S. H., Lee Y. H., Lee S. H., Lee S. R., Huh J. W., Kim S. U., et al. (2011). Mouse model for hemolytic uremic syndrome induced by outer membrane vesicles of Escherichia coli O157:H7. FEMS Immunol. Med. Microbiol. 63, 427–434. doi:  10.1111/j.1574-695X.2011.00869.x, PMID: PubMed DOI

Kolling G. L., Matthews K. R. (1999). Export of virulence genes and Shiga toxin by membrane vesicles of Escherichia coli O157:H7. Appl. Environ. Microbiol. 65, 1843–1848. doi:  10.1128/AEM.65.5.1843-1848.1999, PMID: PubMed DOI PMC

Krsek D., Yara D. A., Hrbáčková H., Daniel O., Mančíková A., Schüller S., et al. (2023). Translocation of outer membrane vesicles from enterohemorrhagic Escherichia coli O157 across the intestinal epithelial barrier. Front. Microbiol. 14. doi:  10.3389/fmicb.2023.1198945, PMID: PubMed DOI PMC

Kunsmann L., Rüter C., Bauwens A., Greune L., Glüder M., Kemper B., et al. (2015). Virulence from vesicles: Novel mechanisms of host cell injury by Escherichia coli O104:H4 outbreak strain. Sci. Rep. 5, 13252. doi:  10.1038/srep13252, PMID: PubMed DOI PMC

Legros N., Pohlentz G., Runde J., Dusny S., Humpf H. U., Karch H., et al. (2017). Colocalization of receptors for Shiga toxins with lipid rafts in primary human renal glomerular endothelial cells and influence of D-PDMP on synthesis and distribution of glycosphingolipid receptors. Glycobiology 27, 947–965. doi:  10.1093/glycob/cwx048, PMID: PubMed DOI

Liang A., Korani L., Yeung C. L. S., Tey S. K., Yam J. W. P. (2024). The emerging role of bacterial extracellular vesicles in human cancers. J. Extracell. Vesicles 13, e12521. doi:  10.1002/jev2.12521, PMID: PubMed DOI PMC

Liu S., Butler C. A., Ayton S., Reynolds E. C., Dashper S. G. (2024). Porphyromonas gingivalis and the pathogenesis of Alzheimer's disease. Crit. Rev. Microbiol. 50, 127–137. doi:  10.1080/1040841X.2022.2163613, PMID: PubMed DOI

Liu J., Chen S., Zhao J. (2025). The role and mechanisms of Helicobacter pylori outer membrane vesicles in the pathogenesis of extra-gastrointestinal diseases. Microb. Pathog. 200, 107312. doi:  10.1016/j.micpath.2025.107312, PMID: PubMed DOI

Loos S., Oh J., Van De Loo L., Kemper M. J., Blohm M., Schild R. (2021). Hemoconcentration and predictors in Shiga toxin-producing E. coli-hemolytic uremic syndrome (STEC-HUS). Pediatr. Nephrol. 36, 3777–3783. doi:  10.1007/s00467-021-05108-6, PMID: PubMed DOI PMC

Marejková M., Bláhová K., Janda J., Fruth A., Petráš P. (2013). Enterohemorrhagic Escherichia coli as causes of hemolytic uremic syndrome in the Czech Republic. PloS One 8, e73927. doi:  10.1371/journal.pone.0073927, PMID: PubMed DOI PMC

McKee R. S., Schnadower D., Tarr P. I., Xie J., Finkelstein Y., Desai N., et al. (2020). Predicting hemolytic uremic syndrome and renal replacement therapy in Shiga toxin-producing Escherichia coli-infected children. Clin. Infect. Dis. 70, 1643–1651. doi:  10.1093/cid/ciz432, PMID: PubMed DOI PMC

Mellmann A., Bielaszewska M., Köck R., Friedrich A. W., Fruth A., Middendorf B., et al. (2008). Analysis of collection of hemolytic uremic syndrome-associated enterohemorrhagic Escherichia coli. Emerg. Infect. Dis. 14, 1287–1290. doi:  10.3201/eid1408.071082, PMID: PubMed DOI PMC

Mohawk K. L., Melton-Celsa A. R., Zangari T., Carroll E. E., O'Brien A. D. (2010). Pathogenesis of Escherichia coli O157:H7 strain 86–24 following oral infection of BALB/c mice with an intact commensal flora. Microb. Pathog. 48, 131–142. doi:  10.1016/j.micpath.2010.01.003, PMID: PubMed DOI PMC

Nagata S. (2000). Apoptotic DNA fragmentation. Exp. Cell. Res. 256, 12–18. doi:  10.1006/excr.2000.4834, PMID: PubMed DOI

Obrig T. G. (2010). Escherichia coli Shiga toxin mechanisms of action in renal disease. Toxins (Basel) 2, 2769–2794. doi:  10.3390/toxins2122769, PMID: PubMed DOI PMC

Olovo C. V., Ocansey D. K. W., Ji Y., Huang X., Xu M. (2024). Bacterial membrane vesicles in the pathogenesis and treatment of inflammatory bowel disease. Gut Microbes 16, 2341670. doi:  10.1080/19490976.2024.2341670, PMID: PubMed DOI PMC

Ou Z., Situ B., Huang X., Xue Y., He X., Li Q., et al. (2023). Single-particle analysis of circulating bacterial extracellular vesicles reveals their biogenesis, changes in blood and links to intestinal barrier. J. Extracell. Vesicles 12, e12395. doi:  10.1002/jev2.12395, PMID: PubMed DOI PMC

Palermo M., Alves-Rosa F., Rubel C., Fernández G. C., Fernández-Alonso G., Alberto F., et al. (2000). Pretreatment of mice with lipopolysaccharide (LPS) or IL-1beta exerts dose-dependent opposite effects on Shiga toxin-2 lethality. Clin. Exp. Immunol. 119, 77–83. doi:  10.1046/j.1365-2249.2000.01103 PubMed DOI PMC

Park J. Y., Choi J., Lee Y., Lee J. E., Lee E. H., Kwon H. J., et al. (2017). Metagenome analysis of bodily microbiota in a mouse model of Alzheimer disease using bacteria-derived membrane vesicles in blood. Exp. Neurobiol. 26, 369–379. doi:  10.5607/en.2017.26.6.369, PMID: PubMed DOI PMC

Porubsky S., Federico G., Müthing J., Jennemann R., Gretz N., Büttner S., et al. (2014). Direct acute tubular damage contributes to Shigatoxin-mediated kidney failure. J. Pathol. 234, 120–133. doi:  10.1002/path.4388, PMID: PubMed DOI PMC

Psotka M. A., Obata F., Kolling G. L., Gross L. K., Saleem M. A., Satchell S. C., et al. (2009). Shiga toxin 2 targets the murine renal collecting duct epithelium. Infect. Immun. 77, 959–969. doi:  10.1128/IAI.00679-08, PMID: PubMed DOI PMC

Rasooly R., Do P. M., Griffey S. M., Vilches-Moure J. G., Friedman M. (2010). Ingested Shiga toxin 2 (Stx2) causes histopathological changes in kidney, spleen, and thymus tissues and mortality in mice. J. Agric. Food Chem. 58, 9281–9286. doi:  10.1021/jf101744z, PMID: PubMed DOI

Richardson S. E., Karmali M. A., Becker L. E., Smith C. R. (1988). The histopathology of the hemolytic uremic syndrome associated with verocytotoxin-producing Escherichia coli infections. Hum. Pathol. 19, 1102–1108. doi:  10.1016/s0046-8177(88)80093-5, PMID: PubMed DOI

Rosales A., Hofer J., Zimmerhackl L. B., Jungraithmayr T. C., Riedl M., Giner T., et al. (2012). Need for long-term follow-up in enterohemorrhagic Escherichia coli-associated hemolytic uremic syndrome due to late-emerging sequelae. Clin. Infect. Dis. 54, 1413–1421. doi:  10.1093/cid/cis196, PMID: PubMed DOI

Rueter C., Bielaszewska M. (2020). Secretion and delivery of intestinal pathogenic Escherichia coli virulence factors via outer membrane vesicles. Front. Cell. Infect. Microbiol. 10. doi:  10.3389/fcimb.2020.00091, PMID: PubMed DOI PMC

Ryan M. J., Johnson G., Kirk J., Fuerstenberg S. M., Zager R. A., Torok-Storb. B. (1994). HK-2: an immortalized proximal tubule epithelial cell line from normal adult human kidney. Kidney Int. 45, 48–57. doi:  10.1038/ki.1994.6, PMID: PubMed DOI

Schaack B., Hindré T., Quansah N., Hannani D., Mercier C., Laurin D. (2022). Microbiota-derived extracellular vesicles detected in human blood from healthy donors. Int. J. Mol. Sci. 23, 13787. doi:  10.3390/ijms232213787, PMID: PubMed DOI PMC

Schaack B., Mercier C., Katby M., Hannani D., Vollaire J., Robert J. S., et al. (2024). Rapid biodistribution of fluorescent outer-membrane vesicles from the intestine to distant organs via the blood in mice. Int. J. Mol. Sci. 25, 1821. doi:  10.3390/ijms25031821, PMID: PubMed DOI PMC

Siegler R., Oakes R. (2005). Hemolytic uremic syndrome; pathogenesis, treatment, and outcome. Curr. Opin. Pediatr. 17, 200–204. doi:  10.1097/01.mop.0000152997.66070.e9, PMID: PubMed DOI

Ståhl A. L., Arvidsson I., Johansson K. E., Chromek M., Rebetz J., Loos S., et al. (2015). A novel mechanism of bacterial toxin transfer within host blood cell-derived microvesicles. PloS Pathog. 11, e1004619. doi:  10.1371/journal.ppat.1004619, PMID: PubMed DOI PMC

Ståhl A. L., Johansson K., Mossberg M., Kahn R., Karpman D. (2019). Exosomes and microvesicles in normal physiology, pathophysiology, and renal diseases. Pediatr. Nephrol. 34, 11–30. doi:  10.1007/s00467-017-3816-z, PMID: PubMed DOI PMC

Tarr P. I., Gordon C. A., Chandler W. L. (2005). Shiga-toxin-producing Escherichia coli and haemolytic uraemic syndrome. Lancet 365, 1073–1086. doi:  10.1016/S0140-6736(05)71144-2, PMID: PubMed DOI

Tesh V. L., Burris J. A., Owens J. W., Gordon V. M., Wadolkowski E. A., O´Brien A. D., et al. (1993). Comparison of the relative toxicities of Shiga-like toxins type I and type II for mice. Infect. Immun. 61, 3392–3402. doi:  10.1128/iai.61.8.3392-3402.1993, PMID: PubMed DOI PMC

Tulkens J., Vergauwen G., Van Deun J., Geeurickx E., Dhondt B., Lippens L., et al. (2020). Increased levels of systemic LPS-positive bacterial extracellular vesicles in patients with intestinal barrier dysfunction. Gut 69, 191–193. doi:  10.1136/gutjnl-2018-317726, PMID: PubMed DOI PMC

Villageliu D. N., Samuelson D. R. (2022). The role of bacterial membrane vesicles in human health and disease. Front. Microbiol. 13. doi:  10.3389/fmicb.2022.828704, PMID: PubMed DOI PMC

Wadolkowski E. A., Sung L. M., Burris J. A., Samuel J. E., O´Brien A. D. (1990). Acute renal tubular necrosis and death of mice orally infected with Escherichia coli strains that produce Shiga-like toxin type II. Infect. Immun. 58, 3959–3965. doi:  10.1128/iai.58.12.3959-3965.1990, PMID: PubMed DOI PMC

Walters M. D., Matthei I. U., Kay R., Dillon M. J., Barratt T. M. (1989). The polymorphonuclear leucocyte count in childhood haemolytic uraemic syndrome. Pediatr. Nephrol. 3, 130–134. doi:  10.1007/BF00852893, PMID: PubMed DOI

Wang Y., Luo X., Xiang X., Hao C., Ma D. (2023). Roles of bacterial extracellular vesicles in systemic diseases. Front. Microbiol. 14. doi:  10.3389/fmicb.2023.1258860, PMID: PubMed DOI PMC

Wei S., Ma X., Chen Y., Wang J., Hu L., Liu Z., et al. (2025). Alzheimer's disease-derived outer membrane vesicles exacerbate cognitive dysfunction, modulate the gut microbiome, and increase neuroinflammation and amyloid-beta production. Mol. Neurobiol. 62, 5109–5132. doi:  10.1007/s12035-024-04579-6, PMID: PubMed DOI

Wei S., Peng W., Mai Y., Li K., Wei W., Hu L., et al. (2020). Outer membrane vesicles enhance tau phosphorylation and contribute to cognitive impairment. J. Cell. Physiol. 235, 4843–4855. doi:  10.1002/jcp.29362, PMID: PubMed DOI

Xie J., Cools L., Van Imschoot G., Van Wonterghem E., Pauwels M. J., Vlaeminck I., et al. (2023. a). Helicobacter pylori-derived outer membrane vesicles contribute to Alzheimer’s disease pathogenesis via C3-C3aR signalling. J. Extracell. Vesicles 12, e12306. doi:  10.1002/jev2.12306, PMID: PubMed DOI PMC

Xie J., Haesebrouck F., Van Hoecke L., Vandenbroucke R. E. (2023. b). Bacterial extracellular vesicles: an emerging avenue to tackle diseases. Trends Microbiol. 31, 1206–1224. doi:  10.1016/j.tim.2023.05.010, PMID: PubMed DOI

Yokoyama K., Horiim T., Yamashino T., Hashikawa S., Barua S., Hasegawa T., et al. (2000). Production of Shiga toxin by Escherichia coli measured with reference to the membrane vesicle-associated toxins. FEMS Microbiol. Lett. 192, 139–144. doi:  10.1111/j.1574-6968.2000.tb09372.x, PMID: PubMed DOI

Zhang Z., Liu D., Liu S., Zhang S., Pan Y. (2021). The role of Porphyromonas gingivalis outer membrane vesicles in periodontal disease and related systemic diseases. Front. Cell. Infect. Microbiol. 10. doi:  10.3389/fcimb.2020.585917, PMID: PubMed DOI PMC

Zieg J., Dusek J., Marejkova M., Limrova P., Blazek D., Pavlicek P., et al. (2012). Fatal case of diarrhea-associated hemolytic uremic syndrome with severe neurologic involvement. Pediatr. Int. 54, 166–167. doi:  10.1111/j.1442-200X.2011.03533.x, PMID: PubMed DOI

Zoja C., Buelli S., Morigi M. (2010). Shiga toxin-associated hemolytic uremic syndrome: pathophysiology of endothelial dysfunction. Pediatr. Nephrol. 25, 2231–2240. doi:  10.1007/s00467-010-1522-1, PMID: PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...