Martini 3 Building Blocks for Lipid Nanoparticle Design

. 2026 Jan 27 ; 22 (2) : 1069-1091. [epub] 20251217

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41407294

Lipid nanoparticles (LNPs) represent a promising platform for advanced drug and gene delivery, yet optimizing these particles for specific cargos and cell targets poses a complex multifaceted challenge. Furthermore, there is a pressing need for a more comprehensive understanding of the underlying technology. Experimental studies are costly and often provide low-resolution information. Molecular dynamics (MD) simulations allow us to study these particles at a higher resolution, enhancing our understanding. However, studying these systems at atomic resolutions is both challenging and computationally expensive as well as time-consuming. Coarse-grained (CG) models, such as Martini 3, are positioned as promising tools for studying LNPs. To enable CG-MD studies of LNPs, accurate and validated models of their components are needed. Here, we present a substantial extension of the Martini 3 lipid library, introducing over one hundred ionizable lipid models, natural sterols, and PEGylated lipids, covering the key components of LNP formulations. This expanded library brings an essential toolset to simulate LNPs at Martini coarse-grained resolution. We furthermore introduce initial protocols for screening fusion efficacy across lipid formulations and for constructing full LNPs and show how these tools can provide new insights into the LNP structure, dynamics, and efficiency. Altogether, this work introduces a practical and scalable approach for advancing the mechanistic understanding of LNPs and guiding their future development.

Zobrazit více v PubMed

Kjolbye L. R., Pereira G. P., Bartocci A., Pannuzzo M., Albani S., Marchetto A., Jiménez-García B., Martin J., Rossetti G., Cecchini M., Wu S., Monticelli L., Souza P. C. T.. Towards design of drugs and delivery systems with the Martini coarse-grained model. QRB Discovery. 2022;3:e19. doi: 10.1017/qrd.2022.16. PubMed DOI PMC

Jia Y., Wang X., Li L., Li F., Zhang J., Liang X.-J.. Lipid nanoparticles optimized for targeting and release of nucleic acid. Adv. Mater. 2024;36:2305300. doi: 10.1002/adma.202305300. PubMed DOI

Mehta M., Bui T. A., Yang X., Aksoy Y., Goldys E. M., Deng W.. Lipid-based nanoparticles for drug/gene delivery: An overview of the production techniques and difficulties encountered in their industrial development. ACS Mater. Au. 2023;3:600–619. doi: 10.1021/acsmaterialsau.3c00032. PubMed DOI PMC

Cárdenas M., Campbell R. A., Yanez Arteta M., Lawrence M. J., Sebastiani F.. Review of structural design guiding the development of lipid nanoparticles for nucleic acid delivery. Curr. Opin. Colloid Interface Sci. 2023;66:101705. doi: 10.1016/j.cocis.2023.101705. DOI

Philipp J., Dabkowska A., Reiser A., Frank K., Krzysztoń R., Brummer C., Nickel B., Blanchet C. E., Sudarsan A., Ibrahim M., Johansson S., Skantze P., Skantze U., Östman S., Johansson M., Henderson N., Elvevold K., Smedsrød B., Schwierz N., Lindfors L., Rädler J. O.. pH-dependent structural transitions in cationic ionizable lipid mesophases are critical for lipid nanoparticle function. Proc. Natl. Acad. Sci. U.S.A. 2023;120:e2310491120. doi: 10.1073/pnas.2310491120. PubMed DOI PMC

Schlich M., Palomba R., Costabile G., Mizrahy S., Pannuzzo M., Peer D., Decuzzi P.. Cytosolic delivery of nucleic acids: The case of ionizable lipid nanoparticles. Bioeng. Transl. Med. 2021;6:e10213. doi: 10.1002/btm2.10213. PubMed DOI PMC

Digiacomo L., Renzi S., Quagliarini E., Pozzi D., Amenitsch H., Ferri G., Pesce L., De Lorenzi V., Matteoli G., Cardarelli F., Caracciolo G.. Investigating the mechanism of action of dna-loaded pegylated lipid nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2023;53:102697. doi: 10.1016/j.nano.2023.102697. PubMed DOI

Hald Albertsen C., Kulkarni J. A., Witzigmann D., Lind M., Petersson K., Simonsen J. B.. The role of lipid components in lipid nanoparticles for vaccines and gene therapy. Adv. Drug Delivery Rev. 2022;188:114416. doi: 10.1016/j.addr.2022.114416. PubMed DOI PMC

Li W., Szoka F. C.. Lipid-based nanoparticles for nucleic acid delivery. Pharm. Res. 2007;24:438–449. doi: 10.1007/s11095-006-9180-5. PubMed DOI

Kiaie S. H., Majidi Zolbanin N., Ahmadi A., Bagherifar R., Valizadeh H., Kashanchi F., Jafari R.. Recent advances in mRNA-LNP therapeutics: immunological and pharmacological aspects. J. Nanobiotechnol. 2022;20:276. doi: 10.1186/s12951-022-01478-7. PubMed DOI PMC

Agarwal V., Kelley D. R.. The genetic and biochemical determinants of mRNA degradation rates in mammals. Genome Biol. 2022;23:245. doi: 10.1186/s13059-022-02811-x. PubMed DOI PMC

Moayedpour S., Broadbent J., Riahi S., Bailey M., V Thu H., Dobchev D., Balsubramani A., N D Santos R., Kogler-Anele L., Corrochano-Navarro A., Li S., U Montoya F., Agarwal V., Bar-Joseph Z., Jager S.. Representations of lipid nanoparticles using large language models for transfection efficiency prediction. Bioinformatics. 2024;40:btae342. doi: 10.1093/bioinformatics/btae342. PubMed DOI PMC

Chatterjee S., Kon E., Sharma P., Peer D.. Endosomal escape: A bottleneck for LNP-mediated therapeutics. Proc. Natl. Acad. Sci. U.S.A. 2024;121:e2307800120. doi: 10.1073/pnas.2307800120. PubMed DOI PMC

Yanez Arteta M., Kjellman T., Bartesaghi S., Wallin S., Wu X., Kvist A. J., Dabkowska A., Székely N., Radulescu A., Bergenholtz J., Lindfors L.. Successful reprogramming of cellular protein production through mRNA delivered by functionalized lipid nanoparticles. Proc. Natl. Acad. Sci. U.S.A. 2018;115:E3351–E3360. doi: 10.1073/pnas.1720542115. PubMed DOI PMC

Paloncýová M., Šrejber M., Čechová P., Kührová P., Zaoral F., Otyepka M.. Atomistic Insights into Organization of RNA-Loaded Lipid Nanoparticles. J. Phys. Chem. B. 2023;127:1158–1166. doi: 10.1021/acs.jpcb.2c07671. PubMed DOI

Paloncýová M., Čechová P., Šrejber M., Kührová P., Otyepka M.. Role of Ionizable Lipids in SARS-CoV-2 Vaccines As Revealed by Molecular Dynamics Simulations: From Membrane Structure to Interaction with mRNA Fragments. J. Phys. Chem. Lett. 2021;12:11199–11205. doi: 10.1021/acs.jpclett.1c03109. PubMed DOI

Ramezanpour M., Tieleman D. P.. Computational Insights into the Role of Cholesterol in Inverted Hexagonal Phase Stabilization and Endosomal Drug Release. Langmuir. 2022;38:7462–7471. doi: 10.1021/acs.langmuir.2c00430. PubMed DOI PMC

Kulkarni J. A., Darjuan M. M., Mercer J. E., Chen S., Van Der Meel R., Thewalt J. L., Tam Y. Y. C., Cullis P. R.. On the Formation and Morphology of Lipid Nanoparticles Containing Ionizable Cationic Lipids and siRNA. ACS Nano. 2018;12:4787–4795. doi: 10.1021/acsnano.8b01516. PubMed DOI

Trollmann M. F., Böckmann R. A.. mRNA lipid nanoparticle phase transition. Biophys. J. 2022;121:3927–3939. doi: 10.1016/j.bpj.2022.08.037. PubMed DOI PMC

Park S., Choi Y. K., Kim S., Lee J., Im W.. CHARMM-GUI Membrane Builder for Lipid Nanoparticles with Ionizable Cationic Lipids and PEGylated Lipids. J. Chem. Inf. Model. 2021;61:5192–5202. doi: 10.1021/acs.jcim.1c00770. PubMed DOI PMC

Cornebise M., Narayanan E., Xia Y., Acosta E., Ci L., Koch H., Milton J., Sabnis S., Salerno T., Benenato K. E.. Discovery of a Novel Amino Lipid That Improves Lipid Nanoparticle Performance through Specific Interactions with mRNA. Adv. Funct. Mater. 2022;32:2106727. doi: 10.1002/adfm.202106727. DOI

Leung A. K., Hafez I. M., Baoukina S., Belliveau N. M., Zhigaltsev I. V., Afshinmanesh E., Tieleman D. P., Hansen C. L., Hope M. J., Cullis P. R.. Lipid nanoparticles containing siRNA synthesized by microfluidic mixing exhibit an electron-dense nanostructured core. J. Phys. Chem. C. 2012;116:18440–18450. doi: 10.1021/jp303267y. PubMed DOI PMC

Bruininks B. M. H., Souza P. C. T., Ingolfsson H., Marrink S. J.. A molecular view on the escape of lipoplexed dna from the endosome. eLife. 2020;9:e52012. doi: 10.7554/elife.52012. PubMed DOI PMC

Marrink S. J., Risselada H. J., Yefimov S., Tieleman D. P., de Vries A. H.. The MARTINI force field: Coarse grained model for biomolecular simulations. J. Phys. Chem. B. 2007;111:7812–7824. doi: 10.1021/jp071097f. PubMed DOI

Marrink S. J., Monticelli L., Melo M. N., Alessandri R., Tieleman D. P., Souza P. C. T.. Two decades of martini: Better beads, broader scope. WIREs Comput Mol Sci. 2023;13:e1620. doi: 10.1002/wcms.1620. DOI

Marrink S. J., Corradi V., Souza P. C. T., Ingólfsson H. I., Tieleman D. P., Sansom M. S.. Computational modeling of realistic cell membranes. Chem. Rev. 2019;119:6184–6226. doi: 10.1021/acs.chemrev.8b00460. PubMed DOI PMC

Alessandri R., Grünewald F., Marrink S. J.. The martini model in materials science. Adv. Mater. 2021;33:2008635. doi: 10.1002/adma.202008635. PubMed DOI PMC

Machado N., Bruininks B. M., Singh P., Dos Santos L., Dal Pizzol C., Dieamant G. d. C., Kruger O., Martin A. A., Marrink S. J., Souza P. C. T.. et al. Complex nanoemulsion for vitamin delivery: droplet organization and interaction with skin membranes. Nanoscale. 2022;14:506–514. doi: 10.1039/D1NR04610A. PubMed DOI

Cao Y., Zhu J., Kou J., Tieleman D. P., Liang Q.. Unveiling interactions of tumor-targeting nanoparticles with lipid bilayers using a titratable martini model. J. Chem. Theory Comput. 2024;20:4045–4053. doi: 10.1021/acs.jctc.4c00231. PubMed DOI

Souza P. C. T., Alessandri R., Barnoud J., Thallmair S., Faustino I., Grünewald F., Patmanidis I., Abdizadeh H., Bruininks B. M., Wassenaar T. A., Kroon P. C., Melcr J., Nieto V., Corradi V., Khan H. M., Domański J., Javanainen M., Martinez-Seara H., Reuter N., Best R. B., Vattulainen I., Monticelli L., Periole X., Tieleman D. P., de Vries A. H., Marrink S. J.. Martini 3: a general purpose force field for coarse-grained molecular dynamics. Nat. Methods. 2021;18(4):382–388. doi: 10.1038/s41592-021-01098-3. PubMed DOI PMC

Klamt A.. The cosmo and cosmo-rs solvation models. WIREs Comput Mol Sci. 2011;1:699–709. doi: 10.1002/wcms.56. DOI

Işık M., Bergazin T. D., Fox T., Rizzi A., Chodera J. D., Mobley D. L.. Assessing the accuracy of octanol–water partition coefficient predictions in the sampl6 part ii log p challenge. J. Comput.-Aided Mol. Des. 2020;34:335–370. doi: 10.1007/s10822-020-00295-0. PubMed DOI PMC

Bergazin T. D., Tielker N., Zhang Y., Mao J., Gunner M. R., Francisco K., Ballatore C., Kast S. M., Mobley D. L.. Evaluation of log P, pK a, and log D predictions from the SAMPL7 blind challenge. J. Comput.-Aided Mol. Des. 2021;35:771–802. doi: 10.1007/s10822-021-00397-3. PubMed DOI PMC

Sangster J.. Octanol-Water Partition Coefficients of Simple Organic Compounds. J. Phys. Chem. Ref. Data. 1989;18:1111–1229. doi: 10.1063/1.555833. DOI

Hassett K. J., Benenato K. E., Jacquinet E., Lee A., Woods A., Yuzhakov O., Himansu S., Deterling J., Geilich B. M., Ketova T., Mihai C., Lynn A., McFadyen I., Moore M. J., Senn J. J., Stanton M. G., Almarsson A. ~., Ciaramella G., Brito L. A.. “Optimization of Lipid Nanoparticles for Intramuscular Administration of mRNA Vaccines,” Molecular therapy. Nucleic Acids. 2019;15:1–11. doi: 10.1016/j.omtn.2019.01.013. PubMed DOI PMC

Sabnis S., Kumarasinghe E. S., Salerno T., Mihai C., Ketova T., Senn J. J., Lynn A., Bulychev A., McFadyen I., Chan J., Almarsson A. ~., Stanton M. G., Benenato K. E.. A Novel Amino Lipid Series for mRNA Delivery: Improved Endosomal Escape and Sustained Pharmacology and Safety in Non-human Primates. Mol. Ther. 2018;26:1509–1519. doi: 10.1016/j.ymthe.2018.03.010. PubMed DOI PMC

Klauda J. B., Venable R. M., Freites J. A., O’Connor J. W., Tobias D. J., Mondragon-Ramirez C., Vorobyov I., MacKerell A. D. J., Pastor R. W.. Update of the charmm all-atom additive force field for lipids: Validation on six lipid types. J. Phys. Chem. B. 2010;114:7830–7843. doi: 10.1021/jp101759q. PubMed DOI PMC

Semple S. C., Akinc A., Chen J., Sandhu A. P., Mui B. L., Cho C. K., Sah D. W., Stebbing D., Crosley E. J., Yaworski E., Hafez I. M., Dorkin J. R., Qin J., Lam K., Rajeev K. G., Wong K. F., Jeffs L. B., Nechev L., Eisenhardt M. L., Jayaraman M., Kazem M., Maier M. A., Srinivasulu M., Weinstein M. J., Chen Q., Alvarez R., Barros S. A., De S., Klimuk S. K., Borland T., Kosovrasti V., Cantley W. L., Tam Y. K., Manoharan M., Ciufolini M. A., Tracy M. A., De Fougerolles A., MacLachlan I., Cullis P. R., Madden T. D., Hope M. J.. Rational design of cationic lipids for siRNA delivery. Nat. Biotechnol. 2010;28(2):172–176. doi: 10.1038/nbt.1602. PubMed DOI

Carrasco M. J., Alishetty S., Alameh M. G., Said H., Wright L., Paige M., Soliman O., Weissman D., Cleveland T. E., Grishaev A., Buschmann M. D.. Ionization and structural properties of mRNA lipid nanoparticles influence expression in intramuscular and intravascular administration. Commun. Biol. 2021;4(1):956. doi: 10.1038/s42003-021-02441-2. PubMed DOI PMC

Ding F., Zhang H., Cui J., Li Q., Yang C.. Boosting ionizable lipid nanoparticle-mediated in vivo mRNA delivery through optimization of lipid amine-head groups. Biomater. Sci. 2021;9:7534–7546. doi: 10.1039/D1BM00866H. PubMed DOI

Cheng X., Lee R. J.. The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery. Adv. Drug Delivery Rev. 2016;99:129–137. doi: 10.1016/j.addr.2016.01.022. PubMed DOI

Patel S., Ashwanikumar N., Robinson E., Xia Y., Mihai C., Griffith J. P., Hou S., Esposito A. A., Ketova T., Welsher K., Joyal J. L., Almarsson Ö., Sahay G.. Naturally-occurring cholesterol analogues in lipid nanoparticles induce polymorphic shape and enhance intracellular delivery of mRNA. Nat. Commun. 2020;11(1):983. doi: 10.1038/s41467-020-14527-2. PubMed DOI PMC

Eygeris Y., Patel S., Jozic A., Sahay G.. Deconvoluting Lipid Nanoparticle Structure for Messenger RNA Delivery. Nano Lett. 2020;20:4543–4549. doi: 10.1021/acs.nanolett.0c01386. PubMed DOI

Zhang J., Fan H., Levorse D. A., Crocker L. S.. Interaction of cholesterol-conjugated ionizable amino lipids with biomembranes: Lipid polymorphism, structure-activity relationship, and implications for siRNA delivery. Langmuir. 2011;27:9473–9483. doi: 10.1021/la201464k. PubMed DOI

Borges-Araújo L., Borges-Araújo A. C., Ozturk T. N., Ramirez-Echemendia D. P., Fábián B., Carpenter T. S., Thallmair S., Barnoud J., Ingólfsson H. I., Hummer G., Tieleman D. P., Marrink S. J., Souza P. C. T., Melo M. N.. Martini 3 coarse-grained force field for cholesterol. J. Chem. Theory Comput. 2023;19:7387–7404. doi: 10.1021/acs.jctc.3c00547. PubMed DOI

Grünewald F., Alessandri R., Kroon P. C., Monticelli L., Souza P. C. T., Marrink S. J.. Polyply; a python suite for facilitating simulations of macromolecules and nanomaterials. Nat. Commun. 2022;13(2022):68. doi: 10.1038/s41467-021-27627-4. PubMed DOI PMC

Grünewald, F. Material design using martini: Accelerating discovery through coarse-grained simulations, Ph.D. thesis, University of Groningen, 2023.

Ibrahim M., Gilbert J., Heinz M., Nylander T., Schwierz N.. Structural insights on ionizable Dlin-MC3-DMA lipids in DOPC layers by combining accurate atomistic force fields, molecular dynamics simulations and neutron reflectivity. Nanoscale. 2023;15:11647–11656. doi: 10.1039/D3NR00987D. PubMed DOI

Jayaraman M., Ansell S. M., Mui B. L., Tam Y. K., Chen J., Du X., Butler D., Eltepu L., Matsuda S., Narayanannair J. K.. et al. Maximizing the potency of sirna lipid nanoparticles for hepatic gene silencing in vivo. Angew. Chem., Int. Ed. 2012;51:8529–8533. doi: 10.1002/anie.201203263. PubMed DOI PMC

Wassenaar T. A., Ingólfsson H. I., Böckmann R. A., Tieleman D. P., Marrink S. J.. Computational lipidomics with insane: A versatile tool for generating custom membranes for molecular simulations. J. Chem. Theory Comput. 2015;11:2144–2155. doi: 10.1021/acs.jctc.5b00209. PubMed DOI

Pedersen K. B., Ingólfsson H. I., Ramirez-Echemendia D. P., Borges-Araújo L., Andreasen M. D., Empereur-Mot C., Melcr J., Ozturk T. N., Bennett D. W., Kjølbye L. R.. et al. The martini 3 lipidome: expanded and refined parameters improve lipid phase behavior. ACS Cent. Sci. 2025;11:1598. doi: 10.1021/acscentsci.5c00755. PubMed DOI PMC

Loura L. M., de Almeida R. F., Silva L. C., Prieto M.. Fret analysis of domain formation and properties in complex membrane systems. Biochim. Biophys. Acta, Biomembr. 2009;1788:209–224. doi: 10.1016/j.bbamem.2008.10.012. PubMed DOI

Hashiba K., Sato Y., Taguchi M., Sakamoto S., Otsu A., Maeda Y., Shishido T., Murakawa M., Okazaki A., Harashima H.. Branching Ionizable Lipids Can Enhance the Stability, Fusogenicity, and Functional Delivery of mRNA. Small Science. 2023;3:2200071. doi: 10.1002/smsc.202200071. PubMed DOI PMC

Li Y., Ye Z., Yang H., Xu Q.. Tailoring combinatorial lipid nanoparticles for intracellular delivery of nucleic acids, proteins, and drugs. Acta Pharm. Sin. B. 2022;12:2624–2639. doi: 10.1016/j.apsb.2022.04.013. PubMed DOI PMC

Brader M. L., Williams S. J., Banks J. M., Hui W. H., Zhou Z. H., Jin L.. Encapsulation state of messenger RNA inside lipid nanoparticles. Biophys. J. 2021;120:2766–2770. doi: 10.1016/j.bpj.2021.03.012. PubMed DOI PMC

Poojari C. S., Scherer K. C., Hub J. S.. Free energies of membrane stalk formation from a lipidomics perspective. Nat. Commun. 2021;12(1):6594. doi: 10.1038/s41467-021-26924-2. PubMed DOI PMC

Ingólfsson H. I., Bhatia H., Zeppelin T., Bennett W. F., Carpenter K. A., Hsu P. C., Dharuman G., Bremer P. T., Schiøtt B., Lightstone F. C., Carpenter T. S.. Capturing Biologically Complex Tissue-Specific Membranes at Different Levels of Compositional Complexity. J. Phys. Chem. B. 2020;124:7819–7829. doi: 10.1021/acs.jpcb.0c03368. PubMed DOI PMC

Tarahovsky Y. S., Koynova R., MacDonald R. C.. Dna release from lipoplexes by anionic lipids: Correlation with lipid mesomorphism, interfacial curvature, and membrane fusion. Biophys. J. 2004;87:1054–1064. doi: 10.1529/biophysj.104.042895. PubMed DOI PMC

Kobayashi T., Beuchat M.-H., Chevallier J., Makino A., Mayran N., Escola J.-M., Lebrand C., Cosson P., Kobayashi T., Gruenberg J.. Separation and characterization of late endosomal membrane domains. J. Biol. Chem. 2002;277:32157–32164. doi: 10.1074/jbc.M202838200. PubMed DOI

Markin V. S., Kozlov M. M., Borovjagin V. L.. On the theory of membrane fusion. The stalk mechanism. Gen. Physiol. Biophys. 1984;3:361–377. PubMed

Chernomordik L. V., Kozlov M. M.. Mechanics of membrane fusion. Nat. Struct. Mol. Biol. 2008;15:675–683. doi: 10.1038/nsmb.1455. PubMed DOI PMC

Yanez Arteta M., Kjellman T., Bartesaghi S., Wallin S., Wu X., Kvist A. J., Dabkowska A., Székely N., Radulescu A., Bergenholtz J.. et al. Successful reprogramming of cellular protein production through mrna delivered by functionalized lipid nanoparticles. Proc. Natl. Acad. Sci. U.S.A. 2018;115:E3351–E3360. doi: 10.1073/pnas.1720542115. PubMed DOI PMC

Sebastiani F., Yanez Arteta M., Lerche M., Porcar L., Lang C., Bragg R. A., Elmore C. S., Krishnamurthy V. R., Russell R. A., Darwish T.. et al. Apolipoprotein e binding drives structural and compositional rearrangement of mrna-containing lipid nanoparticles. ACS Nano. 2021;15:6709–6722. doi: 10.1021/acsnano.0c10064. PubMed DOI PMC

Yan Y., Liu X., Wang L., Wu C., Shuai Q., Zhang Y., Liu S.. Branched hydrophobic tails in lipid nanoparticles enhance mRNA delivery for cancer immunotherapy. Biomaterials. 2023;301:122279. doi: 10.1016/j.biomaterials.2023.122279. PubMed DOI

Miao L., Lin J., Huang Y., Li L., Delcassian D., Ge Y., Shi Y., Anderson D. G.. Synergistic lipid compositions for albumin receptor mediated delivery of mRNA to the liver. Nat. Commun. 2020;11(1):2424. doi: 10.1038/s41467-020-16248-y. PubMed DOI PMC

Kasson P. M., Lindahl E., Pande V. S.. Atomic-resolution simulations predict a transition state for vesicle fusion defined by contact of a few lipid tails. PLoS Comput. Biol. 2010;6:e1000829. doi: 10.1371/journal.pcbi.1000829. PubMed DOI PMC

Viger-Gravel J., Schantz A., Pinon A. C., Rossini A. J., Schantz S., Emsley L.. Structure of Lipid Nanoparticles Containing siRNA or mRNA by Dynamic Nuclear Polarization-Enhanced NMR Spectroscopy. J. Phys. Chem. B. 2018;122:2073–2081. doi: 10.1021/acs.jpcb.7b10795. PubMed DOI

Schoenmaker L., Witzigmann D., Kulkarni J. A., Verbeke R., Kersten G., Jiskoot W., Crommelin D. J.. mRNA-lipid nanoparticle COVID-19 vaccines: Structure and stability. Int. J. Pharm. 2021;601:120586. doi: 10.1016/j.ijpharm.2021.120586. PubMed DOI PMC

Pezeshkian W., König M., Wassenaar T. A., Marrink S. J.. Backmapping triangulated surfaces to coarse-grained membrane models. Nat. Commun. 2020;11(2020):2296. doi: 10.1038/s41467-020-16094-y. PubMed DOI PMC

Martinez L., Andrade R., Birgin E. G., Martínez J. M.. PACKMOL: A package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 2009;30:2157–2164. doi: 10.1002/jcc.21224. PubMed DOI

Kent, B. R. 3D Scientific Visualization with Blender®, 2053–2571; Morgan & Claypool Publishers, 2015.

Bruininks B. M. H., Wassenaar T. A., Vattulainen I.. Unbreaking Assemblies in Molecular Simulations with Periodic Boundaries. J. Chem. Inf. Model. 2023;63:3448–3452. doi: 10.1021/acs.jcim.2c01574. PubMed DOI PMC

Bruininks, B. M. H. , GitHubBartBruininks/mdvcontainment: Robust Characterization of Inside and Outside in Periodic Spaces. github.com, https://github.com/BartBruininks/mdvcontainment. [Accessed 01 08, 2024].

Humphrey W., Dalke A., Schulten K.. VMD: Visual molecular dynamics. J. Mol. Graphics. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI

Mui B. L., Tam Y. K., Jayaraman M., Ansell S. M., Du X., Tam Y. Y. C., Lin P. J., Chen S., Narayanannair J. K.. et al. Influence of polyethylene glycol lipid desorption rates on pharmacokinetics and pharmacodynamics of sirna lipid nanoparticles. Mol. Ther.Nucleic Acids. 2013;2:e139. doi: 10.1038/mtna.2013.66. PubMed DOI PMC

Leikin S. L., Kozlov M. M., Chernomordik L. V., Markin V. S., Chizmadzhev Y. A.. Membrane fusion: Overcoming of the hydration barrier and local restructuring. J. Theor. Biol. 1987;129:411–425. doi: 10.1016/S0022-5193(87)80021-8. PubMed DOI

Stevens J. A., Grünewald F., van Tilburg P., König M., Gilbert B., Brier T., Thornburg Z., Luthey-Schulten Z., Marrink S.. Molecular dynamics simulation of an entire cell. Front. Chem. 2023;11:1106495. doi: 10.3389/fchem.2023.1106495. PubMed DOI PMC

Andreasen M. D., Souza P. C. T., Schiøtt B., Zuzic L.. Creating coarse-grained systems with coby: Towards higher accuracy in membrane complexity. bioRxiv. 2024:604601. doi: 10.1101/2024.07.23.604601. PubMed DOI PMC

Bruininks B. M. H., Thie A. S., Souza P. C. T., Wassenaar T. A., Faraji S., Marrink S. J.. Sequential Voxel-Based Leaflet Segmentation of Complex Lipid Morphologies. J. Chem. Theory Comput. 2021;17:7873–7885. doi: 10.1021/acs.jctc.1c00446. PubMed DOI PMC

Ollila O. S., Pabst G.. Atomistic resolution structure and dynamics of lipid bilayers in simulations and experiments. Biochim. Biophys. Acta, Biomembr. 2016;1858:2512–2528. doi: 10.1016/j.bbamem.2016.01.019. PubMed DOI

Javanainen M., Heftberger P., Madsen J. J., Miettinen M. S., Pabst G., Ollila O. H. S.. Quantitative comparison against experiments reveals imperfections in force fields’ descriptions of popc–cholesterol interactions. J. Chem. Theory Comput. 2023;19:6342–6352. doi: 10.1021/acs.jctc.3c00648. PubMed DOI PMC

Lee J., Patel D. S., Ståhle J., Park S. J., Kern N. R., Kim S., Lee J., Cheng X., Valvano M. A., Holst O., Knirel Y. A., Qi Y., Jo S., Klauda J. B., Widmalm G., Im W.. CHARMM-GUI Membrane Builder for Complex Biological Membrane Simulations with Glycolipids and Lipoglycans. J. Chem. Theory Comput. 2019;15:775–786. doi: 10.1021/acs.jctc.8b01066. PubMed DOI

Dettmann L. F., Kühn O., Ahmed A. A.. Martini-based coarse-grained soil organic matter model derived from atomistic simulations. J. Chem. Theory Comput. 2024;20:5291–5305. doi: 10.1021/acs.jctc.4c00332. PubMed DOI

Bereau T., Kremer K.. Automated parametrization of the coarse-grained martini force field for small organic molecules. J. Chem. Theory Comput. 2015;11:2783–2791. doi: 10.1021/acs.jctc.5b00056. PubMed DOI

Stroh K. S., Souza P. C. T., Monticelli L., Risselada H. J.. Cgcompiler: Automated coarse-grained molecule parametrization via noise-resistant mixed-variable optimization. J. Chem. Theory Comput. 2023;19:8384–8400. doi: 10.1021/acs.jctc.3c00637. PubMed DOI PMC

Empereur-mot C., Pedersen K. B., Capelli R., Crippa M., Caruso C., Perrone M., Souza P. C. T., Marrink S. J., Pavan G. M.. Automatic optimization of lipid models in the martini force field using swarmcg. J. Chem. Inf. Model. 2023;63:3827–3838. doi: 10.1021/acs.jcim.3c00530. PubMed DOI PMC

Pereira G. P., Alessandri R., Domínguez M., Araya-Osorio R., Grünewald L., Borges-Araújo L., Wu S., Marrink S. J., Souza P. C. T., Mera-Adasme R.. Bartender: Martini 3 bonded terms via quantum mechanics-based molecular dynamics. J. Chem. Theory Comput. 2024;20:5763–5773. doi: 10.1021/acs.jctc.4c00275. PubMed DOI

Paloncýová M., Pykal M., Kührová P., Banáš P., Šponer J., Otyepka M.. Computer aided development of nucleic acid applications in nanotechnologies. Small. 2022;18:2204408. doi: 10.1002/smll.202204408. PubMed DOI

Aho N., Buslaev P., Jansen A., Bauer P., Groenhof G., Hess B.. Scalable constant ph molecular dynamics in gromacs. J. Chem. Theory Comput. 2022;18:6148–6160. doi: 10.1021/acs.jctc.2c00516. PubMed DOI PMC

Santos H. A. F., Vila-Viçosa D., Teixeira V. H., Baptista A. M., Machuqueiro M.. Constant-ph md simulations of dmpa/dmpc lipid bilayers. J. Chem. Theory Comput. 2015;11:5973–5979. doi: 10.1021/acs.jctc.5b00956. PubMed DOI

Trollmann M. F. W., Böckmann R. A.. Decoding ph-driven phase transition of lipid nanoparticles. bioRxiv. 2024:625717. doi: 10.1101/2024.11.27.625717. PubMed DOI

Trollmann M. F. W., Rossetti P., Böckmann R. A.. Constant-ph md simulations of lipids. BioRxiv. 2024:627182. doi: 10.1101/2024.12.06.627182. DOI

Grünewald F., Souza P. C. T., Abdizadeh H., Barnoud J., de Vries A. H., Marrink S. J.. Titratable Martini model for constant pH simulations. J. Chem. Phys. 2020;153:024118. doi: 10.1063/5.0014258. PubMed DOI

Koltover I., Salditt T., Radler J. O., Safinya C. R.. An inverted hexagonal phase of cationic liposome-dna complexes related to dna release and delivery. Science. 1998;281:78–81. doi: 10.1126/science.281.5373.78. PubMed DOI

König M., de Vries R., Grünewald F., Marrink S., Pezeshkian W.. Curvature-induced lipid sorting beyond the critical packing parameter. bioRxiv. 2023:571845. doi: 10.1101/2023.12.15.571845. DOI

Hub J. S.. Joint reaction coordinate for computing the free-energy landscape of pore nucleation and pore expansion in lipid membranes. J. Chem. Theory Comput. 2021;17:1229–1239. doi: 10.1021/acs.jctc.0c01134. PubMed DOI

Bennett W. D., Tieleman D. P.. Water defect and pore formation in atomistic and coarse-grained lipid membranes: Pushing the limits of coarse graining. J. Chem. Theory Comput. 2011;7:2981–2988. doi: 10.1021/ct200291v. PubMed DOI

Lee S. M., Cheng Q., Yu X., Liu S., Johnson L. T., Siegwart D. J.. A systematic study of unsaturation in lipid nanoparticles leads to improved mrna transfection in vivo. Angew. Chem., Int. Ed. 2021;60:5848–5853. doi: 10.1002/anie.202013927. PubMed DOI PMC

Hou X., Zaks T., Langer R., Dong Y.. Lipid nanoparticles for mrna delivery. Nat. Rev. Mater. 2021;6:1078–1094. doi: 10.1038/s41578-021-00358-0. PubMed DOI PMC

Kon E., Ad-El N., Hazan-Halevy I., Stotsky-Oterin L., Peer D.. Targeting cancer with mrna–lipid nanoparticles: key considerations and future prospects. Nat. Rev. Clin. Oncol. 2023;20:739–754. doi: 10.1038/s41571-023-00811-9. PubMed DOI

Abraham M. J., Murtola T., Schulz R., Páll S., Smith J. C., Hess B., Lindahl E.. Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25. doi: 10.1016/j.softx.2015.06.001. DOI

Gowers, R. J. ; Linke, M. ; Barnoud, J. ; Reddy, T. J. E. ; Melo, M. N. ; Seyler, S. L. ; Domanski, J. ; Dotson, D. L. ; Buchoux, S. ; Kenney, I. M. ; Beckstein, O. , MDAnalysis: A Python Package for the Rapid Analysis of Molecular Dynamics Simulations, Proceedings of the 15th Python in Science Conference, 2019; pp 98–105.

Michaud-Agrawal N., Denning E. J., Woolf T. B., Beckstein O.. MDAnalysis: A toolkit for the analysis of molecular dynamics simulations. J. Comput. Chem. 2011;32:2319–2327. doi: 10.1002/jcc.21787. PubMed DOI PMC

Harris C. R., Millman K. J., van der Walt S. J., Gommers R., Virtanen P., Cournapeau D., Wieser E., Taylor J., Berg S., Smith N. J., Kern R., Picus M., Hoyer S., van Kerkwijk M. H., Brett M., Haldane A., del Río J. F., Wiebe M., Peterson P., Gérard-Marchant P., Sheppard K., Reddy T., Weckesser W., Abbasi H., Gohlke C., Oliphant T. E.. Array programming with NumPy. Nature. 2020;585(7825):357–362. doi: 10.1038/s41586-020-2649-2. PubMed DOI PMC

Hunter J. D.. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007;9:90–95. doi: 10.1109/MCSE.2007.55. DOI

Buchoux S.. FATSLiM: a fast and robust software to analyze MD simulations of membranes. Bioinformatics. 2017;33:133–134. doi: 10.1093/bioinformatics/btw563. PubMed DOI

Humphrey W., Dalke A., Schulten K.. VMD – Visual Molecular Dynamics. J. Mol. Graphics. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI

Stone, J. ; Gullingsrud, J. ; Grayson, P. , Schulten, K. , A system for interactive molecular dynamics simulation. In 2001 ACM Symposium on Interactive 3D Graphics, Hughes, J. F. , Séquin, C·H. , Eds.; ACM SIGGRAPH, New York, 2001, pp 191–194.

Rdkit: Open-Source Cheminformatics, https://www.rdkit.org.

Alessandri R., Barnoud J., Gertsen A. S., Patmanidis I., de Vries A. H., Souza P. C. T., Marrink S. J.. Martini 3 coarse-grained force field: Small molecules. Adv. Theory Simul. 2022;5:2100391. doi: 10.1002/adts.202100391. DOI

Alessandri, R. ; Thallmair, S. ; Herrero, C. G. ; Mera-Adasme, R. ; Marrink, S. J. ; Souza, P. C. T. . A Practical Introduction to Martini 3 and its Application to Protein-Ligand Binding Simulations. In A Practical Guide to Recent Advances in Multiscale Modeling and Simulation of Biomolecules; AIP Publishing LLC.

Dodda L. S., De Vaca I. C., Tirado-Rives J., Jorgensen W. L.. LigParGen web server: an automatic OPLS-AA parameter generator for organic ligands. Nucleic Acids Res. 2017;45:W331–W336. doi: 10.1093/nar/gkx312. PubMed DOI PMC

Dodda L. S., Vilseck J. Z., Tirado-Rives J., Jorgensen W. L.. 1.14*CM1A-LBCC: Localized Bond Charge Corrected CM1A Charges for Condensed-Phase Simulations. J. Phys. Chem. B. 2017;121:3864. doi: 10.1021/acs.jpcb.7b00272. PubMed DOI PMC

Berendsen H. J. C., Postma J. P. M., Gunsteren W. F. V., Dinola A., Haak J. R.. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984;81:3684–3690. doi: 10.1063/1.448118. DOI

Bussi G., Donadio D., Parrinello M.. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007;126:014101. doi: 10.1063/1.2408420. PubMed DOI

Parrinello M., Rahman A.. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 1981;52:7182–7190. doi: 10.1063/1.328693. DOI

Darden T., York D., Pedersen L.. Particle mesh Ewald: An N·log­(N) method for Ewald sums in large systems. J. Chem. Phys. 1993;98:10089–10092. doi: 10.1063/1.464397. DOI

Páll S., Hess B.. A flexible algorithm for calculating pair interactions on SIMD architectures. Comput. Phys. Commun. 2013;184:2641–2650. doi: 10.1016/j.cpc.2013.06.003. DOI

Hess B., Bekker H., Berendsen H. J. C., Fraaije J. G. E. M.. LINCS: A Linear Constraint Solver for molecular simulations. J. Comput. Chem. 1997;18:1463–1472. doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H. DOI

de Jong D. H., Baoukina S., Ingólfsson H. I., Marrink S. J.. Martini straight: Boosting performance using a shorter cutoff and GPUs. Comput. Phys. Commun. 2016;199:1–7. doi: 10.1016/j.cpc.2015.09.014. DOI

Bannwarth C., Ehlert S., Grimme S.. Gfn2-xtban accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions. J. Chem. Theory Comput. 2019;15:1652–1671. doi: 10.1021/acs.jctc.8b01176. PubMed DOI

Bannwarth C., Caldeweyher E., Ehlert S., Hansen A., Pracht P., Seibert J., Spicher S., Grimme S.. Extended tight-binding quantum chemistry methods. WIREs Comput Mol Sci. 2021;11:e1493. doi: 10.1002/wcms.1493. DOI

Becke A. D.. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A. 1988;38:3098–3100. doi: 10.1103/PhysRevA.38.3098. PubMed DOI

Perdew J. P.. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B. 1986;33:8822–8824. doi: 10.1103/PhysRevB.33.8822. PubMed DOI

Weigend F., Ahlrichs R.. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for h to rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005;7:3297–3305. doi: 10.1039/b508541a. PubMed DOI

Grimme S., Antony J., Ehrlich S., Krieg H.. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010;132:154104. doi: 10.1063/1.3382344. PubMed DOI

Eichkorn K., Weigend F., Treutler O., Ahlrichs R.. Auxiliary basis sets for main row atoms and transition metals and their use to approximate coulomb potentials. Theor. Chem. Acc. 1997;97:119–124. doi: 10.1007/s002140050244. DOI

Balasubramani S., Chen G., Coriani S., Diedenhofen M., Frank M., Franzke Y., Furche F., Grotjahn R., Harding M., Hättig C., Hellweg A., Helmich-Paris B., Holzer C., Huniar U., Kaupp M., Marefat Khah A., Karbalaei Khani S., Müller T., Mack F., Nguyen B., Parker S., Perlt E., Rappoport D., Reiter K., Roy S., Rückert M., Schmitz G., Sierka M., Tapavicza E., Tew D., van Wüllen C., Voora V., Weigend F., Wodyński A., Yu J.. Turbomole: Modular program suite for ab initio quantum-chemical and condensed-matter simulations. J. Chem. Phys. 2020;152:184107. doi: 10.1063/5.0004635. PubMed DOI PMC

Kirkwood J. G.. Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 1935;3:300–313. doi: 10.1063/1.1749657. DOI

MacCallum J. L., Tieleman D. P.. Structures of neat and hydrated 1-octanol from computer simulations. J. Am. Chem. Soc. 2002;124:15085–15093. doi: 10.1021/ja027422o. PubMed DOI

DeBolt S. E., Kollman P. A.. Investigation of Structure, Dynamics, and Solvation in 1-Octanol and Its Water-Saturated Solution: Molecular Dynamics and Free-Energy Perturbation Studies. J. Am. Chem. Soc. 1995;117:5316–5340. doi: 10.1021/ja00124a015. DOI

Goga N., Rzepiela A. J., de Vries A. H., Marrink S. J., Berendsen H. J.. Efficient algorithms for langevin and DPD dynamics. J. Chem. Theory Comput. 2012;8:3637–3649. doi: 10.1021/ct3000876. PubMed DOI

Shirts M. R., Chodera J. D.. Statistically optimal analysis of samples from multiple equilibrium states. J. Chem. Phys. 2008;129:124105. doi: 10.1063/1.2978177. PubMed DOI PMC

Lim J. B., Rogaski B., Klauda J. B.. Update of the cholesterol force field parameters in charmm. J. Phys. Chem. B. 2012;116:203–210. doi: 10.1021/jp207925m. PubMed DOI

Marrink S. J., de Vries A. H., Harroun T. A., Katsaras J., Wassall S. R.. Cholesterol shows preference for the interior of polyunsaturated lipid membranes. J. Am. Chem. Soc. 2008;130:10–11. doi: 10.1021/ja076641c. PubMed DOI

Melo M. N., Ingólfsson H. I., Marrink S. J.. Parameters for Martini sterols and hopanoids based on a virtual-site description. J. Chem. Phys. 2015;143:243152. doi: 10.1063/1.4937783. PubMed DOI

Zhang Y., Maginn E. J.. A comparison of methods for melting point calculation using molecular dynamics simulations. J. Chem. Phys. 2012;136:144116. doi: 10.1063/1.3702587. PubMed DOI

Tsanai M., Frederix P. J. M., Schroer C. F. E., Souza P. C. T., Marrink S. J.. Coacervate formation studied by explicit solvent coarse-grain molecular dynamics with the martini model. Chem. Sci. 2021;12:8521–8530. doi: 10.1039/D1SC00374G. PubMed DOI PMC

Ingólfsson H. I., Rizuan A., Liu X., Mohanty P., Souza P. C., Marrink S. J., Bowers M. T., Mittal J., Berry J.. Multiscale simulations reveal tdp-43 molecular-level interactions driving condensation. Biophys. J. 2023;122:4370–4381. doi: 10.1016/j.bpj.2023.10.016. PubMed DOI PMC

Uusitalo J. J., Ingólfsson H. I., Akhshi P., Tieleman D. P., Marrink S. J.. Martini coarse-grained force field: Extension to dna. J. Chem. Theory Comput. 2015;11:3932–3945. doi: 10.1021/acs.jctc.5b00286. PubMed DOI

Uusitalo J. J., Ingólfsson H. I., Marrink S. J., Faustino I.. Martini coarse-grained force field: Extension to rna. Biophys. J. 2017;113:246–256. doi: 10.1016/j.bpj.2017.05.043. PubMed DOI PMC

Grünewald F., Punt M. H., Jefferys E. E., Vainikka P. A., König M., Virtanen V., Meyer T. A., Pezeshkian W., Gormley A. J., Karonen M., Sansom M. S. P., Souza P. C. T., Marrink S. J.. Martini 3 coarse-grained force field for carbohydrates. J. Chem. Theory Comput. 2022;18:7555–7569. doi: 10.1021/acs.jctc.2c00757. PubMed DOI PMC

Hub J. S., Awasthi N.. Probing a continuous polar defect: A reaction coordinate for pore formation in lipid membranes. J. Chem. Theory Comput. 2017;13:2352–2366. doi: 10.1021/acs.jctc.7b00106. PubMed DOI

Awasthi, N. ; Hub, J. S. , Free-energy calculations of pore formation in lipid membranes. In Biomembrane Simulations; CRC Press, 2019; pp 109–124.

Kumar S., Rosenberg J. M., Bouzida D., Swendsen R. H., Kollman P. A.. THE weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J. Comput. Chem. 1992;13:1011–1021. doi: 10.1002/jcc.540130812. DOI

Bruininks, B. M. H. ; Souza, P. C. T. ; Marrink, S. J. . A Practical View of the Martini Force Field; Springer New York: New York, NY, 2019; pp 105–127. PubMed

Quemener E., Corvellec M.. SIDUSthe solution for extreme deduplication of an operating system. Linux J. 2013;2013:3. doi: 10.5555/2555789.2555792. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...