The Immunostimulatory Effect of MIL-101(Al)-NH2 In Vivo and Its Potential to Overcome Bacterial Resistance to Penicillin Enhanced by Hypericin-Induced Photodynamic Therapy

. 2025 Dec 02 ; 26 (23) : . [epub] 20251202

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41373828

Grantová podpora
APVV-20-0129 Slovak Research and Development Agency
VEGA 2/0081/25 the Ministry of Education, Research, Development and Youth of the Slovak Republic
BCOrgFluorIDA No. 09I03-03-V04-00007 The EU NextGenerationEU through the Recovery and Resilience Plan for Slovakia

The increasing prevalence of multidrug-resistant bacteria necessitates alternative therapeutic strategies that combine antimicrobial efficacy with immunomodulatory properties. Here, we report the immunostimulatory activity and antibacterial potential of the amino-functionalized metal-organic framework MIL-101(Al)-NH2 as a carrier for penicillin (PEN) and hypericin (Hyp), a photodynamically active compound. Structural and physicochemical characterization confirmed successful encapsulation of PEN, Hyp, and their combination within MIL-101(Al)-NH2, with distinct effects on porosity, release kinetics, and thermal stability. Drug release studies revealed rapid Hyp liberation triggered by serum components, whereas PEN exhibited a biphasic, diffusion-controlled profile. Using a quail chorioallantoic membrane (CAM) model, we demonstrated that MIL-101(Al)-NH2 enhances interferon-α expression, indicating intrinsic immunostimulatory activity, and that Hyp-loaded systems promote angiogenic responses. In a bacterial infection CAM model, MIL-101(Al)-NH2 carriers loaded with Hyp or Hyp/PEN induced immunomodulatory changes and, upon photodynamic activation, inhibited bacterial growth. While Gram-negative Escherichia coli remained resistant, Gram-positive Staphylococcus epidermidis was effectively suppressed by photodynamic therapy (PDT), and Hyp/PEN co-delivery overcame bacterial resistance to PEN. These results highlight MIL-101(Al)-NH2 as a multifunctional nanoplatform with immunostimulatory capacity and PDT-enhanced antibacterial activity, offering a promising strategy to combat antibiotic resistance and infections associated with medical implants.

Zobrazit více v PubMed

Mandla S., Davenport Huyer L., Radisic M. Review: Multimodal Bioactive Material Approaches for Wound Healing. APL Bioeng. 2018;2:021503. doi: 10.1063/1.5026773. PubMed DOI PMC

Kingsley A. A Proactive Approach to Wound Infection. Nurs. Stand. 2001;15:50–58. doi: 10.7748/ns2001.04.15.30.50.c3012. PubMed DOI

Oropallo A.R., Andersen C., Abdo R., Hurlow J., Kelso M., Melin M., Serena T.E. Guidelines for Point-of-Care Fluorescence Imaging for Detection of Wound Bacterial Burden Based on Delphi Consensus. Diagnostics. 2021;11:1219. doi: 10.3390/diagnostics11071219. PubMed DOI PMC

Mishra N.O., Quon A.S., Nguyen A., Papazyan E.K., Hao Y., Liu Y. Constructing Physiological Defense Systems against Infectious Disease with Metal-Organic Frameworks: A Review. ACS Appl. Bio Mater. 2023;6:3052–3065. doi: 10.1021/acsabm.3c00391. PubMed DOI PMC

Sutton A.L., Mardel J.I., Hill M.R. Metal-Organic Frameworks (MOFs) As Hydrogen Storage Materials at Near-Ambient Temperature. Chem.–A Eur. J. 2024;30:e202400717. doi: 10.1002/chem.202400717. PubMed DOI

Kong F., Chen W. Carbon Dioxide Capture and Conversion Using Metal–Organic Framework (MOF) Materials: A Comprehensive Review. Nanomaterials. 2024;14:1340. doi: 10.3390/nano14161340. PubMed DOI PMC

Wang L., Huang J., Li Z., Han Z., Fan J. Review of Synthesis and Separation Application of Metal-Organic Framework-Based Mixed-Matrix Membranes. Polymers. 2023;15:1950. doi: 10.3390/polym15081950. PubMed DOI PMC

Sandhu Z.A., Raza M.A., Awwad N.S., Ibrahium H.A., Farwa U., Ashraf S., Dildar A., Fatima E., Ashraf S., Ali F. Metal-Organic Frameworks for next-Generation Energy Storage Devices; A Systematic Review. Mater. Adv. 2023;5:30–50. doi: 10.1039/D3MA00822C. DOI

Capková D., Almáši M. Chapter 9—Coordination Materials for Metal–Sulfur Batteries. In: Yasin G., Ibraheem S., Kumar A., Nguyen T.A., Maiyalagan T., editors. Electrochemistry and Photo-Electrochemistry of Nanomaterials. Elsevier; Amsterdam, The Netherlands: 2025. pp. 287–331.

Király N., Capková D., Gyepes R., Vargová N., Kazda T., Bednarčík J., Yudina D., Zelenka T., Čudek P., Zeleňák V., et al. Sr(II) and Ba(II) Alkaline Earth Metal–Organic Frameworks (AE-MOFs) for Selective Gas Adsorption, Energy Storage, and Environmental Application. Nanomaterials. 2023;13:234. doi: 10.3390/nano13020234. PubMed DOI PMC

Lin G., Zeng B., Li J., Wang Z., Wang S., Hu T., Zhang L. A Systematic Review of Metal Organic Frameworks Materials for Heavy Metal Removal: Synthesis, Applications and Mechanism. Chem. Eng. J. 2023;460:141710. doi: 10.1016/j.cej.2023.141710. DOI

Quintero-Álvarez F.G., Mendoza-Castillo D.I., Almáši M., García-Hernández E., Palomino-Asencio L., Cuautli C., Duran-Valle C.J., Adame-Pereira M., Bonilla-Petriciolet A. Lanthanide-Based Metal-Organic Frameworks MOF-76 for the Depollution of Xenobiotics from Water: Arsenic and Fluoride Adsorption Properties and Multi-Anionic Mechanism Analysis. J. Mol. Struct. 2025;1338:142113. doi: 10.1016/j.molstruc.2025.142113. DOI

Biglione C., Hidalgo T., Horcajada P. Nanoscaled Metal-Organic Frameworks: Charting a Transformative Path for Cancer Therapeutics and Beyond. Drug Deliv. Transl. Res. 2024;14:2041–2045. doi: 10.1007/s13346-024-01622-w. PubMed DOI

Almáši M. A Review on State of Art and Perspectives of Metal-Organic Frameworks (MOFs) in the Fight against Coronavirus SARS-CoV-2. J. Coord. Chem. 2021;74:2111–2127. doi: 10.1080/00958972.2021.1965130. DOI

Steenhaut T., Filinchuk Y., Hermans S. Aluminium-Based MIL-100(Al) and MIL-101(Al) Metal-Organic Frameworks, Derivative Materials and Composites: Synthesis, Structure, Properties and Applications. J. Mater. Chem. A. 2021;9:21483–21509. doi: 10.1039/D1TA04444C. DOI

Celeste A., Paolone A., Itié J.P., Borondics F., Joseph B., Grad O., Blanita G., Zlotea C., Capitani F. Mesoporous Metal-Organic Framework MIL-101 at High Pressure. J. Am. Chem. Soc. 2020;142:15012–15019. doi: 10.1021/jacs.0c05882. PubMed DOI

Yin H.Q., Yang J.C., Yin X.B. Ratiometric Fluorescence Sensing and Real-Time Detection of Water in Organic Solvents with One-Pot Synthesis of Ru@MIL-101(Al)-NH2. Anal. Chem. 2017;89:13434–13440. doi: 10.1021/acs.analchem.7b03723. PubMed DOI

Zhong X., Zhang Y., Tan L., Zheng T., Hou Y., Hong X., Du G., Chen X., Zhang Y., Sun X. An Aluminum Adjuvant-Integrated Nano-MOF as Antigen Delivery System to Induce Strong Humoral and Cellular Immune Responses. J. Control. Release. 2019;300:81–92. doi: 10.1016/j.jconrel.2019.02.035. PubMed DOI

Zhao Y., Song R., Zhang Z., Hu H., Ning W., Duan X., Jiao J., Fu X., Zhang G. Hollow Metal-Organic Framework-Based, Stimulator of Interferon Genes Pathway-Activating Nanovaccines for Tumor Immunotherapy. Nanoscale Adv. 2023;6:72–78. doi: 10.1039/D3NA00867C. PubMed DOI PMC

Hidalgo T., Simón-Vázquez R., González-Fernández A., Horcajada P. Cracking the Immune Fingerprint of Metal-Organic Frameworks. Chem. Sci. 2022;13:934–944. doi: 10.1039/D1SC04112F. PubMed DOI PMC

Rice A.M., Martin C.R., Galitskiy V.A., Berseneva A.A., Leith G.A., Shustova N.B. Photophysics Modulation in Photoswitchable Metal-Organic Frameworks. Chem. Rev. 2020;120:8790–8813. doi: 10.1021/acs.chemrev.9b00350. PubMed DOI

Zhang X., Yu T., Au V.K.M. Photoresponsive Metal-Organic Frameworks: Tailorable Platforms of Photoswitches for Advanced Functions. ChemNanoMat. 2022;8:e202100486. doi: 10.1002/cnma.202100486. DOI

Chen Z., Xing F., Yu P., Zhou Y., Luo R., Liu M., Ritz U. Metal-Organic Framework-Based Advanced Therapeutic Tools for Antimicrobial Applications. Acta Biomater. 2024;175:27–54. doi: 10.1016/j.actbio.2023.12.023. PubMed DOI

Tang J., Tang G., Niu J., Yang J., Zhou Z., Gao Y., Chen X., Tian Y., Li Y., Li J., et al. Preparation of a Porphyrin Metal-Organic Framework with Desirable Photodynamic Antimicrobial Activity for Sustainable Plant Disease Management. J. Agric. Food Chem. 2021;69:2382–2391. doi: 10.1021/acs.jafc.0c06487. PubMed DOI

Golmohamadpour A., Bahramian B., Khoobi M., Pourhajibagher M., Barikani H.R., Bahador A. Antimicrobial Photodynamic Therapy Assessment of Three Indocyanine Green-Loaded Metal-Organic Frameworks against Enterococcus Faecalis. Photodiagnosis Photodyn. Ther. 2018;23:331–338. doi: 10.1016/j.pdpdt.2018.08.004. PubMed DOI

Xin Q., Shah H., Nawaz A., Xie W., Akram M.Z., Batool A., Tian L., Jan S.U., Boddula R., Guo B., et al. Antibacterial Carbon-Based Nanomaterials. Adv. Mater. 2019;31:e1804838. doi: 10.1002/adma.201804838. PubMed DOI

Wang C., Luo Y., Liu X., Cui Z., Zheng Y., Liang Y., Li Z., Zhu S., Lei J., Feng X., et al. The Enhanced Photocatalytic Sterilization of MOF-Based Nanohybrid for Rapid and Portable Therapy of Bacteria-Infected Open Wounds. Bioact. Mater. 2022;13:200–211. doi: 10.1016/j.bioactmat.2021.10.033. PubMed DOI PMC

Shen M., Forghani F., Kong X., Liu D., Ye X., Chen S., Ding T. Antibacterial Applications of Metal–Organic Frameworks and Their Composites. Compr. Rev. Food Sci. Food Saf. 2020;19:1397–1419. doi: 10.1111/1541-4337.12515. PubMed DOI

Ávila-Márquez D.M., Blanco Flores A., Toledo Jaldin H.P., Burke Irazoque M., González Torres M., Vilchis-Nestor A.R., Toledo C.C., Gutiérrez-Cortez S., Díaz Rodríguez J.P., Dorazco-González A. MIL-53 MOF on Sustainable Biomaterial for Antimicrobial Evaluation Against E. coli and S. aureus Bacteria by Efficient Release of Penicillin G. J. Funct. Biomater. 2025;16:295. doi: 10.3390/jfb16080295. PubMed DOI PMC

Li R., Zhu Y., Zhang X., Li S., Wang D., Liu Z., Wang X., Hou Y., Li S. Crystalline Porous Frameworks (MOF@COF) for Adsorption-Desorption Analysis of β-Lactam Drugs. Polymer. 2025;320:127973. doi: 10.1016/j.polymer.2024.127973. DOI

Sadeghi M., Moradian M., Tayebi H.A., Mirabi A. Removal of Penicillin G from Aqueous Medium by PPI@SBA-15/ZIF-8 Super Adsorbent: Adsorption Isotherm, Thermodynamic, and Kinetic Studies. Chemosphere. 2023;311:136887. doi: 10.1016/j.chemosphere.2022.136887. PubMed DOI

Li Y., Xia X., Hou W., Lv H., Liu J., Li X. How Effective Are Metal Nanotherapeutic Platforms Against Bacterial Infections? A Comprehensive Review of Literature. Int. J. Nanomed. 2023;18:1109–1128. doi: 10.2147/IJN.S397298. PubMed DOI PMC

Sultana A., Kathuria A., Gaikwad K.K. Metal–Organic Frameworks for Active Food Packaging. A Review. Environ. Chem. Lett. 2022;20:1479–1495. doi: 10.1007/s10311-022-01387-z. PubMed DOI PMC

Arunkumar T., Castelino E., Lakshmi T., Mulky L., Selvanathan S.P., Tahir M. Metal–Organic Frameworks in Antibacterial Disinfection: A Review. ChemBioEng Rev. 2024;11:e202400006. doi: 10.1002/cben.202400006. DOI

Liu J., Wu D., Zhu N., Wu Y., Li G. Antibacterial Mechanisms and Applications of Metal-Organic Frameworks and Their Derived Nanomaterials. Trends Food Sci. Technol. 2021;109:413–434. doi: 10.1016/j.tifs.2021.01.012. DOI

Li R., Chen T., Pan X. Metal-Organic-Framework-Based Materials for Antimicrobial Applications. ACS Nano. 2021;15:3808–3848. doi: 10.1021/acsnano.0c09617. PubMed DOI

Huntošová V., Benziane A., Zauška L., Ambro L., Olejárová S., Joniová J., Hlávková N., Wagnières G., Zelenková G., Diko P., et al. The Potential of Metal–Organic Framework MIL-101(Al)–NH2 in the Forefront of Antiviral Protection of Cells via Interaction with SARS-CoV-2 Spike RBD Protein and Their Antibacterial Action Mediated with Hypericin and Photodynamic Treatment. J. Colloid Interface Sci. 2025;691:137454. doi: 10.1016/j.jcis.2025.137454. PubMed DOI

Chi L., Du M. Enhanced Visible-Light-Driven Photocatalytic Antibacterial Activity by in-Situ Synthesized NH2-MIL-101(Al)/AgI Heterojunction and Mechanism Insight. Environ. Res. 2025;267:120733. doi: 10.1016/j.envres.2024.120733. PubMed DOI

Zauška Ľ., Pillárová P., Volavka D., Kinnertová E., Bednarčík J., Brus J., Hornebecq V., Almáši M. Kinetic Adsorption Mechanism of Cobalt(II) Ions and Congo Red on Pristine and Schiff Base-Surface-Modified MIL-101(Fe)-NH2. Microporous Mesoporous Mater. 2025;386:113493. doi: 10.1016/j.micromeso.2025.113493. DOI

Hadjiivanov K.I., Panayotov D.A., Mihaylov M.Y., Ivanova E.Z., Chakarova K.K., Andonova S.M., Drenchev N.L. Power of Infrared and Raman Spectroscopies to Characterize Metal-Organic Frameworks and Investigate Their Interaction with Guest Molecules. Chem. Rev. 2021;121:1286–1424. doi: 10.1021/acs.chemrev.0c00487. PubMed DOI

Lebedev O.I., Millange F., Serre C., Van Tendeloo G., Férey G. First Direct Imaging of Giant Pores of the Metal-Organic Framework MIL-101. Chem. Mater. 2005;17:6525–6527. doi: 10.1021/cm051870o. DOI

Valenti S., Barrio M., Negrier P., Romanini M., MacOvez R., Tamarit J.L. Comparative Physical Study of Three Pharmaceutically Active Benzodiazepine Derivatives: Crystalline versus Amorphous State and Crystallization Tendency. Mol. Pharm. 2021;18:1819–1832. doi: 10.1021/acs.molpharmaceut.1c00081. Erratum in Mol. Pharm. 2021, 18, 3926–3927. PubMed DOI PMC

Zeleňák V., Halamová D., Almáši M., Žid L., Zeleňáková A., Kapusta O. Ordered Cubic Nanoporous Silica Support MCM-48 for Delivery of Poorly Soluble Drug Indomethacin. Appl. Surf. Sci. 2018;443:525–534. doi: 10.1016/j.apsusc.2018.02.260. DOI

Almáši M., Beňová E., Zeleňák V., Madaj B., Huntošová V., Brus J., Urbanová M., Bednarčík J., Hornebecq V. Cytotoxicity Study and Influence of SBA-15 Surface Polarity and PH on Adsorption and Release Properties of Anticancer Agent Pemetrexed. Mater. Sci. Eng. C. 2020;109:110552. doi: 10.1016/j.msec.2019.110552. PubMed DOI

Salazar J., Hidalgo-Rosa Y., Burboa P.C., Wu Y., Escalona N., Leiva A., Zarate X., Schott E. UiO-66(Zr) as Drug Delivery System for Non-Steroidal Anti-Inflammatory Drugs. J. Control. Release. 2024;370:392–404. doi: 10.1016/j.jconrel.2024.04.035. PubMed DOI

Migasová A., Zauška Ľ., Zelenka T., Volavka D., Férová M., Gulyásová T., Tomková S., Saláková M., Kuchárová V., Samuely T., et al. Histidine-Modified UiO-66(Zr) Nanoparticles as an Effective PH-Responsive Carrier for 5-Fluorouracil Drug Delivery System: A Possible Pathway to More Effective Brain Cancer Treatments. Chem. Eng. J. 2025;522:167857. doi: 10.1016/j.cej.2025.167857. DOI

Pevná V., Zauška L., Benziane A., Vámosi G., Girman V., Miklóšová M., Zeleňák V., Huntošová V., Almáši M. Effective Transport of Aggregated Hypericin Encapsulated in SBA-15 Nanoporous Silica Particles for Photodynamic Therapy of Cancer Cells. J. Photochem. Photobiol. B Biol. 2023;247:112785. doi: 10.1016/j.jphotobiol.2023.112785. PubMed DOI

Zauska L., Benova E., Urbanová M., Brus J., Zelenak V., Hornebecq V., Almáši M. Adsorption and Release Properties of Drug Delivery System Naproxen-SBA-15: Effect of Surface Polarity, Sodium/Acid Drug Form and PH. J. Funct. Biomater. 2022;13:275. doi: 10.3390/jfb13040275. PubMed DOI PMC

Li X., Wang J., Liu X., Liu L., Cha D., Zheng X., Yousef A.A., Song K., Zhu Y., Zhang D., et al. Direct Imaging of Tunable Crystal Surface Structures of MOF MIL-101 Using High-Resolution Electron Microscopy. J. Am. Chem. Soc. 2019;141:12021–12028. doi: 10.1021/jacs.9b04896. PubMed DOI

Huntošová V., Datta S., Lenkavská L., MáčAjová M., Bilčík B., Kundeková B., Čavarga I., Kronek J., Jutková A., Miškovský P., et al. Alkyl Chain Length in Poly(2-Oxazoline)-Based Amphiphilic Gradient Copolymers Regulates the Delivery of Hydrophobic Molecules: A Case of the Biodistribution and the Photodynamic Activity of the Photosensitizer Hypericin. Biomacromolecules. 2021;22:4199–4216. doi: 10.1021/acs.biomac.1c00768. PubMed DOI

Kundeková B., Máčajová M., Meta M., Čavarga I., Huntošová V., Datta S., Miškovský P., Kronek J., Bilčík B. The Japanese Quail Chorioallantoic Membrane as a Model to Study an Amphiphilic Gradient Copoly(2-Oxazoline)s- Based Drug Delivery System for Photodynamic Diagnosis and Therapy Research. Photodiagnosis Photodyn. Ther. 2022;40:103046. doi: 10.1016/j.pdpdt.2022.103046. PubMed DOI

Yow C.M.N., Tang H.M., Chu E.S.M., Huang Z. Hypericin-Mediated Photodynamic Antimicrobial Effect on Clinically Isolated Pathogens. Photochem. Photobiol. 2012;88:626–632. doi: 10.1111/j.1751-1097.2012.01085.x. PubMed DOI

Silva M.F.C., Aroso R.T., Dabrowski J.M., Pucelik B., Barzowska A., da Silva G.J., Arnaut L.G., Pereira M.M. Photodynamic Inactivation of E. coli with Cationic Imidazolyl-Porphyrin Photosensitizers and Their Synergic Combination with Antimicrobial Cinnamaldehyde. Photochem. Photobiol. Sci. 2024;23:1129–1142. doi: 10.1007/s43630-024-00581-y. PubMed DOI

Urban-Chmiel R., Marek A., Stępień-Pyśniak D., Wieczorek K., Dec M., Nowaczek A., Osek J. Antibiotic Resistance in Bacteria—A Review. Antibiotics. 2022;11:1079. doi: 10.3390/antibiotics11081079. PubMed DOI PMC

Songca S.P., Adjei Y. Applications of Antimicrobial Photodynamic Therapy against Bacterial Biofilms. Int. J. Mol. Sci. 2022;23:3209. doi: 10.3390/ijms23063209. PubMed DOI PMC

Hubab M., Al-Ghouti M.A. Recent Advances and Potential Applications for Metal-Organic Framework (MOFs) and MOFs-Derived Materials: Characterizations and Antimicrobial Activities. Biotechnol. Rep. 2024;42:e00837. doi: 10.1016/j.btre.2024.e00837. PubMed DOI PMC

Dong J., Dao X.Y., Zhang X.Y., Zhang X.D., Sun W.Y. Sensing Properties of Nh2-Mil-101 Series for Specific Amino Acids via Turn-on Fluorescence. Molecules. 2021;26:5336. doi: 10.3390/molecules26175336. PubMed DOI PMC

Song N., Zhai Z., Yang L., Zhang D., Zhou Z. Dual-Emission Dye@MIL-101(Al) Composite as Fluorescence Sensor for the Selective and Sensitive Detection towards Arginine. J. Solid State Chem. 2023;323:124025. doi: 10.1016/j.jssc.2023.124025. DOI

Zheng W., Meng Z., Zhu Z., Wang X., Xu X., Zhang Y., Luo Y., Liu Y., Pei X. Metal–Organic Framework-Based Nanomaterials for Regulation of the Osteogenic Microenvironment. Small. 2024;20:2310622. doi: 10.1002/smll.202310622. PubMed DOI

Gai K., Zhang T., Xu Z., Li G., He Z., Meng S., Shi Y., Zhang Y., Zhu Z., Pei X., et al. Biomimetic Management of Bone Healing Stages: MOFs Induce Tunable Degradability and Enhanced Angiogenesis-Osteogenesis Coupling. Chem. Eng. J. 2024;493:152296. doi: 10.1016/j.cej.2024.152296. DOI

Ribatti D. Lymphatics in the Chick Embryo Chorioallantoic Membrane. Microvasc. Res. 2025;160:104806. doi: 10.1016/j.mvr.2025.104806. PubMed DOI

Chen L., Liu S., Zhang Y., Tang Q., Quan C., Wang J., Peng X., Zhong X. Palmitic Acid-Capped MIL-101-Al as a Nano-Adjuvant to Amplify Immune Responses against Pseudomonas Aeruginosa. Nanoscale. 2024;16:10306–10317. doi: 10.1039/D4NR01180E. PubMed DOI

Liu Y., Qin R., Zaat S.A., Breukink E., Heger M. Antibacterial Photodynamic Therapy: Overview of a Promising Approach to Fight Antibiotic-Resistant Bacterial Infections. J. Clin. Transl. Res. 2015;1:140. doi: 10.18053/jctres.201503.002. PubMed DOI PMC

Soares J.M., Yakovlev V.V., Blanco K.C., Bagnato V.S. Photodynamic Inactivation and Its Effects on the Heterogeneity of Bacterial Resistance. Sci. Rep. 2024;14:28268. doi: 10.1038/s41598-024-79743-y. Erratum in Sci. Rep. 2024, 14, 30124. PubMed DOI PMC

Zhao S., Li Z., Yin S., Chen Q.D., Sun H.B., Wen L., Jiang L., Sun K. Mimicking the Competitive Interactions to Reduce Resistance Induction in Antibacterial Actions. Chem. Eng. J. 2023;454:140215. doi: 10.1016/j.cej.2022.140215. DOI

Li B., Webster T.J. Bacteria Antibiotic Resistance: New Challenges and Opportunities for Implant-Associated Orthopedic Infections. J. Orthop. Res. 2018;36:22–32. doi: 10.1002/jor.23656. PubMed DOI PMC

Zelenka T., Simanova K., Saini R., Zelenkova G., Nehra S.P., Sharma A., Almasi M. Carbon Dioxide and Hydrogen Adsorption Study on Surface-Modified HKUST-1 with Diamine/Triamine. Sci. Rep. 2022;12:17366. doi: 10.1038/s41598-022-22273-2. PubMed DOI PMC

Almáši M., Sharma A., Zelenka T. Anionic Zinc(II) Metal-Organic Framework Post-Synthetically Modified by Alkali-Ion Exchange: Synthesis, Characterization and Hydrogen Adsorption Properties. Inorganica Chim. Acta. 2021;526:120505. doi: 10.1016/j.ica.2021.120505. DOI

Thommes M., Kaneko K., Neimark A.V., Olivier J.P., Rodriguez-Reinoso F., Rouquerol J., Sing K.S.W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report) Pure Appl. Chem. 2015;87:1051–1069. doi: 10.1515/pac-2014-1117. DOI

Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC

Chomczynski P., Sacchi N. Single-Step Method of RNA Isolation by Acid Guanidinium Thiocyanate-Phenol-Chloroform Extraction. Anal. Biochem. 1987;162:156–159. doi: 10.1016/0003-2697(87)90021-2. PubMed DOI

Macajova M., Cavarga I., Sykorova M., Valachovic M., Novotna V., Bilcik B. Modulation of Angiogenesis by Topical Application of Leptin and High and Low Molecular Heparin Using the Japanese Quail Chorioallantoic Membrane Model. Saudi J. Biol. Sci. 2020;27:1488–1493. doi: 10.1016/j.sjbs.2020.04.013. PubMed DOI PMC

Uno Y., Usui T., Fujimoto Y., Ito T., Yamaguchi T. Quantification of Interferon, Interleukin, and Toll-like Receptor 7 MRNA in Quail Splenocytes Using Real-Time PCR. Poult. Sci. 2012;91:2496–2501. doi: 10.3382/ps.2012-02283. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...