Effects of Defined Pig Microbiota on Acute Salmonellosis in Gnotobiotic Piglets

. 2026 Jan 15 ; 40 (1) : e71401.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41474380

Grantová podpora
21-15621S Czech Science Foundation
LM2023064 Ministry of Education, Youth and Sports of the Czech Republic

Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium) is a ubiquitous Salmonella serovar that causes enterocolitis in humans, livestock, poultry, and some pets. Gnotobiotic animals are suitable for studying the development of initial colonization in the gastrointestinal tract, host-microbiota cross-talk, and interactions among microbiota strains. To clarify the impact of pre-colonization of the germ-free piglets with defined pig microbiota (DPM) on the subsequent infection with S. Typhimurium LT2 (LT2), we focused on the acute host immune response. Colonization with DPM did not cause signs of enterocolitis (sleepiness, anorexia, fever, and diarrhea), histological changes in the intestine, the density of acid mucin-producing cells, expression of villin, claudin-1, occludin, TLR4, MD-2, CD14, LBP, MyD88, and TRIF, induction of inflammatory cytokines IL-1β, IL-6, IL-8, IL-10, IL-12/23p40, TNF-α, IFN-γ, and HMGB1. LT2 translocated into the mesenteric lymph nodes, liver, spleen, and blood of the LT2 group, as well as damaged the intestinal structure, and upregulated intestinal inflammatory cytokine levels. The pre-colonization with DPM ameliorated the LT2-induced signs of enterocolitis, intestinal damage, and inflammatory changes. Changes in intestinal levels of soluble TLR4 and TLR2 indicate the possible inclusion of soluble TLRs in the regulation of the inflammatory process. The controlled initial colonization of the newborn gastrointestinal tract with a defined microbial consortium can increase newborn resistance to enteric pathogens and promote thriving of young animals.

Zobrazit více v PubMed

Krautkramer K. A., Fan J., and Bäckhed F., “Gut Microbial Metabolites as Multi‐Kingdom Intermediates,” Nature Reviews. Microbiology 19 (2021): 77–94, 10.1038/s41579-020-0438-4. PubMed DOI

Fassarella M., Blaak E. E., Penders J., Nauta A., Smidt H., and Zoetendal E. G., “Gut Microbiome Stability and Resilience: Elucidating the Response to Perturbations in Order to Modulate Gut Health,” Gut 70 (2021): 595–605, 10.1136/gutjnl-2020-321747. PubMed DOI

Jaswal K., Todd O. A., and Behnsen J., “Neglected Gut Microbiome: Interactions of the Non‐Bacterial Gut Microbiota With Enteric Pathogens,” Gut Microbes 15 (2023): 2226916, 10.1080/19490976.2023.2226916. PubMed DOI PMC

Kennedy K. M., de Goffau M. C., Perez‐Muñoz M. E., et al., “Questioning the Fetal Microbiome Illustrates Pitfalls of Low‐Biomass Microbial Studies,” Nature 613 (2023): 639–649, 10.1038/s41586-022-05546-8. PubMed DOI PMC

Enav H., Bäckhed F., and Ley R. E., “The Developing Infant Gut Microbiome: A Strain‐Level View,” Cell Host & Microbe 30 (2022): 627–638, 10.1016/j.chom.2022.04.009. PubMed DOI

Carrapato M. R. G., Ferreira A. M., and Wataganara T., “Cesarean Section: The Pediatricians' Views,” Journal of Maternal‐Fetal & Neonatal Medicine 30 (2017): 2081–2085, 10.1080/14767058.2016.1237496. PubMed DOI

Adugna S. A., Kitessa J. D., Feyissa C. T., and Adem S. A., “Review on a Cesarean Section in the Cow: Its Incision Approaches, Relative Advantage, and Disadvantages,” Veterinary Medicine and Science 8 (2022): 1626–1631, 10.1002/vms3.808. PubMed DOI PMC

Greghi J. R., Favaron P. O., Trautwein L. G. C., da Silva C. G. B., de Lemos G. A. A., and Martins M. I. M., “Emergency Cesarean Section in Dogs: Usefulness of Amniotic Fluid Biochemical Parameters and Placental Morphology as Indicators of Neonatal Viability,” Theriogenology 211 (2023): 115–124, 10.1016/j.theriogenology.2023.08.011. PubMed DOI

Tirone C., Pezza L., Paladini A., et al., “Gut and Lung Microbiota in Preterm Infants: Immunological Modulation and Implication in Neonatal Outcomes,” Frontiers in Immunology 10 (2019): 2910, 10.3389/fimmu.2019.02910. PubMed DOI PMC

Marty D., Sorum K., Smith K., Nicoski P., Sayyed B. A., and Amin S., “Nosocomial Infections in the Neonatal Intensive Care Unit,” NeoReviews 25 (2024): e254–e264, 10.1542/neo.25-5-e254. PubMed DOI

Jennings S. A. V. and Clavel T., “Synthetic Communities of Gut Microbes for Basic Research and Translational Approaches in Animal Health and Nutrition,” Annual Review of Animal Biosciences 12 (2024): 283–300, 10.1146/annurev-animal-021022-025552. PubMed DOI

Caballero‐Flores G., Pickard J. M., and Núñez G., “Microbiota‐Mediated Colonization Resistance: Mechanisms and Regulation,” Nature Reviews. Microbiology 21 (2023): 347–360, 10.1038/s41579-022-00833-7. PubMed DOI PMC

Han J., Aljahdali N., Zhao S., et al., “Infection Biology of PubMed DOI PMC

Campos J., Mourão J., Peixe L., and Antunes P., “Non‐Typhoidal Salmonella in the Pig Production Chain: A Comprehensive Analysis of Its Impact on Human Health,” Pathogens 8 (2019): 19, 10.3390/pathogens8010019. PubMed DOI PMC

Ferrari R. G., Rosario D. K. A., Cunha‐Neto A., Mano S. B., Figueiredo E. E. S., and Conte‐Junior C. A., “Worldwide Epidemiology of Salmonella Serovars in Animal‐Based Foods: A Meta‐Analysis,” Applied and Environmental Microbiology 85 (2019): 91‐19, 10.1128/AEM.00591-19. PubMed DOI PMC

Fitzgerald K. A. and Kagan J. C., “Toll‐Like Receptors and the Control of Immunity,” Cell 180 (2020): 1044–1066, 10.1016/j.cell.2020.02.041. PubMed DOI PMC

Gong T., Liu L., Jiang W., and Zhou R., “DAMP‐Sensing Receptors in Sterile Inflammation and Inflammatory Diseases,” Nature Reviews. Immunology 20 (2020): 95–112, 10.1038/s41577-019-0215-7. PubMed DOI

Kawai T. and Akira S., “Toll‐Like Receptors and Their Crosstalk With Other Innate Receptors in Infection and Immunity,” Immunity 34 (2011): 637–650, 10.1016/j.immuni.2011.05.006. PubMed DOI

McClelland M., Sanderson K. E., Spieth J., et al., “Complete Genome Sequence of Salmonella Enterica Serovar Typhimurium LT2,” Nature 413 (2001): 852–856, 10.1038/35101614. PubMed DOI

Clarke R. C. and Gyles C. L., “Virulence of Wild and Mutant Strains of PubMed

Splichal I., Rychlik I., Splichalova I., Karasova D., and Splichalova A., “Toll‐Like Receptor 4 Signaling in the Ileum and Colon of Gnotobiotic Piglets Infected With PubMed DOI PMC

Horvathova K., Modrackova N., Splichal I., et al., “Defined Pig Microbiota With a Potential Protective Effect Against Infection With PubMed DOI PMC

Modrackova N., Horvathova K., Mekadim C., et al., “Defined Pig Microbiota Mixture as Promising Strategy Against Salmonellosis in Gnotobiotic Piglets,” Animals 14 (2024): 1779, 10.3390/ani14121779. PubMed DOI PMC

Trebichavsky I., Dlabac V., Rehakova Z., Zahradnickova M., and Splichal I., “Cellular Changes and Cytokine Expression in the Ilea of Gnotobiotic Piglets Resulting From Peroral PubMed DOI PMC

Splichalova A., Slavikova V., Splichalova Z., and Splichal I., “Preterm Life in Sterile Conditions: A Study on Preterm, Germ‐Free Piglets,” Frontiers in Immunology 9 (2018): 220, 10.3389/fimmu.2018.00220. PubMed DOI PMC

Xing J.‐H., Niu T.‐M., Zou B.‐S., et al., “Gut Microbiota‐Derived LCA Mediates the Protective Effect of PEDV Infection in Piglets,” Microbiome 12 (2024): 20, 10.1186/s40168-023-01734-4. PubMed DOI PMC

Splichal I., Donovan S. M., Splichalova Z., et al., “Colonization of Germ‐Free Piglets With Commensal PubMed DOI PMC

Splichalova A., Pechar R., Killer J., et al., “Colonization of Germ‐Free Piglets With Mucinolytic and Non‐Mucinolytic PubMed DOI PMC

Schmittgen T. D. and Livak K. J., “Analyzing Real‐Time PCR Data by the Comparative C(T) Method,” Nature Protocols 3 (2008): 1101–1108, 10.1038/nprot.2008.73. PubMed DOI

Roberts R. M., Green J. A., and Schulz L. C., “The Evolution of the Placenta,” Reproduction 152 (2016): R179–R189, 10.1530/REP-16-0325. PubMed DOI PMC

Bigler N. A., Bruckmaier R. M., and Gross J. J., “Implications of Placentation Type on Species‐Specific Colostrum Properties in Mammals,” Journal of Animal Science 100 (2022): skac287, 10.1093/jas/skac287. PubMed DOI PMC

Salmon H., Berri M., Gerdts V., and Meurens F., “Humoral and Cellular Factors of Maternal Immunity in Swine,” Developmental and Comparative Immunology 33 (2009): 384–393, 10.1016/j.dci.2008.07.007. PubMed DOI

Miniats O. P. and Jol D., “Gnotobiotic Pigs‐Derivation and Rearing,” Canadian Journal of Comparative Medicine 42 (1978): 428–437. PubMed PMC

Bæk O., Brunse A., Nguyen D. N., Moodley A., Thymann T., and Sangild P. T., “Diet Modulates the High Sensitivity to Systemic Infection in Newborn Preterm Pigs,” Frontiers in Immunology 11 (2020): 1019, 10.3389/fimmu.2020.01019. PubMed DOI PMC

Arda I. S., Ergin F., Varan B., Demirhan B., Aslan H., and Ozyaylali I., “Acute Abdomen Caused by PubMed DOI

Skrzypek T., Valverde Piedra J. L., Skrzypek H., Kazimierczak W., Biernat M., and Zabielski R., “Gradual Disappearance of Vacuolated Enterocytes in the Small Intestine of Neonatal Piglets,” Journal of Physiology and Pharmacology 58, no. 3 (2007): 87–95. PubMed

Splichalova A., Splichalova Z., Karasova D., et al., “Impact of the Lipopolysaccharide Chemotype of PubMed DOI PMC

Shirkey T. W., Siggers R. H., Goldade B. G., et al., “Effects of Commensal Bacteria on Intestinal Morphology and Expression of Proinflammatory Cytokines in the Gnotobiotic Pig,” Experimental Biology and Medicine 231 (2006): 1333–1345, 10.1177/153537020623100807. PubMed DOI

Allaire J. M., Crowley S. M., Law H. T., Chang S.‐Y., Ko H.‐J., and Vallance B. A., “The Intestinal Epithelium: Central Coordinator of Mucosal Immunity,” Trends in Immunology 39 (2018): 677–696, 10.1016/j.it.2018.04.002. PubMed DOI

Otani T. and Furuse M., “Tight Junction Structure and Function Revisited,” Trends in Cell Biology 30 (2020): 805–817, 10.1016/j.tcb.2020.08.004. PubMed DOI

Paone P. and Cani P. D., “Mucus Barrier, Mucins and Gut Microbiota: The Expected Slimy Partners?,” Gut 69 (2020): 2232–2243, 10.1136/gutjnl-2020-322260. PubMed DOI PMC

Bergstrom K., Shan X., Casero D., et al., “Proximal Colon‐Derived O‐Glycosylated Mucus Encapsulates and Modulates the Microbiota,” Science 370 (2020): 467–472, 10.1126/science.aay7367. PubMed DOI PMC

Linden S. K., Sutton P., Karlsson N. G., Korolik V., and McGuckin M. A., “Mucins in the Mucosal Barrier to Infection,” Mucosal Immunology 1 (2008): 183–197, 10.1038/mi.2008.5. PubMed DOI PMC

Lhocine N., Arena E. T., Bomme P., et al., “Apical Invasion of Intestinal Epithelial Cells by PubMed DOI PMC

Vlasova A. N., Paim F. C., Kandasamy S., et al., “Protein Malnutrition Modifies Innate Immunity and Gene Expression by Intestinal Epithelial Cells and Human Rotavirus Infection in Neonatal Gnotobiotic Pigs,” mSphere 2 (2017): 46‐17, 10.1128/mSphere.00046-17. PubMed DOI PMC

Wen S. C., Best E., and Nourse C., “Non‐Typhoidal Salmonella Infections in Children: Review of Literature and Recommendations for Management,” Journal of Paediatrics and Child Health 53 (2017): 936–941, 10.1111/jpc.13585. PubMed DOI

Günzel D. and Fromm M., “Claudins and Other Tight Junction Proteins,” Comprehensive Physiology 2 (2012): 1819–1852, 10.1002/cphy.c110045. PubMed DOI

Bellido‐Carreras N., Argüello H., Zaldívar‐López S., et al., “ PubMed DOI

Al‐Sadi R., Khatib K., Guo S., Ye D., Youssef M., and Ma T., “Occludin Regulates Macromolecule Flux Across the Intestinal Epithelial Tight Junction Barrier,” American Journal of Physiology. Gastrointestinal and Liver Physiology 300 (2011): G1054–G1064, 10.1152/ajpgi.00055.2011. PubMed DOI PMC

Splichalova A., Trebichavsky I., Rada V., Vlkova E., Sonnenborn U., and Splichal I., “Interference of PubMed DOI PMC

Kagan J. C., “Lipopolysaccharide Detection Across the Kingdoms of Life,” Trends in Immunology 38 (2017): 696–704, 10.1016/j.it.2017.05.001. PubMed DOI PMC

Kaufman D. A., Perks P. H., Greenberg R. G., and Jensen D., “Endotoxin Content in Neonatal Formulas, Fortification, and Lactoferrin Products: Association With Outcomes and Guidance on Acceptable Limits,” Biometals 36 (2023): 703–708, 10.1007/s10534-022-00487-1. PubMed DOI PMC

Kumar S., Sharma V., and Yadav S., “TLR4 Targeting: A Promising Therapeutic Approach Across Multiple Human Diseases,” Current Protein & Peptide Science 26 (2025): 241–258, 10.2174/0113892037324425241018061548. PubMed DOI

Potockova H., Sinkorova J., Karova K., and Sinkora M., “The Distribution of Lymphoid Cells in the Small Intestine of Germ‐Free and Conventional Piglets,” Developmental and Comparative Immunology 51 (2015): 99–107, 10.1016/j.dci.2015.02.014. PubMed DOI

Pabst R., “The Pig as a Model for Immunology Research,” Cell and Tissue Research 380 (2020): 287–304, 10.1007/s00441-020-03206-9. PubMed DOI PMC

Fajgenbaum D. C. and June C. H., “Cytokine Storm,” New England Journal of Medicine 383 (2020): 2255–2273, 10.1056/NEJMra2026131. PubMed DOI PMC

Matsumoto H., Ogura H., Shimizu K., et al., “The Clinical Importance of a Cytokine Network in the Acute Phase of Sepsis,” Scientific Reports 8 (2018): 13995, 10.1038/s41598-018-32275-8. PubMed DOI PMC

Andersson U. and Yang H., “HMGB1 Is a Critical Molecule in the Pathogenesis of Gram‐Negative Sepsis,” Journal of Intensive Medicine 2 (2022): 156–166, 10.1016/j.jointm.2022.02.001. PubMed DOI PMC

Thorgersen E. B., Hellerud B. C., Nielsen E. W., et al., “CD14 Inhibition Efficiently Attenuates Early Inflammatory and Hemostatic Responses in PubMed DOI PMC

Hooper L. V., Littman D. R., and Macpherson A. J., “Interactions Between the Microbiota and the Immune System,” Science 336 (2012): 1268–1273, 10.1126/science.1223490. PubMed DOI PMC

Matsushima K., Yang D., and Oppenheim J. J., “Interleukin‐8: An Evolving Chemokine,” Cytokine 153 (2022): 155828, 10.1016/j.cyto.2022.155828. PubMed DOI

Foster N., Lovell M. A., Marston K. L., et al., “Rapid Protection of Gnotobiotic Pigs Against Experimental Salmonellosis Following Induction of Polymorphonuclear Leukocytes by Avirulent PubMed DOI PMC

Splichal I., Trebichavsky I., Splichalova A., and Barrow P. A., “Protection of Gnotobiotic Pigs Against PubMed DOI

Splichalova A., Splichal I., Chmelarova P., and Trebichavsky I., “Alarmin HMGB1 Is Released in the Small Intestine of Gnotobiotic Piglets Infected With Enteric Pathogens and Its Level in Plasma Reflects Severity of Sepsis,” Journal of Clinical Immunology 31 (2011): 488–497, 10.1007/s10875-010-9505-3. PubMed DOI

Vitali R., Terrin G., Palone F., et al., “Fecal High‐Mobility Group Box 1 as a Marker of Early Stage of Necrotizing Enterocolitis in Preterm Neonates,” Frontiers in Pediatrics 9 (2021): 672131, 10.3389/fped.2021.672131. PubMed DOI PMC

Stierschneider A. and Wiesner C., “Shedding Light on the Molecular and Regulatory Mechanisms of TLR4 Signaling in Endothelial Cells Under Physiological and Inflamed Conditions,” Frontiers in Immunology 14 (2023): 1264889, 10.3389/fimmu.2023.1264889. PubMed DOI PMC

Raby A.‐C., Le Bouder E., Colmont C., et al., “Soluble TLR2 Reduces Inflammation Without Compromising Bacterial Clearance by Disrupting TLR2 Triggering,” Journal of Immunology (Baltimore, Md.: 1950) 183 (2009): 506–517, 10.4049/jimmunol.0802909. PubMed DOI

Mussap M., Puxeddu E., Puddu M., et al., “Soluble CD14 Subtype (SCD14‐ST) Presepsin in Premature and Full Term Critically Ill Newborns With Sepsis and SIRS,” Clinica Chimica Acta 451 (2015): 65–70, 10.1016/j.cca.2015.07.025. PubMed DOI

Kwak M. S., Lim M., Lee Y. J., et al., “HMGB1 Binds to Lipoteichoic Acid and Enhances TNF‐ PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...