Effects of Defined Pig Microbiota on Acute Salmonellosis in Gnotobiotic Piglets
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
Grantová podpora
21-15621S
Czech Science Foundation
LM2023064
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
41474380
PubMed Central
PMC12755190
DOI
10.1096/fj.202503234r
Knihovny.cz E-zdroje
- Klíčová slova
- Salmonella Typhimurium, Toll‐like receptors, defined pig microbiota, gnotobiotic piglet, high mobility group box 1, inflammatory cytokines, lipopolysaccharide, salmonellosis,
- MeSH
- cytokiny metabolismus MeSH
- gnotobiologické modely * MeSH
- mikrobiota * MeSH
- prasata MeSH
- Salmonella typhimurium * MeSH
- salmonelová infekce u zvířat * mikrobiologie imunologie MeSH
- střevní mikroflóra * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cytokiny MeSH
Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium) is a ubiquitous Salmonella serovar that causes enterocolitis in humans, livestock, poultry, and some pets. Gnotobiotic animals are suitable for studying the development of initial colonization in the gastrointestinal tract, host-microbiota cross-talk, and interactions among microbiota strains. To clarify the impact of pre-colonization of the germ-free piglets with defined pig microbiota (DPM) on the subsequent infection with S. Typhimurium LT2 (LT2), we focused on the acute host immune response. Colonization with DPM did not cause signs of enterocolitis (sleepiness, anorexia, fever, and diarrhea), histological changes in the intestine, the density of acid mucin-producing cells, expression of villin, claudin-1, occludin, TLR4, MD-2, CD14, LBP, MyD88, and TRIF, induction of inflammatory cytokines IL-1β, IL-6, IL-8, IL-10, IL-12/23p40, TNF-α, IFN-γ, and HMGB1. LT2 translocated into the mesenteric lymph nodes, liver, spleen, and blood of the LT2 group, as well as damaged the intestinal structure, and upregulated intestinal inflammatory cytokine levels. The pre-colonization with DPM ameliorated the LT2-induced signs of enterocolitis, intestinal damage, and inflammatory changes. Changes in intestinal levels of soluble TLR4 and TLR2 indicate the possible inclusion of soluble TLRs in the regulation of the inflammatory process. The controlled initial colonization of the newborn gastrointestinal tract with a defined microbial consortium can increase newborn resistance to enteric pathogens and promote thriving of young animals.
Department of Cell Biology Faculty of Science Charles University Prague Czechia
Laboratory of Gnotobiology Institute of Microbiology Czech Academy of Sciences Novy Hradek Czechia
Zobrazit více v PubMed
Krautkramer K. A., Fan J., and Bäckhed F., “Gut Microbial Metabolites as Multi‐Kingdom Intermediates,” Nature Reviews. Microbiology 19 (2021): 77–94, 10.1038/s41579-020-0438-4. PubMed DOI
Fassarella M., Blaak E. E., Penders J., Nauta A., Smidt H., and Zoetendal E. G., “Gut Microbiome Stability and Resilience: Elucidating the Response to Perturbations in Order to Modulate Gut Health,” Gut 70 (2021): 595–605, 10.1136/gutjnl-2020-321747. PubMed DOI
Jaswal K., Todd O. A., and Behnsen J., “Neglected Gut Microbiome: Interactions of the Non‐Bacterial Gut Microbiota With Enteric Pathogens,” Gut Microbes 15 (2023): 2226916, 10.1080/19490976.2023.2226916. PubMed DOI PMC
Kennedy K. M., de Goffau M. C., Perez‐Muñoz M. E., et al., “Questioning the Fetal Microbiome Illustrates Pitfalls of Low‐Biomass Microbial Studies,” Nature 613 (2023): 639–649, 10.1038/s41586-022-05546-8. PubMed DOI PMC
Enav H., Bäckhed F., and Ley R. E., “The Developing Infant Gut Microbiome: A Strain‐Level View,” Cell Host & Microbe 30 (2022): 627–638, 10.1016/j.chom.2022.04.009. PubMed DOI
Carrapato M. R. G., Ferreira A. M., and Wataganara T., “Cesarean Section: The Pediatricians' Views,” Journal of Maternal‐Fetal & Neonatal Medicine 30 (2017): 2081–2085, 10.1080/14767058.2016.1237496. PubMed DOI
Adugna S. A., Kitessa J. D., Feyissa C. T., and Adem S. A., “Review on a Cesarean Section in the Cow: Its Incision Approaches, Relative Advantage, and Disadvantages,” Veterinary Medicine and Science 8 (2022): 1626–1631, 10.1002/vms3.808. PubMed DOI PMC
Greghi J. R., Favaron P. O., Trautwein L. G. C., da Silva C. G. B., de Lemos G. A. A., and Martins M. I. M., “Emergency Cesarean Section in Dogs: Usefulness of Amniotic Fluid Biochemical Parameters and Placental Morphology as Indicators of Neonatal Viability,” Theriogenology 211 (2023): 115–124, 10.1016/j.theriogenology.2023.08.011. PubMed DOI
Tirone C., Pezza L., Paladini A., et al., “Gut and Lung Microbiota in Preterm Infants: Immunological Modulation and Implication in Neonatal Outcomes,” Frontiers in Immunology 10 (2019): 2910, 10.3389/fimmu.2019.02910. PubMed DOI PMC
Marty D., Sorum K., Smith K., Nicoski P., Sayyed B. A., and Amin S., “Nosocomial Infections in the Neonatal Intensive Care Unit,” NeoReviews 25 (2024): e254–e264, 10.1542/neo.25-5-e254. PubMed DOI
Jennings S. A. V. and Clavel T., “Synthetic Communities of Gut Microbes for Basic Research and Translational Approaches in Animal Health and Nutrition,” Annual Review of Animal Biosciences 12 (2024): 283–300, 10.1146/annurev-animal-021022-025552. PubMed DOI
Caballero‐Flores G., Pickard J. M., and Núñez G., “Microbiota‐Mediated Colonization Resistance: Mechanisms and Regulation,” Nature Reviews. Microbiology 21 (2023): 347–360, 10.1038/s41579-022-00833-7. PubMed DOI PMC
Han J., Aljahdali N., Zhao S., et al., “Infection Biology of PubMed DOI PMC
Campos J., Mourão J., Peixe L., and Antunes P., “Non‐Typhoidal Salmonella in the Pig Production Chain: A Comprehensive Analysis of Its Impact on Human Health,” Pathogens 8 (2019): 19, 10.3390/pathogens8010019. PubMed DOI PMC
Ferrari R. G., Rosario D. K. A., Cunha‐Neto A., Mano S. B., Figueiredo E. E. S., and Conte‐Junior C. A., “Worldwide Epidemiology of Salmonella Serovars in Animal‐Based Foods: A Meta‐Analysis,” Applied and Environmental Microbiology 85 (2019): 91‐19, 10.1128/AEM.00591-19. PubMed DOI PMC
Fitzgerald K. A. and Kagan J. C., “Toll‐Like Receptors and the Control of Immunity,” Cell 180 (2020): 1044–1066, 10.1016/j.cell.2020.02.041. PubMed DOI PMC
Gong T., Liu L., Jiang W., and Zhou R., “DAMP‐Sensing Receptors in Sterile Inflammation and Inflammatory Diseases,” Nature Reviews. Immunology 20 (2020): 95–112, 10.1038/s41577-019-0215-7. PubMed DOI
Kawai T. and Akira S., “Toll‐Like Receptors and Their Crosstalk With Other Innate Receptors in Infection and Immunity,” Immunity 34 (2011): 637–650, 10.1016/j.immuni.2011.05.006. PubMed DOI
McClelland M., Sanderson K. E., Spieth J., et al., “Complete Genome Sequence of Salmonella Enterica Serovar Typhimurium LT2,” Nature 413 (2001): 852–856, 10.1038/35101614. PubMed DOI
Clarke R. C. and Gyles C. L., “Virulence of Wild and Mutant Strains of PubMed
Splichal I., Rychlik I., Splichalova I., Karasova D., and Splichalova A., “Toll‐Like Receptor 4 Signaling in the Ileum and Colon of Gnotobiotic Piglets Infected With PubMed DOI PMC
Horvathova K., Modrackova N., Splichal I., et al., “Defined Pig Microbiota With a Potential Protective Effect Against Infection With PubMed DOI PMC
Modrackova N., Horvathova K., Mekadim C., et al., “Defined Pig Microbiota Mixture as Promising Strategy Against Salmonellosis in Gnotobiotic Piglets,” Animals 14 (2024): 1779, 10.3390/ani14121779. PubMed DOI PMC
Trebichavsky I., Dlabac V., Rehakova Z., Zahradnickova M., and Splichal I., “Cellular Changes and Cytokine Expression in the Ilea of Gnotobiotic Piglets Resulting From Peroral PubMed DOI PMC
Splichalova A., Slavikova V., Splichalova Z., and Splichal I., “Preterm Life in Sterile Conditions: A Study on Preterm, Germ‐Free Piglets,” Frontiers in Immunology 9 (2018): 220, 10.3389/fimmu.2018.00220. PubMed DOI PMC
Xing J.‐H., Niu T.‐M., Zou B.‐S., et al., “Gut Microbiota‐Derived LCA Mediates the Protective Effect of PEDV Infection in Piglets,” Microbiome 12 (2024): 20, 10.1186/s40168-023-01734-4. PubMed DOI PMC
Splichal I., Donovan S. M., Splichalova Z., et al., “Colonization of Germ‐Free Piglets With Commensal PubMed DOI PMC
Splichalova A., Pechar R., Killer J., et al., “Colonization of Germ‐Free Piglets With Mucinolytic and Non‐Mucinolytic PubMed DOI PMC
Schmittgen T. D. and Livak K. J., “Analyzing Real‐Time PCR Data by the Comparative C(T) Method,” Nature Protocols 3 (2008): 1101–1108, 10.1038/nprot.2008.73. PubMed DOI
Roberts R. M., Green J. A., and Schulz L. C., “The Evolution of the Placenta,” Reproduction 152 (2016): R179–R189, 10.1530/REP-16-0325. PubMed DOI PMC
Bigler N. A., Bruckmaier R. M., and Gross J. J., “Implications of Placentation Type on Species‐Specific Colostrum Properties in Mammals,” Journal of Animal Science 100 (2022): skac287, 10.1093/jas/skac287. PubMed DOI PMC
Salmon H., Berri M., Gerdts V., and Meurens F., “Humoral and Cellular Factors of Maternal Immunity in Swine,” Developmental and Comparative Immunology 33 (2009): 384–393, 10.1016/j.dci.2008.07.007. PubMed DOI
Miniats O. P. and Jol D., “Gnotobiotic Pigs‐Derivation and Rearing,” Canadian Journal of Comparative Medicine 42 (1978): 428–437. PubMed PMC
Bæk O., Brunse A., Nguyen D. N., Moodley A., Thymann T., and Sangild P. T., “Diet Modulates the High Sensitivity to Systemic Infection in Newborn Preterm Pigs,” Frontiers in Immunology 11 (2020): 1019, 10.3389/fimmu.2020.01019. PubMed DOI PMC
Arda I. S., Ergin F., Varan B., Demirhan B., Aslan H., and Ozyaylali I., “Acute Abdomen Caused by PubMed DOI
Skrzypek T., Valverde Piedra J. L., Skrzypek H., Kazimierczak W., Biernat M., and Zabielski R., “Gradual Disappearance of Vacuolated Enterocytes in the Small Intestine of Neonatal Piglets,” Journal of Physiology and Pharmacology 58, no. 3 (2007): 87–95. PubMed
Splichalova A., Splichalova Z., Karasova D., et al., “Impact of the Lipopolysaccharide Chemotype of PubMed DOI PMC
Shirkey T. W., Siggers R. H., Goldade B. G., et al., “Effects of Commensal Bacteria on Intestinal Morphology and Expression of Proinflammatory Cytokines in the Gnotobiotic Pig,” Experimental Biology and Medicine 231 (2006): 1333–1345, 10.1177/153537020623100807. PubMed DOI
Allaire J. M., Crowley S. M., Law H. T., Chang S.‐Y., Ko H.‐J., and Vallance B. A., “The Intestinal Epithelium: Central Coordinator of Mucosal Immunity,” Trends in Immunology 39 (2018): 677–696, 10.1016/j.it.2018.04.002. PubMed DOI
Otani T. and Furuse M., “Tight Junction Structure and Function Revisited,” Trends in Cell Biology 30 (2020): 805–817, 10.1016/j.tcb.2020.08.004. PubMed DOI
Paone P. and Cani P. D., “Mucus Barrier, Mucins and Gut Microbiota: The Expected Slimy Partners?,” Gut 69 (2020): 2232–2243, 10.1136/gutjnl-2020-322260. PubMed DOI PMC
Bergstrom K., Shan X., Casero D., et al., “Proximal Colon‐Derived O‐Glycosylated Mucus Encapsulates and Modulates the Microbiota,” Science 370 (2020): 467–472, 10.1126/science.aay7367. PubMed DOI PMC
Linden S. K., Sutton P., Karlsson N. G., Korolik V., and McGuckin M. A., “Mucins in the Mucosal Barrier to Infection,” Mucosal Immunology 1 (2008): 183–197, 10.1038/mi.2008.5. PubMed DOI PMC
Lhocine N., Arena E. T., Bomme P., et al., “Apical Invasion of Intestinal Epithelial Cells by PubMed DOI PMC
Vlasova A. N., Paim F. C., Kandasamy S., et al., “Protein Malnutrition Modifies Innate Immunity and Gene Expression by Intestinal Epithelial Cells and Human Rotavirus Infection in Neonatal Gnotobiotic Pigs,” mSphere 2 (2017): 46‐17, 10.1128/mSphere.00046-17. PubMed DOI PMC
Wen S. C., Best E., and Nourse C., “Non‐Typhoidal Salmonella Infections in Children: Review of Literature and Recommendations for Management,” Journal of Paediatrics and Child Health 53 (2017): 936–941, 10.1111/jpc.13585. PubMed DOI
Günzel D. and Fromm M., “Claudins and Other Tight Junction Proteins,” Comprehensive Physiology 2 (2012): 1819–1852, 10.1002/cphy.c110045. PubMed DOI
Bellido‐Carreras N., Argüello H., Zaldívar‐López S., et al., “ PubMed DOI
Al‐Sadi R., Khatib K., Guo S., Ye D., Youssef M., and Ma T., “Occludin Regulates Macromolecule Flux Across the Intestinal Epithelial Tight Junction Barrier,” American Journal of Physiology. Gastrointestinal and Liver Physiology 300 (2011): G1054–G1064, 10.1152/ajpgi.00055.2011. PubMed DOI PMC
Splichalova A., Trebichavsky I., Rada V., Vlkova E., Sonnenborn U., and Splichal I., “Interference of PubMed DOI PMC
Kagan J. C., “Lipopolysaccharide Detection Across the Kingdoms of Life,” Trends in Immunology 38 (2017): 696–704, 10.1016/j.it.2017.05.001. PubMed DOI PMC
Kaufman D. A., Perks P. H., Greenberg R. G., and Jensen D., “Endotoxin Content in Neonatal Formulas, Fortification, and Lactoferrin Products: Association With Outcomes and Guidance on Acceptable Limits,” Biometals 36 (2023): 703–708, 10.1007/s10534-022-00487-1. PubMed DOI PMC
Kumar S., Sharma V., and Yadav S., “TLR4 Targeting: A Promising Therapeutic Approach Across Multiple Human Diseases,” Current Protein & Peptide Science 26 (2025): 241–258, 10.2174/0113892037324425241018061548. PubMed DOI
Potockova H., Sinkorova J., Karova K., and Sinkora M., “The Distribution of Lymphoid Cells in the Small Intestine of Germ‐Free and Conventional Piglets,” Developmental and Comparative Immunology 51 (2015): 99–107, 10.1016/j.dci.2015.02.014. PubMed DOI
Pabst R., “The Pig as a Model for Immunology Research,” Cell and Tissue Research 380 (2020): 287–304, 10.1007/s00441-020-03206-9. PubMed DOI PMC
Fajgenbaum D. C. and June C. H., “Cytokine Storm,” New England Journal of Medicine 383 (2020): 2255–2273, 10.1056/NEJMra2026131. PubMed DOI PMC
Matsumoto H., Ogura H., Shimizu K., et al., “The Clinical Importance of a Cytokine Network in the Acute Phase of Sepsis,” Scientific Reports 8 (2018): 13995, 10.1038/s41598-018-32275-8. PubMed DOI PMC
Andersson U. and Yang H., “HMGB1 Is a Critical Molecule in the Pathogenesis of Gram‐Negative Sepsis,” Journal of Intensive Medicine 2 (2022): 156–166, 10.1016/j.jointm.2022.02.001. PubMed DOI PMC
Thorgersen E. B., Hellerud B. C., Nielsen E. W., et al., “CD14 Inhibition Efficiently Attenuates Early Inflammatory and Hemostatic Responses in PubMed DOI PMC
Hooper L. V., Littman D. R., and Macpherson A. J., “Interactions Between the Microbiota and the Immune System,” Science 336 (2012): 1268–1273, 10.1126/science.1223490. PubMed DOI PMC
Matsushima K., Yang D., and Oppenheim J. J., “Interleukin‐8: An Evolving Chemokine,” Cytokine 153 (2022): 155828, 10.1016/j.cyto.2022.155828. PubMed DOI
Foster N., Lovell M. A., Marston K. L., et al., “Rapid Protection of Gnotobiotic Pigs Against Experimental Salmonellosis Following Induction of Polymorphonuclear Leukocytes by Avirulent PubMed DOI PMC
Splichal I., Trebichavsky I., Splichalova A., and Barrow P. A., “Protection of Gnotobiotic Pigs Against PubMed DOI
Splichalova A., Splichal I., Chmelarova P., and Trebichavsky I., “Alarmin HMGB1 Is Released in the Small Intestine of Gnotobiotic Piglets Infected With Enteric Pathogens and Its Level in Plasma Reflects Severity of Sepsis,” Journal of Clinical Immunology 31 (2011): 488–497, 10.1007/s10875-010-9505-3. PubMed DOI
Vitali R., Terrin G., Palone F., et al., “Fecal High‐Mobility Group Box 1 as a Marker of Early Stage of Necrotizing Enterocolitis in Preterm Neonates,” Frontiers in Pediatrics 9 (2021): 672131, 10.3389/fped.2021.672131. PubMed DOI PMC
Stierschneider A. and Wiesner C., “Shedding Light on the Molecular and Regulatory Mechanisms of TLR4 Signaling in Endothelial Cells Under Physiological and Inflamed Conditions,” Frontiers in Immunology 14 (2023): 1264889, 10.3389/fimmu.2023.1264889. PubMed DOI PMC
Raby A.‐C., Le Bouder E., Colmont C., et al., “Soluble TLR2 Reduces Inflammation Without Compromising Bacterial Clearance by Disrupting TLR2 Triggering,” Journal of Immunology (Baltimore, Md.: 1950) 183 (2009): 506–517, 10.4049/jimmunol.0802909. PubMed DOI
Mussap M., Puxeddu E., Puddu M., et al., “Soluble CD14 Subtype (SCD14‐ST) Presepsin in Premature and Full Term Critically Ill Newborns With Sepsis and SIRS,” Clinica Chimica Acta 451 (2015): 65–70, 10.1016/j.cca.2015.07.025. PubMed DOI
Kwak M. S., Lim M., Lee Y. J., et al., “HMGB1 Binds to Lipoteichoic Acid and Enhances TNF‐ PubMed DOI PMC