RACK1A interacts and colocalizes with FSD1 in stress granules to regulate salt stress response in Arabidopsis

. 2026 Jan 06 ; 200 (1) : .

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41408657

Grantová podpora
Palacky University Young Researcher
Palacký University Olomouc student

The generation of reactive oxygen species (ROS) and their regulation by antioxidant enzymes, such as IRON SUPEROXIDE DISMUTASE 1 (FSD1), are critical for managing plant responses to salt stress. However, the protein networks modulating ROS levels during salt stress remain incompletely understood. Our co-immunoprecipitation analysis identified FSD1 as an interaction partner of the scaffolding protein RECEPTOR FOR ACTIVATED C KINASE 1A (RACK1A). Bimolecular fluorescence complementation analysis revealed that RACK1A interacts with FSD1 predominantly in the cytoplasm. Despite elevated FSD1 activity in rack1a mutants, the abundance of FSD1 protein remained unchanged. Additionally, we found that the RACK1A-FSD1 module was involved in root hair tip growth, highlighting the developmental significance of this interaction. While rack1a mutants exhibited salt resilience, the fsd1-1 rack1a-1 double mutant displayed reduced salt stress resistance, which was substantiated by reduced ROS levels. Upon salt stress, a distinct pool of RACK1A and FSD1 proteins accumulated in cycloheximide-sensitive structural condensates in the cytoplasm that colocalized with the stress granule (SG) marker protein RNA-BINDING PROTEIN 47. FSD1 activity was lower in SGs compared to the soluble extract. RACK1A also interacted with TUDOR STAPHYLOCOCCAL NUCLEASE 2, which participates in SG formation. However, RACK1A knock-out completely abolished salt-stress-dependent accumulation of FSD1 in structural condensates, suggesting that RACK1A likely mediates the recruitment of FSD1 to SGs. Thus, this study uncovers a mechanism for the regulation of RACK1/FSD1-dependent antioxidant defense in response to salt stress in Arabidopsis thaliana.

Zobrazit více v PubMed

Andrade Galan  AG, Doll  J, Faiß  N, Weber  P, Zentgraf  U. Complex formation between the transcription factor WRKY53 and antioxidative enzymes leads to reciprocal inhibition. Antioxidants (Basel). 2024:13:315. 10.3390/antiox13030315. PubMed DOI PMC

Arimoto  K, Fukuda  H, Imajoh-Ohmi  S, Saito  H, Takekawa  M. Formation of stress granules inhibits apoptosis by suppressing stress-responsive MAPK pathways. Nat Cell Biol. 2008:10:1324–1332. 10.1038/ncb1791. PubMed DOI

Bhasin  H, Hülskamp  M. ANGUSTIFOLIA, a plant homolog of CtBP/BARS localizes to stress granules and regulates their formation. Front Plant Sci. 2017:8:1004. 10.3389/fpls.2017.01004. PubMed DOI PMC

Bhuria  M, Goel  P, Kumar  S, Singh  AK. AtUSP17 negatively regulates salt stress tolerance through modulation of multiple signaling pathways in Arabidopsis. Physiol Plant. 2022:174:e13635. 10.1111/ppl.13635. PubMed DOI

Bloh  K  et al.  Deconvolution of Complex DNA repair (DECODR): establishing a novel deconvolution algorithm for comprehensive analysis of CRISPR-edited sanger sequencing data. CRISPR J. 2021:4:120–131. 10.1089/crispr.2020.0022. PubMed DOI PMC

Bradford  MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976:72:248–254. 10.1016/0003-2697(76)90527-3. PubMed DOI

Chen  J-G  et al.  RACK1 mediates multiple hormone responsiveness and developmental processes in PubMed DOI

Cheng  Z  et al.  Pathogen-secreted proteases activate a novel plant immune pathway. Nature. 2015:521:213–216. 10.1038/nature14243. PubMed DOI PMC

Conant  D  et al.  Inference of CRISPR edits from sanger trace data. CRISPR J. 2022:5:123–130. 10.1089/crispr.2021.0113. PubMed DOI

Costes  SV  et al.  Automatic and quantitative measurement of protein-protein colocalization in live cells. Biophys J.  2004:86:3993–4003. 10.1529/biophysj.103.038422. PubMed DOI PMC

Decaestecker  W  et al.  CRISPR-TSKO: a technique for efficient mutagenesis in specific cell types, tissues, or organs in PubMed DOI PMC

Denver  JB, Ullah  H. Mir393s regulate salt stress response pathway in PubMed DOI PMC

Dreyer  BH, Schippers  JHM. Copper-zinc superoxide dismutases in plants: evolution, enzymatic properties, and beyond. In: Roberts  J, editor. Annual plant reviews online. John Wiley & Sons, Ltd; p. 933–968.

Dvořák  P  et al.  In vivo light-sheet microscopy resolves localisation patterns of FSD1, a superoxide dismutase with function in root development and osmoprotection. Plant Cell Environ. 2021:44:68–87. 10.1111/pce.13894. PubMed DOI

Engler  C, Kandzia  R, Marillonnet  S. A one pot, one step, precision cloning method with high throughput capability. PLoS One. 2008:3:e3647. 10.1371/journal.pone.0003647. PubMed DOI PMC

Fu  Y  et al.  RACK1A promotes hypocotyl elongation by scaffolding light signaling components in PubMed DOI

Gerber  ME, White  MG, Muday  GK. Reactive oxygen species act as signaling molecules to control root hair initiation and tip growth. New Phytol.  2025:247:2042–2048. 10.1111/nph.70306. PubMed DOI PMC

Grefen  C, Blatt  MR. A 2in1 cloning system enables ratiometric bimolecular fluorescence complementation (rBiFC). Biotechniques. 2012:53:311–314. 10.2144/000113941. PubMed DOI

Guo  J  et al.  RACK1 is a negative regulator of ABA responses in PubMed DOI PMC

Guo  J  et al.  Involvement of PubMed DOI PMC

Guo  J  et al.  Profiling of the receptor for activated C kinase 1a (RACK1a) interaction network in PubMed DOI

Guo  J, Chen  J-G. RACK1 genes regulate plant development with unequal genetic redundancy in PubMed DOI PMC

Gutierrez-Beltran  E, Moschou  PN, Smertenko  AP, Bozhkov  PV. Tudor staphylococcal nuclease links formation of stress granules and processing bodies with mRNA catabolism in PubMed DOI PMC

Gutierrez-Beltran  E  et al.  Tudor staphylococcal nuclease is a docking platform for stress granule components and is essential for SnRK1 activation in PubMed DOI PMC

Hassani  A, Azapagic  A, Shokri  N. Global predictions of primary soil salinization under changing climate in the 21st century. Nat Commun. 2021:12:6663. 10.1038/s41467-021-26907-3. PubMed DOI PMC

Hu  K, Relton  E, Locker  N, Phan  NTN, Ewing  AG. Electrochemical measurements reveal reactive oxygen species in stress granules. Angew Chem Int Ed. 2021:60:15302–15306. 10.1002/anie.202104308. PubMed DOI PMC

Hunter  K  et al.  CRK2 enhances salt tolerance by regulating callose deposition in connection with PLDα1. Plant Physiol.  2019:180:2004–2021. 10.1104/pp.19.00560. PubMed DOI PMC

Islas-Flores  T, Rahman  A, Ullah  H, Villanueva  MA. The receptor for activated C kinase in plant signaling: tale of a promiscuous little molecule. Front Plant Sci.  2015:6:1090. 10.3389/fpls.2015.01090. PubMed DOI PMC

Kosmacz  M  et al.  Protein and metabolite composition of PubMed DOI

Kosmacz  M, Skirycz  A. The isolation of stress granules from plant material. Curr Protoc Plant Biol.  2020:5:e20118. 10.1002/cppb.20118. PubMed DOI

Kuběnová  L, Haberland  J, Dvořák  P, Šamaj  J, Ovečka  M. Spatiotemporal distribution of reactive oxygen species production, delivery, and use in Arabidopsis root hairs. Plant Physiol. 2023:193:2337–2360. 10.1093/plphys/kiad484. PubMed DOI PMC

Kuběnová  L, Tichá  M, Šamaj  J, Ovečka  M. ROOT HAIR DEFECTIVE 2 vesicular delivery to the apical plasma membrane domain during Arabidopsis root hair development. Plant Physiol.  2022:188:1563–1585. 10.1093/plphys/kiab595. PubMed DOI PMC

Kuo  WY  et al.  CHAPERONIN 20 mediates iron superoxide dismutase (FeSOD) activity independent of its co-chaperonin role in Arabidopsis chloroplasts. New Phytol. 2013:197:99–110. 10.1111/j.1469-8137.2012.04369.x. PubMed DOI

Li  D, Liu  H, Yang  Y, Zhen  P, Liang  J. Down-regulated expression of RACK1 gene by RNA interference enhances drought tolerance in rice. Rice Sci. 2009:16:14–20. 10.1016/S1672-6308(08)60051-7. DOI

Li  D-H, Shen  F-J, Li  H-Y, Li  W. Kale BoRACK1 is involved in the plant response to salt stress and Peronospora brassicae Gaumann. J Plant Physiol. 2017:213:188–198. 10.1016/j.jplph.2017.03.014. PubMed DOI

Li  Z, Fu  Y, Wang  Y, Liang  J. Scaffold protein RACK1 regulates BR signaling by modulating the nuclear localization of BZR1. New Phytol.  2023:239:1804–1818. 10.1111/nph.19049. PubMed DOI

Li  Z, Zhang  D, Liang  X, Liang  J. Receptor for activated C kinase 1 counteracts ABSCISIC ACID INSENSITIVE5-mediated inhibition of seed germination and post-germinative growth in Arabidopsis. J Exp Bot. 2024:75:3932–3945. 10.1093/jxb/erae153. PubMed DOI

Liu  H  et al.  CRISPR-P 2.0: an improved CRISPR-Cas9 tool for genome editing in plants. Mol Plant. 2017:10:530–532. 10.1016/j.molp.2017.01.003. PubMed DOI

Maruri-López  I, Figueroa  NE, Hernández-Sánchez  IE, Chodasiewicz  M. Plant stress granules: trends and beyond. Front Plant Sci. 2021:12:722643. 10.3389/fpls.2021.722643. PubMed DOI PMC

Masi  M  et al.  Proteostasis deregulation in neurodegeneration and its link with stress granules: focus on the scaffold and ribosomal protein RACK1. Cells. 2022:11:2590. 10.3390/cells11162590. PubMed DOI PMC

Masood  J  et al.  Scaffold protein RACK1A positively regulates leaf senescence by coordinating the EIN3-miR164-ORE1 transcriptional cascade in Arabidopsis. J Integr Plant Biol.  2023:65:1703–1716. 10.1111/jipb.13483. PubMed DOI

Melicher  P  et al.  Arabidopsis iron superoxide dismutase FSD1 protects against methyl viologen-induced oxidative stress in a copper-dependent manner. Front Plant Sci. 2022:13:823561. 10.3389/fpls.2022.823561. PubMed DOI PMC

Melicher  P  et al.  Methyl viologen-induced changes in the Arabidopsis proteome implicate PATELLIN 4 in oxidative stress responses. J Exp Bot. 2024:75:405–421. 10.1093/jxb/erad363. PubMed DOI PMC

Nguyen  CC  et al.  Overexpression of oligouridylate binding protein 1b results in ABA hypersensitivity. Plant Signal Behav. 2017:12:e1282591. 10.1080/15592324.2017.1282591. PubMed DOI PMC

Olejnik  K  et al. PubMed

Ovečka  M  et al.  Salt-induced subcellular kinase relocation and seedling susceptibility caused by overexpression of Medicago SIMKK in Arabidopsis. J Exp Bot.  2014:65:2335–2350. 10.1093/jxb/eru115. PubMed DOI PMC

Ovečka  M  et al.  Preparation of plants for developmental and cellular imaging by light-sheet microscopy. Nat Protoc.  2015:10:1234–1247. 10.1038/nprot.2015.081. PubMed DOI

Park  Y-J  et al.  Stress granule formation attenuates RACK1-mediated apoptotic cell death induced by Morusin. Int J Mol Sci. 2020:21:5360. 10.3390/ijms21155360. PubMed DOI PMC

Pilon  M, Ravet  K, Tapken  W. The biogenesis and physiological function of chloroplast superoxide dismutases. Biochim Biophys Acta, Bioenerg. 2011:1807:989–998. 10.1016/j.bbabio.2010.11.002. PubMed DOI

Protter  DSW, Parker  R. Principles and properties of stress granules. Trends Cell Biol. 2016:26:668–679. 10.1016/j.tcb.2016.05.004. PubMed DOI PMC

Sagi  M. Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol.  2006:141:336–340. 10.1104/pp.106.078089. PubMed DOI PMC

Šamaj  J, Müller  J, Beck  M, Böhm  N, Menzel  D. Vesicular trafficking, cytoskeleton and signalling in root hairs and pollen tubes. Trends Plant Sci. 2006:11:594–600. 10.1016/j.tplants.2006.10.002. PubMed DOI

Schneider  CA, Rasband  WS, Eliceiri  KW. NIH image to ImageJ: 25 years of image analysis. Nat Methods. 2012:9:671–675. 10.1038/nmeth.2089. PubMed DOI PMC

Schoenaers  S, Balcerowicz  D, Vissenberg  K. Molecular mechanisms regulating root hair tip growth: a comparison with pollen tubes. In: Obermeyer  G, Feijó  J, editors. Pollen tip growth: from biophysical aspects to systems biology. Springer International Publishing. p. 167–243.

Singh  D. Juggling with reactive oxygen species and antioxidant defense system—A coping mechanism under salt stress. Plant Stress. 2022:5:100093. 10.1016/j.stress.2022.100093. DOI

Sorenson  R, Bailey-Serres  J. Selective mRNA sequestration by Oligouridylate-Binding Protein 1 contributes to translational control during hypoxia in Arabidopsis. Proc Natl Acad Sci U S A.  2014:111:2373–2378. 10.1073/pnas.1314851111. PubMed DOI PMC

Speth  C, Willing  E-M, Rausch  S, Schneeberger  K, Laubinger  S. RACK1 scaffold proteins influence miRNA abundance in Arabidopsis. Plant J. 2013:76:433–445. 10.1111/tpj.12308. PubMed DOI

Torres  MA, Dangl  JL, Jones  JDG. Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc Natl Acad Sci U S A.  2002:99:517–522. 10.1073/pnas.012452499. PubMed DOI PMC

Vanderweyde  T, Youmans  K, Liu-Yesucevitz  L, Wolozin  B. Role of stress granules and RNA-binding proteins in neurodegeneration: a mini-review. Gerontology. 2013:59:524–533. 10.1159/000354170. PubMed DOI PMC

Van Zelm  E, Zhang  Y, Testerink  C. Salt tolerance mechanisms of plants. Annu Rev Plant Biol.  2020:71:403–433. 10.1146/annurev-arplant-050718-100005. PubMed DOI

Weber  C, Nover  L, Fauth  M. Plant stress granules and mRNA processing bodies are distinct from heat stress granules. Plant J. 2008:56:517–530. 10.1111/j.1365-313X.2008.03623.x. PubMed DOI

Yan  C, Yan  Z, Wang  Y, Yan  X, Han  Y. Tudor-SN, a component of stress granules, regulates growth under salt stress by modulating GA20ox3 mRNA levels in Arabidopsis. J Exp Bot.  2014:65:5933–5944. 10.1093/jxb/eru334. PubMed DOI PMC

Yan  H  et al.  Overexpression of CuZnSOD and APX enhance salt stress tolerance in sweet potato. Plant Physiol Biochem.  2016:109:20–27. 10.1016/j.plaphy.2016.09.003. PubMed DOI

Zhang  D  et al.  OsRACK1A, encodes a circadian clock-regulated WD40 protein, negatively affect salt tolerance in rice. Rice. 2018:11:45. 10.1186/s12284-018-0232-3. PubMed DOI PMC

Zhang  Q  et al.  Overexpression of a cytosolic ascorbate peroxidase gene, OsAPX2, increases salt tolerance in transgenic alfalfa. J Integr Agric.  2014:13:2500–2507. 10.1016/S2095-3119(13)60691-7. DOI

Zheng  W-N, Li  D-H, Chen  F-J, Liu  X-P, Li  H-Y. Abiotic stress tolerance and ABA responses of transgenic Glycine max plants with modulated RACK1 expression. Can J Plant Sci.  2019:99:250–267. 10.1139/cjps-2017-0093. DOI

Zheng  S  et al.  Pupylation-based proximity labeling reveals regulatory factors in cellulose biosynthesis in Arabidopsis. Nat Commun. 2025:16:872. 10.1038/s41467-025-56192-3 PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...