Evolution, composition and functions of cullin E3 ubiquitin ligases in trypanosomes
Status In-Process Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Wellcome Trust - United Kingdom
PubMed
41413177
PubMed Central
PMC12816148
DOI
10.1038/s41598-025-32077-9
PII: 10.1038/s41598-025-32077-9
Knihovny.cz E-zdroje
- Klíčová slova
- Affinity isolation, Cryomilling, Cullin, E3 ligase, Eflornithine, Evolution, Ornithine decarboxylase, Protein turnover, Proteomics, Trypanosoma, Ubiquitin,
- Publikační typ
- časopisecké články MeSH
UNLABELLED: Post-translational modifications (PTMs) modulate protein functions, with ubiquitylation a pre-eminent example, and playing major roles in protein turnover. Ubiquitylation utilises a ligase enzyme cascade for conjugation of ubiquitin to client proteins, of which there are a large number in humans and lesser numbers in unicellular eukaryotes. The Cullin-RING ligases are amongst the most complex ligase subfamily and are present across the eukaryote lineage. We have reconstructed the evolution of cullin-RING E3 ubiquitin ligases across eukaryotes and experimentally determined the composition of six of seven cullin complexes in trypanosomatids. We find considerable diversity within cullins and reconstruct at least four ancestral pan-eukaryotic subfamilies. Furthermore, we identify expansions of cullin client adaptor protein families, novel client adaptors and demonstrate client specificity in trypanosomatids. We also find evidence for increasing complexity within client adaptors, suggesting ongoing expansion of adapter architecture. Finally, we show that turnover of ornithine decarboxylase (TbODC), an important target of the trypanocide eflornithine, is mediated by TbCul-A/CUL-1. These studies highlight lineage-specific aspects of cullin E3 ligases and their contributions towards eukaryotic complexity. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1038/s41598-025-32077-9.
Department of Parasitology Charles University Prague Faculty of Science Vestec 252 42 Czech Republic
Institute of Parasitology Biology Centre Czech Academy of Sciences České Budějovice Czech Republic
School of Life Sciences University of Dundee Dundee UK
Sygnature Discovery The Discovery Building BioCity Pennyfoot Street Nottingham NG1 1GR UK
Zobrazit více v PubMed
Komander, D. & Rape, M. The ubiquitin code. PubMed DOI
Luo, Q., Zou, X., Wang, C., Li, Y. & Hu, Z. The roles of cullins E3 ubiquitin ligases in the lipid biosynthesis of the green microalgae PubMed DOI PMC
Morreale, F. E. & Walden, H. SnapShot: Types of ubiquitin ligases. PubMed DOI
Mason, B. & Laman, H. The FBXL family of F-box proteins: Variations on a theme. PubMed DOI PMC
Zheng, N. et al. Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex. PubMed DOI
Baek, K. et al. NEDD8 nucleates a multivalent cullin–RING–UBE2D ubiquitin ligation assembly. PubMed DOI PMC
Clague, M. J., Heride, C. & Urbé, S. The demographics of the ubiquitin system. PubMed DOI
Alfieri, C., Zhang, S. & Barford, D. Visualizing the complex functions and mechanisms of the anaphase promoting complex/cyclosome (APC/C). PubMed DOI PMC
Jenkyn-Bedford, M. et al. A conserved mechanism for regulating replisome disassembly in eukaryotes. PubMed DOI PMC
Grau-Bové, X., Sebé-Pedrós, A. & Ruiz-Trillo, I. The eukaryotic ancestor had a complex ubiquitin signaling system of archaeal origin. PubMed DOI PMC
Fuchs, A. C. D., Maldoner, L., Wojtynek, M., Hartmann, M. D. & Martin, J. Rpn11-mediated ubiquitin processing in an ancestral archaeal ubiquitination system. PubMed DOI PMC
Levin-Kravets, O. et al. E. coli-based selection and expression systems for discovery, characterization, and purification of ubiquitylated proteins. PubMed DOI
Jiménez-López, D., Muñóz-Belman, F., González-Prieto, J. M., Aguilar-Hernández, V. & Guzmán, P. Repertoire of plant RING E3 ubiquitin ligases revisited: New groups counting gene families and single genes. PubMed DOI PMC
Finley, D., Ulrich, H. D., Sommer, T. & Kaiser, P. The ubiquitin-proteasome system of Saccharomyces cerevisiae. PubMed DOI PMC
Stewart, M. D., Ritterhoff, T., Klevit, R. E. & Brzovic, P. S. E2 enzymes: More than just middle men. PubMed DOI PMC
Burki, F., Roger, A. J., Brown, M. W. & Simpson, A. G. B. The new tree of eukaryotes. PubMed DOI
Williamson, K. et al. A robustly rooted tree of eukaryotes reveals their excavate ancestry. PubMed DOI
Rojas, F. et al. The ubiquitin-conjugating enzyme CDC34 is essential for cytokinesis in contrast to putative subunits of a SCF complex in Trypanosoma brucei. PubMed DOI PMC
Hu, H, Zhou, Q, Han, X, Li, Z. (2017) CRL4WDR1 controls polo-like kinase protein abundance to promote bilobe duplication, basal body segregation and flagellum attachment in Trypanosoma brucei. PLoS Pathogens 13–24. PubMed PMC
Benz, C. & Clayton, C. E. The F-box protein CFB2 is required for cytokinesis of bloodstream-form Trypanosoma brucei. PubMed DOI
Damianou, A. et al. Cullin 3-based ubiquitin ligases as master regulators of mammalian cell differentiation. PubMed DOI PMC
Burge, R. J., Mottram, J. C. & Wilkinson, A. J. Ubiquitin and ubiquitin-like conjugation systems in trypanosomatids. PubMed DOI
Listovsky, T., Brandeis, M. & Zilberstein, D. Leishmania express a functional Cdc20 homologue. PubMed DOI
Sharma, M., Mandal, G., Mandal, S., Bhattacharjee, H. & Mukhopadhyay, R. Functional role of lysine 12 in Leishmania major AQP1. PubMed DOI PMC
Chung, W. L., Leung, K. F., Carrington, M. & Field, M. C. Ubiquitylation is required for degradation of transmembrane surface proteins in Trypanosomes. PubMed DOI
Quintana, J. F. et al. Instability of aquaglyceroporin (Aqp) 2 contributes to drug resistance in Typanosoma brucei. PubMed DOI PMC
Leung, K. F., Dacks, J. B. & Field, M. C. Evolution of the multivesicular body ESCRT machinery; retention across the eukaryotic lineage. PubMed DOI
Silverman, J. S., Muratore, K. A. & Bangs, J. D. Characterization of the late endosomal ESCRT machinery in Trypanosoma brucei. PubMed DOI PMC
Venkatesh, D., Zhang, N., Zoltner, M., del Pino, R. C. & Field, M. C. Evolution of protein trafficking in kinetoplastid parasites: Complexity and pathogenesis. PubMed DOI
Alsford, S. et al. High-throughput decoding of antitrypanosomal drug efficacy and resistance. PubMed DOI PMC
Currier, R. B., Cooper, A., Burrell-Saward, H., MacLeod, A. & Alsford, S. Decoding the network of Trypanosoma brucei proteins that determines sensitivity to apolipoprotein-L1. PubMed DOI PMC
Hashimoto, M., Murata, E. & Aoki, T. Secretory protein with RING finger domain (SPRING) specific to Trypanosoma cruzi is directed, as a ubiquitin ligase related protein, to the nucleus of host cells. PubMed DOI
Berti, R. S. T. et al. Functional characterization of Cullin-1-RING ubiquitin ligase (CRL1) complex in Leishmania infantum. PubMed DOI PMC
Shabek, N. & Zheng, N. Plant ubiquitin ligases as signaling hubs. PubMed DOI
Sarikas, A., Hartmann, T. & Pan, Z.-Q. The cullin protein family. PubMed DOI PMC
Gingerich, D. J. et al. Cullins 3a and 3b assemble with members of the broad complex/tramtrack/bric-a-brac (BTB) protein family to form essential ubiquitin-protein ligases (E3s) in Arabidopsis. PubMed DOI
Kim, W. D., Mathavarajah, S. & Huber, R. J. The cellular and developmental roles of cullins, neddylation, and the COP9 signalosome in Dictyostelium discoideum. PubMed DOI PMC
Liao, S., Hu, H., Wang, T., Tu, X. & Li, Z. Protein neddylation pathway in Trypanosoma brucei: Functional characterization and substrate identification. PubMed DOI PMC
Rizvi, Z. et al. Plasmodium falciparum contains functional SCF and CRL4 ubiquitin E3 ligases, and CRL4 is critical for cell division and membrane integrity. PubMed DOI PMC
Marín, I. Diversification of the cullin family. PubMed DOI PMC
Elias, M., Brighouse, A., Gabernet-Castello, C., Field, M. C. & Dacks, J. B. Sculpting the endomembrane system in deep time: High resolution phylogenetics of Rab GTPases. PubMed PMC
Billington, K. et al. Genome-wide subcellular protein map for the flagellate parasite Trypanosoma brucei. PubMed DOI PMC
Buetow, L. & Huang, D. T. Structural insights into the catalysis and regulation of E3 ubiquitin ligases. PubMed DOI PMC
Obado, S. O., Field, M. C., Chait, B. T. & Rout, M. P. High-efficiency isolation of nuclear envelope protein complexes from trypanosomes. PubMed DOI
Moreira, C. M. D. N. et al. Impact of inherent biases built into proteomic techniques: Proximity labeling and affinity capture compared. PubMed DOI PMC
Bennett, E. J., Rush, J., Gygi, S. P. & Harper, J. W. Dynamics of cullin-RING ubiquitin ligase network revealed by systematic quantitative proteomics. PubMed DOI PMC
Mahrour, N. et al. Characterization of Cullin-box sequences that direct recruitment of Cul2-Rbx1 and Cul5-Rbx2 modules to Elongin BC-based ubiquitin ligases. PubMed DOI
Subota, I. et al. Proteomic analysis of intact flagella of procyclic Trypanosoma brucei cells identifies novel flagellar proteins with unique sub-localization and dynamics. PubMed DOI PMC
Okumura, F., Matsuzaki, M., Nakatsukasa, K. & Kamura, T. The role of Elongin BC-containing ubiquitin ligases. PubMed DOI PMC
Reitsma, J. M. et al. Composition and regulation of the cellular repertoire of SCF ubiquitin ligases. PubMed DOI PMC
Jackson, S. & Xiong, Y. CRL4s: the CUL4-RING E3 ubiquitin ligases. PubMed DOI PMC
Aslett, M. et al. TriTrypDB: a functional genomic resource for the Trypanosomatidae. PubMed DOI PMC
Kasozi, K. I., MacLeod, E. T., Ntulume, I. & Welburn, S. C. An update on African trypanocide pharmaceutics and resistance. PubMed DOI PMC
Alsford, S. & Horn, D. Single-locus targeting constructs for reliable regulated RNAi and transgene expression in Trypanosoma brucei. PubMed DOI PMC
Urade, R. Oxidative protein folding in the plant endoplasmic reticulum. PubMed DOI
Kovacs, W. J. et al. Peroxisome deficiency-induced ER stress and SREBP-2 pathway activation in the liver of newborn PEX2 knock-out mice. PubMed DOI PMC
Field, H., Sherwin, T., Smith, A. C., Gull, K. & Field, M. C. Cell-cycle and developmental regulation of TbRAB31 localisation, a GTP-locked Rab protein from Trypanosoma brucei. PubMed DOI
Akiyoshi, B. & Gull, K. Discovery of unconventional kinetochores in kinetoplastids. PubMed DOI PMC
Wang, Y. N., Wang, M. & Field, M. C. Trypanosoma brucei: Trypanosome-specific endoplasmic reticulum proteins involved in variant surface glycoprotein expression. PubMed DOI PMC
Yamada, K., Yaqub, F. K., Zoltner, M. & Field, M. C. TUSK: A ubiquitin hydrolase complex modulating surface protein abundance in trypanosomes’. PubMed DOI PMC
Wang, C. C. A novel suicide inhibitor strategy for antiparasitic drug development. PubMed DOI
Tinti, M., Güther, M. L. S., Crozier, T. W. M., Lamond, A. I. & Ferguson, M. A. J. Proteome turnover in the bloodstream and procyclic forms of Trypanosoma brucei measured by quantitative proteomics. PubMed DOI PMC
Iten, M. et al. Alterations in ornithine decarboxylase characteristics account for tolerance of Trypanosoma brucei rhodesiense to D,L-alpha-difluoromethylornithine. PubMed DOI PMC
Phillips, M. A., Coffino, P. & Wang, C. C. Cloning and sequencing of the ornithine decarboxylase gene from Trypanosoma brucei. Implications for enzyme turnover and selective difluoromethylornithine inhibition. PubMed DOI
Murakami, Y. et al. Ornithine decarboxylase is degraded by the 26S proteasome without ubiquitination. PubMed DOI
Coffino, P. Regulation of cellular polyamines by antizyme. PubMed DOI
Hsu, H. C., Seibold, J. R. & Thomas, T. J. Regulation of ornithine decarboxylase in the kidney of autoimmune mice with the lpr gene. PubMed DOI
Mathieson, T. et al. Systematic analysis of protein turnover in primary cells. PubMed DOI PMC
Vincent, I. M. et al. A molecular mechanism for eflornithine resistance in African trypanosomes. PubMed DOI PMC
Palmer, A. C. & Kishony, R. Opposing effects of target overexpression reveal drug mechanisms. PubMed DOI PMC
Ikeda, K. N. & de Graffenried, C. L. Polo-like kinase is necessary for flagellum inheritance in Trypanosoma brucei. PubMed
An, T., Hu, H. & Li, Z. The kinetoplastid-specific phosphatase KPP1 attenuates PLK activity to facilitate flagellum inheritance in Trypanosoma brucei. PubMed DOI PMC
Nerusheva, O. O. & Akiyoshi, B. Divergent polo box domains underpin the unique kinetoplastid kinetochore. PubMed DOI PMC
Oberholzer, M., Morand, S., Kunz, S. & Seebeck, T. A vector series for rapid PCR-mediated C-terminal in situ tagging of Trypanosoma brucei genes. PubMed DOI
Redmond, S., Vadivelu, J. & Field, M. C. RNAit: an automated web-based tool for the selection of RNAi targets in Trypanosoma brucei. PubMed DOI
Zoltner, M., Canavate del Pino, R. & Field, M. C. Sorting the muck from the brass: Analysis of protein complexes and cell lysates. PubMed DOI
Zoltner, M., Leung, K. F., Alsford, S., Horn, D. & Field, M. C. Modulation of the surface proteome through multiple ubiquitylation pathways in African Trypanosomes. PubMed DOI PMC
Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. PubMed DOI
Tyanova, S., Temu, T. & Cox, J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. PubMed DOI
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. PubMed DOI
Edgar, R. C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. PubMed DOI PMC
Lawrence, T. J. et al. FAST: FAST analysis of sequences toolbox. PubMed DOI PMC
Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree: Computing large minimum evolution trees with profiles instead of a distance matrix. PubMed DOI PMC
Guindon, S., Lethiec, F., Duroux, P. & Gascuel, O. PHYML Online—A web server for fast maximum likelihood-based phylogenetic inference. PubMed DOI PMC
Huelsenbeck, J. P. & Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. PubMed DOI
Butterfield, E. R., Abbott, J. C. & Field, M. C. Automated phylogenetic analysis using best reciprocal BLAST. PubMed DOI
Rambaut, A. (2018) FigTree v. 1.4.4 http://tree.bio.ed.ac.uk/software/figtree/.
Allan, C. et al. OMERO: Flexible, model-driven data management for experimental biology. PubMed DOI PMC