RACK1A interacts and colocalizes with FSD1 in stress granules to regulate salt stress response in Arabidopsis
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
Grantová podpora
Palacky University Young Researcher
Palacký University Olomouc student
PubMed
41408657
PubMed Central
PMC12853880
DOI
10.1093/plphys/kiaf659
PII: 8382856
Knihovny.cz E-zdroje
- MeSH
- Arabidopsis * genetika fyziologie metabolismus MeSH
- mutace MeSH
- proteiny huseníčku * metabolismus genetika MeSH
- reaktivní formy kyslíku metabolismus MeSH
- receptory pro aktivovanou kinasu C * metabolismus genetika MeSH
- regulace genové exprese u rostlin MeSH
- solný stres * MeSH
- stresová tělíska * metabolismus MeSH
- superoxiddismutasa * metabolismus genetika MeSH
- vazba proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- proteiny huseníčku * MeSH
- RACK1 protein, Arabidopsis MeSH Prohlížeč
- reaktivní formy kyslíku MeSH
- receptory pro aktivovanou kinasu C * MeSH
- superoxiddismutasa * MeSH
The generation of reactive oxygen species (ROS) and their regulation by antioxidant enzymes, such as IRON SUPEROXIDE DISMUTASE 1 (FSD1), are critical for managing plant responses to salt stress. However, the protein networks modulating ROS levels during salt stress remain incompletely understood. Our co-immunoprecipitation analysis identified FSD1 as an interaction partner of the scaffolding protein RECEPTOR FOR ACTIVATED C KINASE 1A (RACK1A). Bimolecular fluorescence complementation analysis revealed that RACK1A interacts with FSD1 predominantly in the cytoplasm. Despite elevated FSD1 activity in rack1a mutants, the abundance of FSD1 protein remained unchanged. Additionally, we found that the RACK1A-FSD1 module was involved in root hair tip growth, highlighting the developmental significance of this interaction. While rack1a mutants exhibited salt resilience, the fsd1-1 rack1a-1 double mutant displayed reduced salt stress resistance, which was substantiated by reduced ROS levels. Upon salt stress, a distinct pool of RACK1A and FSD1 proteins accumulated in cycloheximide-sensitive structural condensates in the cytoplasm that colocalized with the stress granule (SG) marker protein RNA-BINDING PROTEIN 47. FSD1 activity was lower in SGs compared to the soluble extract. RACK1A also interacted with TUDOR STAPHYLOCOCCAL NUCLEASE 2, which participates in SG formation. However, RACK1A knock-out completely abolished salt-stress-dependent accumulation of FSD1 in structural condensates, suggesting that RACK1A likely mediates the recruitment of FSD1 to SGs. Thus, this study uncovers a mechanism for the regulation of RACK1/FSD1-dependent antioxidant defense in response to salt stress in Arabidopsis thaliana.
Zobrazit více v PubMed
Andrade Galan AG, Doll J, Faiß N, Weber P, Zentgraf U. Complex formation between the transcription factor WRKY53 and antioxidative enzymes leads to reciprocal inhibition. Antioxidants (Basel). 2024:13:315. 10.3390/antiox13030315. PubMed DOI PMC
Arimoto K, Fukuda H, Imajoh-Ohmi S, Saito H, Takekawa M. Formation of stress granules inhibits apoptosis by suppressing stress-responsive MAPK pathways. Nat Cell Biol. 2008:10:1324–1332. 10.1038/ncb1791. PubMed DOI
Bhasin H, Hülskamp M. ANGUSTIFOLIA, a plant homolog of CtBP/BARS localizes to stress granules and regulates their formation. Front Plant Sci. 2017:8:1004. 10.3389/fpls.2017.01004. PubMed DOI PMC
Bhuria M, Goel P, Kumar S, Singh AK. AtUSP17 negatively regulates salt stress tolerance through modulation of multiple signaling pathways in Arabidopsis. Physiol Plant. 2022:174:e13635. 10.1111/ppl.13635. PubMed DOI
Bloh K et al. Deconvolution of Complex DNA repair (DECODR): establishing a novel deconvolution algorithm for comprehensive analysis of CRISPR-edited sanger sequencing data. CRISPR J. 2021:4:120–131. 10.1089/crispr.2020.0022. PubMed DOI PMC
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976:72:248–254. 10.1016/0003-2697(76)90527-3. PubMed DOI
Chen J-G et al. RACK1 mediates multiple hormone responsiveness and developmental processes in PubMed DOI
Cheng Z et al. Pathogen-secreted proteases activate a novel plant immune pathway. Nature. 2015:521:213–216. 10.1038/nature14243. PubMed DOI PMC
Conant D et al. Inference of CRISPR edits from sanger trace data. CRISPR J. 2022:5:123–130. 10.1089/crispr.2021.0113. PubMed DOI
Costes SV et al. Automatic and quantitative measurement of protein-protein colocalization in live cells. Biophys J. 2004:86:3993–4003. 10.1529/biophysj.103.038422. PubMed DOI PMC
Decaestecker W et al. CRISPR-TSKO: a technique for efficient mutagenesis in specific cell types, tissues, or organs in PubMed DOI PMC
Denver JB, Ullah H. Mir393s regulate salt stress response pathway in PubMed DOI PMC
Dreyer BH, Schippers JHM. Copper-zinc superoxide dismutases in plants: evolution, enzymatic properties, and beyond. In: Roberts J, editor. Annual plant reviews online. John Wiley & Sons, Ltd; p. 933–968.
Dvořák P et al. In vivo light-sheet microscopy resolves localisation patterns of FSD1, a superoxide dismutase with function in root development and osmoprotection. Plant Cell Environ. 2021:44:68–87. 10.1111/pce.13894. PubMed DOI
Engler C, Kandzia R, Marillonnet S. A one pot, one step, precision cloning method with high throughput capability. PLoS One. 2008:3:e3647. 10.1371/journal.pone.0003647. PubMed DOI PMC
Fu Y et al. RACK1A promotes hypocotyl elongation by scaffolding light signaling components in PubMed DOI
Gerber ME, White MG, Muday GK. Reactive oxygen species act as signaling molecules to control root hair initiation and tip growth. New Phytol. 2025:247:2042–2048. 10.1111/nph.70306. PubMed DOI PMC
Grefen C, Blatt MR. A 2in1 cloning system enables ratiometric bimolecular fluorescence complementation (rBiFC). Biotechniques. 2012:53:311–314. 10.2144/000113941. PubMed DOI
Guo J et al. RACK1 is a negative regulator of ABA responses in PubMed DOI PMC
Guo J et al. Involvement of PubMed DOI PMC
Guo J et al. Profiling of the receptor for activated C kinase 1a (RACK1a) interaction network in PubMed DOI
Guo J, Chen J-G. RACK1 genes regulate plant development with unequal genetic redundancy in PubMed DOI PMC
Gutierrez-Beltran E, Moschou PN, Smertenko AP, Bozhkov PV. Tudor staphylococcal nuclease links formation of stress granules and processing bodies with mRNA catabolism in PubMed DOI PMC
Gutierrez-Beltran E et al. Tudor staphylococcal nuclease is a docking platform for stress granule components and is essential for SnRK1 activation in PubMed DOI PMC
Hassani A, Azapagic A, Shokri N. Global predictions of primary soil salinization under changing climate in the 21st century. Nat Commun. 2021:12:6663. 10.1038/s41467-021-26907-3. PubMed DOI PMC
Hu K, Relton E, Locker N, Phan NTN, Ewing AG. Electrochemical measurements reveal reactive oxygen species in stress granules. Angew Chem Int Ed. 2021:60:15302–15306. 10.1002/anie.202104308. PubMed DOI PMC
Hunter K et al. CRK2 enhances salt tolerance by regulating callose deposition in connection with PLDα1. Plant Physiol. 2019:180:2004–2021. 10.1104/pp.19.00560. PubMed DOI PMC
Islas-Flores T, Rahman A, Ullah H, Villanueva MA. The receptor for activated C kinase in plant signaling: tale of a promiscuous little molecule. Front Plant Sci. 2015:6:1090. 10.3389/fpls.2015.01090. PubMed DOI PMC
Kosmacz M et al. Protein and metabolite composition of PubMed DOI
Kosmacz M, Skirycz A. The isolation of stress granules from plant material. Curr Protoc Plant Biol. 2020:5:e20118. 10.1002/cppb.20118. PubMed DOI
Kuběnová L, Haberland J, Dvořák P, Šamaj J, Ovečka M. Spatiotemporal distribution of reactive oxygen species production, delivery, and use in Arabidopsis root hairs. Plant Physiol. 2023:193:2337–2360. 10.1093/plphys/kiad484. PubMed DOI PMC
Kuběnová L, Tichá M, Šamaj J, Ovečka M. ROOT HAIR DEFECTIVE 2 vesicular delivery to the apical plasma membrane domain during Arabidopsis root hair development. Plant Physiol. 2022:188:1563–1585. 10.1093/plphys/kiab595. PubMed DOI PMC
Kuo WY et al. CHAPERONIN 20 mediates iron superoxide dismutase (FeSOD) activity independent of its co-chaperonin role in Arabidopsis chloroplasts. New Phytol. 2013:197:99–110. 10.1111/j.1469-8137.2012.04369.x. PubMed DOI
Li D, Liu H, Yang Y, Zhen P, Liang J. Down-regulated expression of RACK1 gene by RNA interference enhances drought tolerance in rice. Rice Sci. 2009:16:14–20. 10.1016/S1672-6308(08)60051-7. DOI
Li D-H, Shen F-J, Li H-Y, Li W. Kale BoRACK1 is involved in the plant response to salt stress and Peronospora brassicae Gaumann. J Plant Physiol. 2017:213:188–198. 10.1016/j.jplph.2017.03.014. PubMed DOI
Li Z, Fu Y, Wang Y, Liang J. Scaffold protein RACK1 regulates BR signaling by modulating the nuclear localization of BZR1. New Phytol. 2023:239:1804–1818. 10.1111/nph.19049. PubMed DOI
Li Z, Zhang D, Liang X, Liang J. Receptor for activated C kinase 1 counteracts ABSCISIC ACID INSENSITIVE5-mediated inhibition of seed germination and post-germinative growth in Arabidopsis. J Exp Bot. 2024:75:3932–3945. 10.1093/jxb/erae153. PubMed DOI
Liu H et al. CRISPR-P 2.0: an improved CRISPR-Cas9 tool for genome editing in plants. Mol Plant. 2017:10:530–532. 10.1016/j.molp.2017.01.003. PubMed DOI
Maruri-López I, Figueroa NE, Hernández-Sánchez IE, Chodasiewicz M. Plant stress granules: trends and beyond. Front Plant Sci. 2021:12:722643. 10.3389/fpls.2021.722643. PubMed DOI PMC
Masi M et al. Proteostasis deregulation in neurodegeneration and its link with stress granules: focus on the scaffold and ribosomal protein RACK1. Cells. 2022:11:2590. 10.3390/cells11162590. PubMed DOI PMC
Masood J et al. Scaffold protein RACK1A positively regulates leaf senescence by coordinating the EIN3-miR164-ORE1 transcriptional cascade in Arabidopsis. J Integr Plant Biol. 2023:65:1703–1716. 10.1111/jipb.13483. PubMed DOI
Melicher P et al. Arabidopsis iron superoxide dismutase FSD1 protects against methyl viologen-induced oxidative stress in a copper-dependent manner. Front Plant Sci. 2022:13:823561. 10.3389/fpls.2022.823561. PubMed DOI PMC
Melicher P et al. Methyl viologen-induced changes in the Arabidopsis proteome implicate PATELLIN 4 in oxidative stress responses. J Exp Bot. 2024:75:405–421. 10.1093/jxb/erad363. PubMed DOI PMC
Nguyen CC et al. Overexpression of oligouridylate binding protein 1b results in ABA hypersensitivity. Plant Signal Behav. 2017:12:e1282591. 10.1080/15592324.2017.1282591. PubMed DOI PMC
Olejnik K et al. PubMed
Ovečka M et al. Salt-induced subcellular kinase relocation and seedling susceptibility caused by overexpression of Medicago SIMKK in Arabidopsis. J Exp Bot. 2014:65:2335–2350. 10.1093/jxb/eru115. PubMed DOI PMC
Ovečka M et al. Preparation of plants for developmental and cellular imaging by light-sheet microscopy. Nat Protoc. 2015:10:1234–1247. 10.1038/nprot.2015.081. PubMed DOI
Park Y-J et al. Stress granule formation attenuates RACK1-mediated apoptotic cell death induced by Morusin. Int J Mol Sci. 2020:21:5360. 10.3390/ijms21155360. PubMed DOI PMC
Pilon M, Ravet K, Tapken W. The biogenesis and physiological function of chloroplast superoxide dismutases. Biochim Biophys Acta, Bioenerg. 2011:1807:989–998. 10.1016/j.bbabio.2010.11.002. PubMed DOI
Protter DSW, Parker R. Principles and properties of stress granules. Trends Cell Biol. 2016:26:668–679. 10.1016/j.tcb.2016.05.004. PubMed DOI PMC
Sagi M. Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol. 2006:141:336–340. 10.1104/pp.106.078089. PubMed DOI PMC
Šamaj J, Müller J, Beck M, Böhm N, Menzel D. Vesicular trafficking, cytoskeleton and signalling in root hairs and pollen tubes. Trends Plant Sci. 2006:11:594–600. 10.1016/j.tplants.2006.10.002. PubMed DOI
Schneider CA, Rasband WS, Eliceiri KW. NIH image to ImageJ: 25 years of image analysis. Nat Methods. 2012:9:671–675. 10.1038/nmeth.2089. PubMed DOI PMC
Schoenaers S, Balcerowicz D, Vissenberg K. Molecular mechanisms regulating root hair tip growth: a comparison with pollen tubes. In: Obermeyer G, Feijó J, editors. Pollen tip growth: from biophysical aspects to systems biology. Springer International Publishing. p. 167–243.
Singh D. Juggling with reactive oxygen species and antioxidant defense system—A coping mechanism under salt stress. Plant Stress. 2022:5:100093. 10.1016/j.stress.2022.100093. DOI
Sorenson R, Bailey-Serres J. Selective mRNA sequestration by Oligouridylate-Binding Protein 1 contributes to translational control during hypoxia in Arabidopsis. Proc Natl Acad Sci U S A. 2014:111:2373–2378. 10.1073/pnas.1314851111. PubMed DOI PMC
Speth C, Willing E-M, Rausch S, Schneeberger K, Laubinger S. RACK1 scaffold proteins influence miRNA abundance in Arabidopsis. Plant J. 2013:76:433–445. 10.1111/tpj.12308. PubMed DOI
Torres MA, Dangl JL, Jones JDG. Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc Natl Acad Sci U S A. 2002:99:517–522. 10.1073/pnas.012452499. PubMed DOI PMC
Vanderweyde T, Youmans K, Liu-Yesucevitz L, Wolozin B. Role of stress granules and RNA-binding proteins in neurodegeneration: a mini-review. Gerontology. 2013:59:524–533. 10.1159/000354170. PubMed DOI PMC
Van Zelm E, Zhang Y, Testerink C. Salt tolerance mechanisms of plants. Annu Rev Plant Biol. 2020:71:403–433. 10.1146/annurev-arplant-050718-100005. PubMed DOI
Weber C, Nover L, Fauth M. Plant stress granules and mRNA processing bodies are distinct from heat stress granules. Plant J. 2008:56:517–530. 10.1111/j.1365-313X.2008.03623.x. PubMed DOI
Yan C, Yan Z, Wang Y, Yan X, Han Y. Tudor-SN, a component of stress granules, regulates growth under salt stress by modulating GA20ox3 mRNA levels in Arabidopsis. J Exp Bot. 2014:65:5933–5944. 10.1093/jxb/eru334. PubMed DOI PMC
Yan H et al. Overexpression of CuZnSOD and APX enhance salt stress tolerance in sweet potato. Plant Physiol Biochem. 2016:109:20–27. 10.1016/j.plaphy.2016.09.003. PubMed DOI
Zhang D et al. OsRACK1A, encodes a circadian clock-regulated WD40 protein, negatively affect salt tolerance in rice. Rice. 2018:11:45. 10.1186/s12284-018-0232-3. PubMed DOI PMC
Zhang Q et al. Overexpression of a cytosolic ascorbate peroxidase gene, OsAPX2, increases salt tolerance in transgenic alfalfa. J Integr Agric. 2014:13:2500–2507. 10.1016/S2095-3119(13)60691-7. DOI
Zheng W-N, Li D-H, Chen F-J, Liu X-P, Li H-Y. Abiotic stress tolerance and ABA responses of transgenic Glycine max plants with modulated RACK1 expression. Can J Plant Sci. 2019:99:250–267. 10.1139/cjps-2017-0093. DOI
Zheng S et al. Pupylation-based proximity labeling reveals regulatory factors in cellulose biosynthesis in Arabidopsis. Nat Commun. 2025:16:872. 10.1038/s41467-025-56192-3 PubMed DOI PMC