The Immunostimulatory Effect of MIL-101(Al)-NH2 In Vivo and Its Potential to Overcome Bacterial Resistance to Penicillin Enhanced by Hypericin-Induced Photodynamic Therapy
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
APVV-20-0129
Slovak Research and Development Agency
VEGA 2/0081/25
the Ministry of Education, Research, Development and Youth of the Slovak Republic
BCOrgFluorIDA No. 09I03-03-V04-00007
The EU NextGenerationEU through the Recovery and Resilience Plan for Slovakia
PubMed
41373828
PubMed Central
PMC12691893
DOI
10.3390/ijms262311681
PII: ijms262311681
Knihovny.cz E-zdroje
- Klíčová slova
- MIL-101(Al)-NH2, antibacterial photodynamic therapy, bacterial resistance, chorioallantoic membrane model, hypericin, immune response, metal-organic frameworks, penicillin,
- MeSH
- anthraceny MeSH
- antibakteriální látky * farmakologie MeSH
- bakteriální léková rezistence * účinky léků MeSH
- Escherichia coli účinky léků MeSH
- fotochemoterapie * metody MeSH
- lidé MeSH
- peniciliny * farmakologie MeSH
- perylen * analogy a deriváty farmakologie chemie MeSH
- porézní koordinační polymery * chemie farmakologie MeSH
- Staphylococcus epidermidis účinky léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- anthraceny MeSH
- antibakteriální látky * MeSH
- hypericin MeSH Prohlížeč
- peniciliny * MeSH
- perylen * MeSH
- porézní koordinační polymery * MeSH
The increasing prevalence of multidrug-resistant bacteria necessitates alternative therapeutic strategies that combine antimicrobial efficacy with immunomodulatory properties. Here, we report the immunostimulatory activity and antibacterial potential of the amino-functionalized metal-organic framework MIL-101(Al)-NH2 as a carrier for penicillin (PEN) and hypericin (Hyp), a photodynamically active compound. Structural and physicochemical characterization confirmed successful encapsulation of PEN, Hyp, and their combination within MIL-101(Al)-NH2, with distinct effects on porosity, release kinetics, and thermal stability. Drug release studies revealed rapid Hyp liberation triggered by serum components, whereas PEN exhibited a biphasic, diffusion-controlled profile. Using a quail chorioallantoic membrane (CAM) model, we demonstrated that MIL-101(Al)-NH2 enhances interferon-α expression, indicating intrinsic immunostimulatory activity, and that Hyp-loaded systems promote angiogenic responses. In a bacterial infection CAM model, MIL-101(Al)-NH2 carriers loaded with Hyp or Hyp/PEN induced immunomodulatory changes and, upon photodynamic activation, inhibited bacterial growth. While Gram-negative Escherichia coli remained resistant, Gram-positive Staphylococcus epidermidis was effectively suppressed by photodynamic therapy (PDT), and Hyp/PEN co-delivery overcame bacterial resistance to PEN. These results highlight MIL-101(Al)-NH2 as a multifunctional nanoplatform with immunostimulatory capacity and PDT-enhanced antibacterial activity, offering a promising strategy to combat antibiotic resistance and infections associated with medical implants.
Zobrazit více v PubMed
Mandla S., Davenport Huyer L., Radisic M. Review: Multimodal Bioactive Material Approaches for Wound Healing. APL Bioeng. 2018;2:021503. doi: 10.1063/1.5026773. PubMed DOI PMC
Kingsley A. A Proactive Approach to Wound Infection. Nurs. Stand. 2001;15:50–58. doi: 10.7748/ns2001.04.15.30.50.c3012. PubMed DOI
Oropallo A.R., Andersen C., Abdo R., Hurlow J., Kelso M., Melin M., Serena T.E. Guidelines for Point-of-Care Fluorescence Imaging for Detection of Wound Bacterial Burden Based on Delphi Consensus. Diagnostics. 2021;11:1219. doi: 10.3390/diagnostics11071219. PubMed DOI PMC
Mishra N.O., Quon A.S., Nguyen A., Papazyan E.K., Hao Y., Liu Y. Constructing Physiological Defense Systems against Infectious Disease with Metal-Organic Frameworks: A Review. ACS Appl. Bio Mater. 2023;6:3052–3065. doi: 10.1021/acsabm.3c00391. PubMed DOI PMC
Sutton A.L., Mardel J.I., Hill M.R. Metal-Organic Frameworks (MOFs) As Hydrogen Storage Materials at Near-Ambient Temperature. Chem.–A Eur. J. 2024;30:e202400717. doi: 10.1002/chem.202400717. PubMed DOI
Kong F., Chen W. Carbon Dioxide Capture and Conversion Using Metal–Organic Framework (MOF) Materials: A Comprehensive Review. Nanomaterials. 2024;14:1340. doi: 10.3390/nano14161340. PubMed DOI PMC
Wang L., Huang J., Li Z., Han Z., Fan J. Review of Synthesis and Separation Application of Metal-Organic Framework-Based Mixed-Matrix Membranes. Polymers. 2023;15:1950. doi: 10.3390/polym15081950. PubMed DOI PMC
Sandhu Z.A., Raza M.A., Awwad N.S., Ibrahium H.A., Farwa U., Ashraf S., Dildar A., Fatima E., Ashraf S., Ali F. Metal-Organic Frameworks for next-Generation Energy Storage Devices; A Systematic Review. Mater. Adv. 2023;5:30–50. doi: 10.1039/D3MA00822C. DOI
Capková D., Almáši M. Chapter 9—Coordination Materials for Metal–Sulfur Batteries. In: Yasin G., Ibraheem S., Kumar A., Nguyen T.A., Maiyalagan T., editors. Electrochemistry and Photo-Electrochemistry of Nanomaterials. Elsevier; Amsterdam, The Netherlands: 2025. pp. 287–331.
Király N., Capková D., Gyepes R., Vargová N., Kazda T., Bednarčík J., Yudina D., Zelenka T., Čudek P., Zeleňák V., et al. Sr(II) and Ba(II) Alkaline Earth Metal–Organic Frameworks (AE-MOFs) for Selective Gas Adsorption, Energy Storage, and Environmental Application. Nanomaterials. 2023;13:234. doi: 10.3390/nano13020234. PubMed DOI PMC
Lin G., Zeng B., Li J., Wang Z., Wang S., Hu T., Zhang L. A Systematic Review of Metal Organic Frameworks Materials for Heavy Metal Removal: Synthesis, Applications and Mechanism. Chem. Eng. J. 2023;460:141710. doi: 10.1016/j.cej.2023.141710. DOI
Quintero-Álvarez F.G., Mendoza-Castillo D.I., Almáši M., García-Hernández E., Palomino-Asencio L., Cuautli C., Duran-Valle C.J., Adame-Pereira M., Bonilla-Petriciolet A. Lanthanide-Based Metal-Organic Frameworks MOF-76 for the Depollution of Xenobiotics from Water: Arsenic and Fluoride Adsorption Properties and Multi-Anionic Mechanism Analysis. J. Mol. Struct. 2025;1338:142113. doi: 10.1016/j.molstruc.2025.142113. DOI
Biglione C., Hidalgo T., Horcajada P. Nanoscaled Metal-Organic Frameworks: Charting a Transformative Path for Cancer Therapeutics and Beyond. Drug Deliv. Transl. Res. 2024;14:2041–2045. doi: 10.1007/s13346-024-01622-w. PubMed DOI
Almáši M. A Review on State of Art and Perspectives of Metal-Organic Frameworks (MOFs) in the Fight against Coronavirus SARS-CoV-2. J. Coord. Chem. 2021;74:2111–2127. doi: 10.1080/00958972.2021.1965130. DOI
Steenhaut T., Filinchuk Y., Hermans S. Aluminium-Based MIL-100(Al) and MIL-101(Al) Metal-Organic Frameworks, Derivative Materials and Composites: Synthesis, Structure, Properties and Applications. J. Mater. Chem. A. 2021;9:21483–21509. doi: 10.1039/D1TA04444C. DOI
Celeste A., Paolone A., Itié J.P., Borondics F., Joseph B., Grad O., Blanita G., Zlotea C., Capitani F. Mesoporous Metal-Organic Framework MIL-101 at High Pressure. J. Am. Chem. Soc. 2020;142:15012–15019. doi: 10.1021/jacs.0c05882. PubMed DOI
Yin H.Q., Yang J.C., Yin X.B. Ratiometric Fluorescence Sensing and Real-Time Detection of Water in Organic Solvents with One-Pot Synthesis of Ru@MIL-101(Al)-NH2. Anal. Chem. 2017;89:13434–13440. doi: 10.1021/acs.analchem.7b03723. PubMed DOI
Zhong X., Zhang Y., Tan L., Zheng T., Hou Y., Hong X., Du G., Chen X., Zhang Y., Sun X. An Aluminum Adjuvant-Integrated Nano-MOF as Antigen Delivery System to Induce Strong Humoral and Cellular Immune Responses. J. Control. Release. 2019;300:81–92. doi: 10.1016/j.jconrel.2019.02.035. PubMed DOI
Zhao Y., Song R., Zhang Z., Hu H., Ning W., Duan X., Jiao J., Fu X., Zhang G. Hollow Metal-Organic Framework-Based, Stimulator of Interferon Genes Pathway-Activating Nanovaccines for Tumor Immunotherapy. Nanoscale Adv. 2023;6:72–78. doi: 10.1039/D3NA00867C. PubMed DOI PMC
Hidalgo T., Simón-Vázquez R., González-Fernández A., Horcajada P. Cracking the Immune Fingerprint of Metal-Organic Frameworks. Chem. Sci. 2022;13:934–944. doi: 10.1039/D1SC04112F. PubMed DOI PMC
Rice A.M., Martin C.R., Galitskiy V.A., Berseneva A.A., Leith G.A., Shustova N.B. Photophysics Modulation in Photoswitchable Metal-Organic Frameworks. Chem. Rev. 2020;120:8790–8813. doi: 10.1021/acs.chemrev.9b00350. PubMed DOI
Zhang X., Yu T., Au V.K.M. Photoresponsive Metal-Organic Frameworks: Tailorable Platforms of Photoswitches for Advanced Functions. ChemNanoMat. 2022;8:e202100486. doi: 10.1002/cnma.202100486. DOI
Chen Z., Xing F., Yu P., Zhou Y., Luo R., Liu M., Ritz U. Metal-Organic Framework-Based Advanced Therapeutic Tools for Antimicrobial Applications. Acta Biomater. 2024;175:27–54. doi: 10.1016/j.actbio.2023.12.023. PubMed DOI
Tang J., Tang G., Niu J., Yang J., Zhou Z., Gao Y., Chen X., Tian Y., Li Y., Li J., et al. Preparation of a Porphyrin Metal-Organic Framework with Desirable Photodynamic Antimicrobial Activity for Sustainable Plant Disease Management. J. Agric. Food Chem. 2021;69:2382–2391. doi: 10.1021/acs.jafc.0c06487. PubMed DOI
Golmohamadpour A., Bahramian B., Khoobi M., Pourhajibagher M., Barikani H.R., Bahador A. Antimicrobial Photodynamic Therapy Assessment of Three Indocyanine Green-Loaded Metal-Organic Frameworks against Enterococcus Faecalis. Photodiagnosis Photodyn. Ther. 2018;23:331–338. doi: 10.1016/j.pdpdt.2018.08.004. PubMed DOI
Xin Q., Shah H., Nawaz A., Xie W., Akram M.Z., Batool A., Tian L., Jan S.U., Boddula R., Guo B., et al. Antibacterial Carbon-Based Nanomaterials. Adv. Mater. 2019;31:e1804838. doi: 10.1002/adma.201804838. PubMed DOI
Wang C., Luo Y., Liu X., Cui Z., Zheng Y., Liang Y., Li Z., Zhu S., Lei J., Feng X., et al. The Enhanced Photocatalytic Sterilization of MOF-Based Nanohybrid for Rapid and Portable Therapy of Bacteria-Infected Open Wounds. Bioact. Mater. 2022;13:200–211. doi: 10.1016/j.bioactmat.2021.10.033. PubMed DOI PMC
Shen M., Forghani F., Kong X., Liu D., Ye X., Chen S., Ding T. Antibacterial Applications of Metal–Organic Frameworks and Their Composites. Compr. Rev. Food Sci. Food Saf. 2020;19:1397–1419. doi: 10.1111/1541-4337.12515. PubMed DOI
Ávila-Márquez D.M., Blanco Flores A., Toledo Jaldin H.P., Burke Irazoque M., González Torres M., Vilchis-Nestor A.R., Toledo C.C., Gutiérrez-Cortez S., Díaz Rodríguez J.P., Dorazco-González A. MIL-53 MOF on Sustainable Biomaterial for Antimicrobial Evaluation Against E. coli and S. aureus Bacteria by Efficient Release of Penicillin G. J. Funct. Biomater. 2025;16:295. doi: 10.3390/jfb16080295. PubMed DOI PMC
Li R., Zhu Y., Zhang X., Li S., Wang D., Liu Z., Wang X., Hou Y., Li S. Crystalline Porous Frameworks (MOF@COF) for Adsorption-Desorption Analysis of β-Lactam Drugs. Polymer. 2025;320:127973. doi: 10.1016/j.polymer.2024.127973. DOI
Sadeghi M., Moradian M., Tayebi H.A., Mirabi A. Removal of Penicillin G from Aqueous Medium by PPI@SBA-15/ZIF-8 Super Adsorbent: Adsorption Isotherm, Thermodynamic, and Kinetic Studies. Chemosphere. 2023;311:136887. doi: 10.1016/j.chemosphere.2022.136887. PubMed DOI
Li Y., Xia X., Hou W., Lv H., Liu J., Li X. How Effective Are Metal Nanotherapeutic Platforms Against Bacterial Infections? A Comprehensive Review of Literature. Int. J. Nanomed. 2023;18:1109–1128. doi: 10.2147/IJN.S397298. PubMed DOI PMC
Sultana A., Kathuria A., Gaikwad K.K. Metal–Organic Frameworks for Active Food Packaging. A Review. Environ. Chem. Lett. 2022;20:1479–1495. doi: 10.1007/s10311-022-01387-z. PubMed DOI PMC
Arunkumar T., Castelino E., Lakshmi T., Mulky L., Selvanathan S.P., Tahir M. Metal–Organic Frameworks in Antibacterial Disinfection: A Review. ChemBioEng Rev. 2024;11:e202400006. doi: 10.1002/cben.202400006. DOI
Liu J., Wu D., Zhu N., Wu Y., Li G. Antibacterial Mechanisms and Applications of Metal-Organic Frameworks and Their Derived Nanomaterials. Trends Food Sci. Technol. 2021;109:413–434. doi: 10.1016/j.tifs.2021.01.012. DOI
Li R., Chen T., Pan X. Metal-Organic-Framework-Based Materials for Antimicrobial Applications. ACS Nano. 2021;15:3808–3848. doi: 10.1021/acsnano.0c09617. PubMed DOI
Huntošová V., Benziane A., Zauška L., Ambro L., Olejárová S., Joniová J., Hlávková N., Wagnières G., Zelenková G., Diko P., et al. The Potential of Metal–Organic Framework MIL-101(Al)–NH2 in the Forefront of Antiviral Protection of Cells via Interaction with SARS-CoV-2 Spike RBD Protein and Their Antibacterial Action Mediated with Hypericin and Photodynamic Treatment. J. Colloid Interface Sci. 2025;691:137454. doi: 10.1016/j.jcis.2025.137454. PubMed DOI
Chi L., Du M. Enhanced Visible-Light-Driven Photocatalytic Antibacterial Activity by in-Situ Synthesized NH2-MIL-101(Al)/AgI Heterojunction and Mechanism Insight. Environ. Res. 2025;267:120733. doi: 10.1016/j.envres.2024.120733. PubMed DOI
Zauška Ľ., Pillárová P., Volavka D., Kinnertová E., Bednarčík J., Brus J., Hornebecq V., Almáši M. Kinetic Adsorption Mechanism of Cobalt(II) Ions and Congo Red on Pristine and Schiff Base-Surface-Modified MIL-101(Fe)-NH2. Microporous Mesoporous Mater. 2025;386:113493. doi: 10.1016/j.micromeso.2025.113493. DOI
Hadjiivanov K.I., Panayotov D.A., Mihaylov M.Y., Ivanova E.Z., Chakarova K.K., Andonova S.M., Drenchev N.L. Power of Infrared and Raman Spectroscopies to Characterize Metal-Organic Frameworks and Investigate Their Interaction with Guest Molecules. Chem. Rev. 2021;121:1286–1424. doi: 10.1021/acs.chemrev.0c00487. PubMed DOI
Lebedev O.I., Millange F., Serre C., Van Tendeloo G., Férey G. First Direct Imaging of Giant Pores of the Metal-Organic Framework MIL-101. Chem. Mater. 2005;17:6525–6527. doi: 10.1021/cm051870o. DOI
Valenti S., Barrio M., Negrier P., Romanini M., MacOvez R., Tamarit J.L. Comparative Physical Study of Three Pharmaceutically Active Benzodiazepine Derivatives: Crystalline versus Amorphous State and Crystallization Tendency. Mol. Pharm. 2021;18:1819–1832. doi: 10.1021/acs.molpharmaceut.1c00081. Erratum in Mol. Pharm. 2021, 18, 3926–3927. PubMed DOI PMC
Zeleňák V., Halamová D., Almáši M., Žid L., Zeleňáková A., Kapusta O. Ordered Cubic Nanoporous Silica Support MCM-48 for Delivery of Poorly Soluble Drug Indomethacin. Appl. Surf. Sci. 2018;443:525–534. doi: 10.1016/j.apsusc.2018.02.260. DOI
Almáši M., Beňová E., Zeleňák V., Madaj B., Huntošová V., Brus J., Urbanová M., Bednarčík J., Hornebecq V. Cytotoxicity Study and Influence of SBA-15 Surface Polarity and PH on Adsorption and Release Properties of Anticancer Agent Pemetrexed. Mater. Sci. Eng. C. 2020;109:110552. doi: 10.1016/j.msec.2019.110552. PubMed DOI
Salazar J., Hidalgo-Rosa Y., Burboa P.C., Wu Y., Escalona N., Leiva A., Zarate X., Schott E. UiO-66(Zr) as Drug Delivery System for Non-Steroidal Anti-Inflammatory Drugs. J. Control. Release. 2024;370:392–404. doi: 10.1016/j.jconrel.2024.04.035. PubMed DOI
Migasová A., Zauška Ľ., Zelenka T., Volavka D., Férová M., Gulyásová T., Tomková S., Saláková M., Kuchárová V., Samuely T., et al. Histidine-Modified UiO-66(Zr) Nanoparticles as an Effective PH-Responsive Carrier for 5-Fluorouracil Drug Delivery System: A Possible Pathway to More Effective Brain Cancer Treatments. Chem. Eng. J. 2025;522:167857. doi: 10.1016/j.cej.2025.167857. DOI
Pevná V., Zauška L., Benziane A., Vámosi G., Girman V., Miklóšová M., Zeleňák V., Huntošová V., Almáši M. Effective Transport of Aggregated Hypericin Encapsulated in SBA-15 Nanoporous Silica Particles for Photodynamic Therapy of Cancer Cells. J. Photochem. Photobiol. B Biol. 2023;247:112785. doi: 10.1016/j.jphotobiol.2023.112785. PubMed DOI
Zauska L., Benova E., Urbanová M., Brus J., Zelenak V., Hornebecq V., Almáši M. Adsorption and Release Properties of Drug Delivery System Naproxen-SBA-15: Effect of Surface Polarity, Sodium/Acid Drug Form and PH. J. Funct. Biomater. 2022;13:275. doi: 10.3390/jfb13040275. PubMed DOI PMC
Li X., Wang J., Liu X., Liu L., Cha D., Zheng X., Yousef A.A., Song K., Zhu Y., Zhang D., et al. Direct Imaging of Tunable Crystal Surface Structures of MOF MIL-101 Using High-Resolution Electron Microscopy. J. Am. Chem. Soc. 2019;141:12021–12028. doi: 10.1021/jacs.9b04896. PubMed DOI
Huntošová V., Datta S., Lenkavská L., MáčAjová M., Bilčík B., Kundeková B., Čavarga I., Kronek J., Jutková A., Miškovský P., et al. Alkyl Chain Length in Poly(2-Oxazoline)-Based Amphiphilic Gradient Copolymers Regulates the Delivery of Hydrophobic Molecules: A Case of the Biodistribution and the Photodynamic Activity of the Photosensitizer Hypericin. Biomacromolecules. 2021;22:4199–4216. doi: 10.1021/acs.biomac.1c00768. PubMed DOI
Kundeková B., Máčajová M., Meta M., Čavarga I., Huntošová V., Datta S., Miškovský P., Kronek J., Bilčík B. The Japanese Quail Chorioallantoic Membrane as a Model to Study an Amphiphilic Gradient Copoly(2-Oxazoline)s- Based Drug Delivery System for Photodynamic Diagnosis and Therapy Research. Photodiagnosis Photodyn. Ther. 2022;40:103046. doi: 10.1016/j.pdpdt.2022.103046. PubMed DOI
Yow C.M.N., Tang H.M., Chu E.S.M., Huang Z. Hypericin-Mediated Photodynamic Antimicrobial Effect on Clinically Isolated Pathogens. Photochem. Photobiol. 2012;88:626–632. doi: 10.1111/j.1751-1097.2012.01085.x. PubMed DOI
Silva M.F.C., Aroso R.T., Dabrowski J.M., Pucelik B., Barzowska A., da Silva G.J., Arnaut L.G., Pereira M.M. Photodynamic Inactivation of E. coli with Cationic Imidazolyl-Porphyrin Photosensitizers and Their Synergic Combination with Antimicrobial Cinnamaldehyde. Photochem. Photobiol. Sci. 2024;23:1129–1142. doi: 10.1007/s43630-024-00581-y. PubMed DOI
Urban-Chmiel R., Marek A., Stępień-Pyśniak D., Wieczorek K., Dec M., Nowaczek A., Osek J. Antibiotic Resistance in Bacteria—A Review. Antibiotics. 2022;11:1079. doi: 10.3390/antibiotics11081079. PubMed DOI PMC
Songca S.P., Adjei Y. Applications of Antimicrobial Photodynamic Therapy against Bacterial Biofilms. Int. J. Mol. Sci. 2022;23:3209. doi: 10.3390/ijms23063209. PubMed DOI PMC
Hubab M., Al-Ghouti M.A. Recent Advances and Potential Applications for Metal-Organic Framework (MOFs) and MOFs-Derived Materials: Characterizations and Antimicrobial Activities. Biotechnol. Rep. 2024;42:e00837. doi: 10.1016/j.btre.2024.e00837. PubMed DOI PMC
Dong J., Dao X.Y., Zhang X.Y., Zhang X.D., Sun W.Y. Sensing Properties of Nh2-Mil-101 Series for Specific Amino Acids via Turn-on Fluorescence. Molecules. 2021;26:5336. doi: 10.3390/molecules26175336. PubMed DOI PMC
Song N., Zhai Z., Yang L., Zhang D., Zhou Z. Dual-Emission Dye@MIL-101(Al) Composite as Fluorescence Sensor for the Selective and Sensitive Detection towards Arginine. J. Solid State Chem. 2023;323:124025. doi: 10.1016/j.jssc.2023.124025. DOI
Zheng W., Meng Z., Zhu Z., Wang X., Xu X., Zhang Y., Luo Y., Liu Y., Pei X. Metal–Organic Framework-Based Nanomaterials for Regulation of the Osteogenic Microenvironment. Small. 2024;20:2310622. doi: 10.1002/smll.202310622. PubMed DOI
Gai K., Zhang T., Xu Z., Li G., He Z., Meng S., Shi Y., Zhang Y., Zhu Z., Pei X., et al. Biomimetic Management of Bone Healing Stages: MOFs Induce Tunable Degradability and Enhanced Angiogenesis-Osteogenesis Coupling. Chem. Eng. J. 2024;493:152296. doi: 10.1016/j.cej.2024.152296. DOI
Ribatti D. Lymphatics in the Chick Embryo Chorioallantoic Membrane. Microvasc. Res. 2025;160:104806. doi: 10.1016/j.mvr.2025.104806. PubMed DOI
Chen L., Liu S., Zhang Y., Tang Q., Quan C., Wang J., Peng X., Zhong X. Palmitic Acid-Capped MIL-101-Al as a Nano-Adjuvant to Amplify Immune Responses against Pseudomonas Aeruginosa. Nanoscale. 2024;16:10306–10317. doi: 10.1039/D4NR01180E. PubMed DOI
Liu Y., Qin R., Zaat S.A., Breukink E., Heger M. Antibacterial Photodynamic Therapy: Overview of a Promising Approach to Fight Antibiotic-Resistant Bacterial Infections. J. Clin. Transl. Res. 2015;1:140. doi: 10.18053/jctres.201503.002. PubMed DOI PMC
Soares J.M., Yakovlev V.V., Blanco K.C., Bagnato V.S. Photodynamic Inactivation and Its Effects on the Heterogeneity of Bacterial Resistance. Sci. Rep. 2024;14:28268. doi: 10.1038/s41598-024-79743-y. Erratum in Sci. Rep. 2024, 14, 30124. PubMed DOI PMC
Zhao S., Li Z., Yin S., Chen Q.D., Sun H.B., Wen L., Jiang L., Sun K. Mimicking the Competitive Interactions to Reduce Resistance Induction in Antibacterial Actions. Chem. Eng. J. 2023;454:140215. doi: 10.1016/j.cej.2022.140215. DOI
Li B., Webster T.J. Bacteria Antibiotic Resistance: New Challenges and Opportunities for Implant-Associated Orthopedic Infections. J. Orthop. Res. 2018;36:22–32. doi: 10.1002/jor.23656. PubMed DOI PMC
Zelenka T., Simanova K., Saini R., Zelenkova G., Nehra S.P., Sharma A., Almasi M. Carbon Dioxide and Hydrogen Adsorption Study on Surface-Modified HKUST-1 with Diamine/Triamine. Sci. Rep. 2022;12:17366. doi: 10.1038/s41598-022-22273-2. PubMed DOI PMC
Almáši M., Sharma A., Zelenka T. Anionic Zinc(II) Metal-Organic Framework Post-Synthetically Modified by Alkali-Ion Exchange: Synthesis, Characterization and Hydrogen Adsorption Properties. Inorganica Chim. Acta. 2021;526:120505. doi: 10.1016/j.ica.2021.120505. DOI
Thommes M., Kaneko K., Neimark A.V., Olivier J.P., Rodriguez-Reinoso F., Rouquerol J., Sing K.S.W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report) Pure Appl. Chem. 2015;87:1051–1069. doi: 10.1515/pac-2014-1117. DOI
Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC
Chomczynski P., Sacchi N. Single-Step Method of RNA Isolation by Acid Guanidinium Thiocyanate-Phenol-Chloroform Extraction. Anal. Biochem. 1987;162:156–159. doi: 10.1016/0003-2697(87)90021-2. PubMed DOI
Macajova M., Cavarga I., Sykorova M., Valachovic M., Novotna V., Bilcik B. Modulation of Angiogenesis by Topical Application of Leptin and High and Low Molecular Heparin Using the Japanese Quail Chorioallantoic Membrane Model. Saudi J. Biol. Sci. 2020;27:1488–1493. doi: 10.1016/j.sjbs.2020.04.013. PubMed DOI PMC
Uno Y., Usui T., Fujimoto Y., Ito T., Yamaguchi T. Quantification of Interferon, Interleukin, and Toll-like Receptor 7 MRNA in Quail Splenocytes Using Real-Time PCR. Poult. Sci. 2012;91:2496–2501. doi: 10.3382/ps.2012-02283. PubMed DOI