Redox-Switchable Single-Atom Catalyst Enables Efficient Aqueous Hydroxymethylfurfural Oxidation
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
41446538
PubMed Central
PMC12723681
DOI
10.1021/acscatal.5c06280
Knihovny.cz E-zdroje
- Klíčová slova
- 2,5-diformylfuran, biomass valorization, dimers, green oxidation, iron single-atom catalyst,
- Publikační typ
- časopisecké články MeSH
The selective aerobic oxidation of biomass-derived 5-hydroxymethylfurfural (HMF) to 2,5-diformylfuran (DFF) is a pivotal step toward biobased polymers, pharmaceuticals, and fuels. Yet, most high-performance catalysts require noble metals and organic solvents and lose activity in water. Here, we report a robust and recyclable heterogeneous catalyst comprising mixed-valence single-atom iron dimers anchored on nitrogen-doped graphene acid (Fe-NGA), which mimics the powerful oxidation center in nonheme diiron oxidases. Spectroscopic and theoretical studies reveal a redox-flexible Fe2+/Fe3+ manifold that, under basic aqueous conditions, evolves into a Fe3+-Fe4+ ferryl species capable of highly selective proton-coupled two-electron oxidations. Fe-NGA achieves 97% HMF conversion with 95% DFF selectivity, a turnover frequency of 17.3 h-1, and a specific productivity of 12.5 mmolDFF gcat -1 h-1 in pure water, surpassing state-of-the-art homogeneous and heterogeneous catalysts. The catalyst is stable with very low performance loss for at least six reactions. By merging such functionalities within a stable and reusable heterogeneous framework, Fe-NGA provides a benchmark earth-abundant catalyst for the effective oxidation of renewable feedstocks.
College of Chemical Engineering Nanjing Forestry University Longpan Road 159 Nanjing 210037 China
Leibniz Institut für Katalyse e 5 Albert Einstein Str 29a Rostock D 18059 Germany
Zobrazit více v PubMed
Huang X., Akdim O., Douthwaite M., Wang K., Zhao L., Lewis R. J., Pattisson S., Daniel I. T., Miedziak P. J., Shaw G., Morgan D. J., Althahban S. M., Davies T. E., He Q., Wang F., Fu J., Bethell D., McIntosh S., Kiely C. J., Hutchings G. J.. Au-Pd separation enhances bimetallic catalysis of alcohol oxidation. Nature. 2022;603(7900):271–275. doi: 10.1038/s41586-022-04397-7. PubMed DOI
Mallat T., Baiker A.. Oxidation of alcohols with molecular oxygen on solid catalysts. Chem. Rev. 2004;104(6):3037–3058. doi: 10.1021/cr0200116. PubMed DOI
Liu C., Li T., Dai X., Zhao J., He D., Li G., Wang B., Cui X.. Catalytic Activity Enhancement on Alcohol Dehydrogenation via Directing Reaction Pathways from Single- to Double-Atom Catalysis. J. Am. Chem. Soc. 2022;144(11):4913–4924. doi: 10.1021/jacs.1c12705. PubMed DOI
Enache D. I., Edwards J. K., Landon P., Solsona-Espriu B., Carley A. F., Herzing A. A., Watanabe M., Kiely C. J., Knight D. W., Hutchings G. J.. Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2 catalysts. Science. 2006;311(5759):362–365. doi: 10.1126/science.1120560. PubMed DOI
Bakandritsos A., Kadam R. G., Kumar P., Zoppellaro G., Medved’ M., Tuček J., Montini T., Tomanec O., Andrýsková P., Drahoš B., Varma R. S., Otyepka M., Gawande M. B., Fornasiero P., Zbořil R.. Mixed-Valence Single-Atom Catalyst Derived from Functionalized Graphene. Adv. Mater. 2019;31(17):1900323. doi: 10.1002/adma.201900323. PubMed DOI
Birmingham W. R., Toftgaard Pedersen A., Dias Gomes M., Boje Madsen M., Breuer M., Woodley J. M., Turner N. J.. Toward scalable biocatalytic conversion of 5-hydroxymethylfurfural by galactose oxidase using coordinated reaction and enzyme engineering. Nat. Commun. 2021;12(1):4946. doi: 10.1038/s41467-021-25034-3. PubMed DOI PMC
Chen C., Lv M., Hu H., Huai L., Zhu B., Fan S., Wang Q., Zhang J.. 5-Hydroxymethylfurfural and its Downstream Chemicals: A Review of Catalytic Routes. Adv. Mater. 2024;36(37):e2311464. doi: 10.1002/adma.202311464. PubMed DOI
Zhang Z., Huber G. W.. Catalytic oxidation of carbohydrates into organic acids and furan chemicals. Chem. Soc. Rev. 2018;47(4):1351–1390. doi: 10.1039/C7CS00213K. PubMed DOI
Van Putten R. J., Van der Waal J. C., De Jong E., Rasrendra C. B., Heeres H. J., de Vries J. G.. Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem. Rev. 2013;113(3):1499–1597. doi: 10.1021/cr300182k. PubMed DOI
Nguyen T. H., Nguyen D. A. L., Mai D. Q., Le M. N. T., Le D. D., Phan H. B., Tran P. H.. Cobalt-modified nitrogen-doped carbon nanotubes as bifunctional catalysts for one-pot synthesis of 2,5-diformylfuran from glucose. J. Energy Chem. 2025;103:440–447. doi: 10.1016/j.jechem.2024.11.074. DOI
Advani J. H., More G. S., Srivastava R.. Spinel-based catalysts for the biomass valorisation of platform molecules via oxidative and reductive transformations. Green Chem. 2022;24(9):3574–3604. doi: 10.1039/D1GC04592J. DOI
Zhu Y., Deng W., Tan Y., Shi J., Wu J., Lu W., Jia J., Wang S., Zou Y.. In Situ Topochemical Transformation of ZnIn2S4 for Efficient Photocatalytic Oxidation of 5-Hydroxymethylfurfural to 2,5-Diformylfuran. Adv. Funct. Mater. 2023;33(45):2304985. doi: 10.1002/adfm.202304985. DOI
Xia T., Gong W., Chen Y., Duan M., Ma J., Cui X., Dai Y., Gao C., Xiong Y.. Sunlight-Driven Highly Selective Catalytic Oxidation of 5-Hydroxymethylfurfural Towards Tunable Products. Angew. Chem. Int. Ed. 2022;61(29):e202204225. doi: 10.1002/anie.202204225. PubMed DOI
Hao Nguyen T., Dinh Le D., Le Nguyen D. A., Liang C. F., Bich Phan H., Hoang Tran P.. One-Pot Effective Approach to 2,5-Diformylfuran From Carbohydrates Using MoS(2)-Decorated Carbonaceous Sugarcane Bagasse. ChemSuschem. 2024;17(24):e202400657. doi: 10.1002/cssc.202400657. PubMed DOI
Peng Y., Qiu B., Ding S., Hu M., Zhang Y., Jiao Y., Fan X., Parlett C. M. A.. A Facile Synthesis Route to AuPd Alloys for the Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid. Chempluschem. 2024;89(1):e202300545. doi: 10.1002/cplu.202300545. PubMed DOI
Liao X., Guo M., Tang W., Liu C., Luo W., Tan L., Noguchi T. G., Yamauchi M., Zhao Y., Li X.. Bimetallic single atom promoted α-MnO2 for enhanced catalytic oxidation of 5-hydroxymethylfurfural. Green Chem. 2022;24(21):8424–8433. doi: 10.1039/D2GC01769E. DOI
Boonyakarn T., Wiesfeld J. J., Asakawa M., Chen L., Fukuoka A., Hensen E. J. M., Nakajima K.. Effective Oxidation of 5-Hydroxymethylfurfural to 2,5-Diformylfuran by an Acetal Protection Strategy. ChemSuschem. 2022;15(7):e202200059. doi: 10.1002/cssc.202200059. PubMed DOI
Artz J., Mallmann S., Palkovits R.. Selective Aerobic Oxidation of HMF to 2,5-Diformylfuran on Covalent Triazine Frameworks-Supported Ru Catalysts. ChemSuschem. 2015;8(4):672–679. doi: 10.1002/cssc.201403078. PubMed DOI
Jing W., Shen H., Qin R., Wu Q., Liu K., Zheng N.. Surface and Interface Coordination Chemistry Learned from Model Heterogeneous Metal Nanocatalysts: From Atomically Dispersed Catalysts to Atomically Precise Clusters. Chem. Rev. 2023;123(9):5948–6002. doi: 10.1021/acs.chemrev.2c00569. PubMed DOI
Advani J. H., Bankar B. D., Bajaj H. C., Biradar A. V.. Chitosan supported molybdate nanoclusters as an efficient catalyst for oxidation of alkenes and alcohols. Cellulose. 2020;27(15):8769–8783. doi: 10.1007/s10570-020-03368-3. DOI
Fan X., Ma J., Wang M., Gao M., Xu J.. Selective Aerobic Oxidation of Hydroxyl Compounds Catalyzed by Dimeric N-Salicylidene Oxovanadium Complexes. ACS Catal. 2024;14(14):10538–10548. doi: 10.1021/acscatal.4c02766. DOI
Zhao L., Yang P., Shi S., Zhu G., Feng X., Zheng W., Vlachos D. G., Xu J.. Activation of Molecular Oxygen for Alcohol Oxidation over Vanadium Carbon Catalysts Synthesized via the Heterogeneous Ligand Strategy. ACS Catal. 2022;12(24):15249–15258. doi: 10.1021/acscatal.2c04601. DOI
Wang G., Huang R., Zhang J., Mao J., Wang D., Li Y.. Synergistic Modulation of the Separation of Photo-Generated Carriers via Engineering of Dual Atomic Sites for Promoting Photocatalytic Performance. Adv. Mater. 2021;33(52):e2105904. doi: 10.1002/adma.202105904. PubMed DOI
Buonerba A., Impemba S., Litta A. D., Capacchione C., Milione S., Grassi A.. Aerobic Oxidation and Oxidative Esterification of 5-Hydroxymethylfurfural by Gold Nanoparticles Supported on Nanoporous Polymer Host Matrix. ChemSuschem. 2018;11(18):3139–3149. doi: 10.1002/cssc.201801560. PubMed DOI
Zhang Z., Yuan Z., Tang D., Ren Y., Lv K., Liu B.. Iron Oxide Encapsulated by Ruthenium Hydroxyapatite as Heterogeneous Catalyst for the Synthesis of 2,5-Diformylfuran. ChemSuschem. 2014;7(12):3496–3504. doi: 10.1002/cssc.201402402. PubMed DOI
Xue W., Ye J., Zhu Z., Kumar R., Zhao J.. Harnessing trace water for enhanced photocatalytic oxidation of biomass-derived alcohols to aldehydes. Energy Environ. Sci. 2025;18(1):214–226. doi: 10.1039/D4EE02301C. DOI
Andrushkevich T. V., Ovchinnikova E. V.. The role of water in selective heterogeneous catalytic oxidation of hydrocarbons. Mol. Catal. 2020;484:110734. doi: 10.1016/j.mcat.2019.110734. DOI
Wallar B. J., Lipscomb J. D.. Dioxygen Activation by Enzymes Containing Binuclear Non-Heme Iron Clusters. Chem. Rev. 1996;96(7):2625–2658. doi: 10.1021/cr9500489. PubMed DOI
Panáček D., Zdražil L., Langer M., Sedajova V., Badura Z., Zoppellaro G., Yang Q., Nguyen E. P., Alvarez-Diduk R., Hruby V., Kolarik J., Chalmpes N., Bourlinos A. B., Zboril R., Merkoci A., Bakandritsos A., Otyepka M.. Graphene Nanobeacons with High-Affinity Pockets for Combined, Selective, and Effective Decontamination and Reagentless Detection of Heavy Metals. Small. 2022;18(33):e2201003. doi: 10.1002/smll.202201003. PubMed DOI
Medved́ M., Zoppellaro G., Ugolotti J., Matochova D., Lazar P., Pospisil T., Bakandritsos A., Tucek J., Zboril R., Otyepka M.. Reactivity of fluorographene is triggered by point defects: beyond the perfect 2D world. Nanoscale. 2018;10(10):4696–4707. doi: 10.1039/C7NR09426D. PubMed DOI PMC
Šedajová V., Bakandritsos A., Blonski P., Medved M., Langer R., Zaoralova D., Ugolotti J., Dzibelova J., Jakubec P., Kupka V., Otyepka M.. Nitrogen doped graphene with diamond-like bonds achieves unprecedented energy density at high power in a symmetric sustainable supercapacitor. Energy Environ. Sci. 2022;15(2):740–748. doi: 10.1039/D1EE02234B. PubMed DOI PMC
Panáček D., Belza J., Hochvaldova L., Badura Z., Zoppellaro G., Srejber M., Malina T., Sedajova V., Paloncyova M., Langer R., Zdrazil L., Zeng J., Li L., Zhao E., Chen Z., Xiong Z., Li R., Panacek A., Vecerova R., Kucova P., Kolar M., Otyepka M., Bakandritsos A., Zboril R.. Single Atom Engineered Antibiotics Overcome Bacterial Resistance. Adv. Mater. 2024;36(50):e2410652. doi: 10.1002/adma.202410652. PubMed DOI PMC
Wang X., Bazuin C. G., Pellerin C.. Quantitative analysis of hydrogen bonding in electrospun fibers of poly(4-vinyl pyridine)/(4,4′-biphenol) complexes by ATR using liquid blends as models. Vib. Spectrosc. 2014;71:18–23. doi: 10.1016/j.vibspec.2013.12.011. DOI
Zaoralová D., Hrubý V., Šedajová V., Mach R., Kupka V., Ugolotti J., Bakandritsos A., Medved’ M., Otyepka M.. Tunable Synthesis of Nitrogen Doped Graphene from Fluorographene under Mild Conditions. ACS Sustainable Chem. Eng. 2020;8(12):4764–4772. doi: 10.1021/acssuschemeng.9b07161. DOI
Socrates, G. Infrared and Raman characteristic group frequencies: tables and charts; John Wiley & Sons, 2004.
Oomens J., Steill J. D.. Free Carboxylate Stretching Modes. J. Phys. Chem. A. 2008;112(15):3281–3283. doi: 10.1021/jp801806e. PubMed DOI
Kadam R. G., Medved’ M., Kumar S., Zaoralová D., Zoppellaro G., Bad’ura Z., Montini T., Bakandritsos A., Fonda E., Tomanec O.. et al. Linear-Structure Single-Atom Gold(I) Catalyst for Dehydrogenative Coupling of Organosilanes with Alcohols. ACS Catal. 2023;13(24):16067–16077. doi: 10.1021/acscatal.3c03937. PubMed DOI PMC
Liu L., Xiao T., Fu H., Chen Z., Qu X., Zheng S.. Construction and identification of highly active single-atom Fe1-NC catalytic site for electrocatalytic nitrate reduction. Appl. Catal., B. 2023;323:122181. doi: 10.1016/j.apcatb.2022.122181. DOI
Westre T. E., Kennepohl P., DeWitt J. G., Hedman B., Hodgson K. O., Solomon E. I.. A Multiplet Analysis of Fe K-Edge 1s → 3d Pre-Edge Features of Iron Complexes. J. Am. Chem. Soc. 1997;119(27):6297–6314. doi: 10.1021/ja964352a. DOI
X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS and XANES; Koningsberger, D. C. ; Prins, R. eds., Wiley, 1987.
Zhang P., Chen H. C., Zhu H., Chen K., Li T., Zhao Y., Li J., Hu R., Huang S., Zhu W., Liu Y., Pan Y.. Inter-site structural heterogeneity induction of single atom Fe catalysts for robust oxygen reduction. Nat. Commun. 2024;15(1):2062. doi: 10.1038/s41467-024-46389-3. PubMed DOI PMC
Liu Y., Shen Y., Sun L., Li J., Liu C., Ren W., Li F., Gao L., Chen J., Liu F., Sun Y., Tang N., Cheng H. M., Du Y.. Elemental superdoping of graphene and carbon nanotubes. Nat. Commun. 2016;7:10921. doi: 10.1038/ncomms10921. PubMed DOI PMC
Van Vleck J. H.. The Dipolar Broadening of Magnetic Resonance Lines in Crystals. Phys. Rev. 1948;74(9):1168–1183. doi: 10.1103/PhysRev.74.1168. DOI
Davydov R. M., Smieja J., Dikanov S. A., Zang Y., Que L., Bowman M. K.. EPR properties of mixed-valent mu-oxo and mu-hydroxo dinuclear iron complexes produced by radiolytic reduction at 77 K. J. Biol. Inorg. Chem. 1999;4(3):292–301. doi: 10.1007/s007750050315. PubMed DOI
Johnson E. J., Kleinlein C., Musgrave R. A., Betley T. A.. Diiron oxo reactivity in a weak-field environment. Chem. Sci. 2019;10(25):6304–6310. doi: 10.1039/C9SC00605B. PubMed DOI PMC
Jasniewski A. J., Que L.. Dioxygen Activation by Nonheme Diiron Enzymes: Diverse Dioxygen Adducts, High-Valent Intermediates, and Related Model Complexes. Chem. Rev. 2018;118(5):2554–2592. doi: 10.1021/acs.chemrev.7b00457. PubMed DOI PMC
Sturgeon B. E., Burdi D., Chen S., Huynh B.-H., Edmondson D. E., Stubbe J., Hoffman B. M.. Reconsideration of X, the Diiron Intermediate Formed during Cofactor Assembly in E. coli Ribonucleotide Reductase. J. Am. Chem. Soc. 1996;118(32):7551–7557. doi: 10.1021/ja960399k. DOI
Stubbe J. A., Nocera D. G., Yee C. S., Chang M. C.. Radical initiation in the class I ribonucleotide reductase: long-range proton-coupled electron transfer? Chem. Rev. 2003;103(6):2167–2201. doi: 10.1021/cr020421u. PubMed DOI
Mitić N., Clay M. D., Saleh L., Bollinger J. M., Solomon E. I.. Spectroscopic and Electronic Structure Studies of Intermediate X in Ribonucleotide Reductase R2 and Two Variants: A Description of the FeIV-Oxo Bond in the FeIII–O–FeIV Dimer. J. Am. Chem. Soc. 2007;129(29):9049–9065. doi: 10.1021/ja070909i. PubMed DOI PMC
De Hont R. F., Xue G., Hendrich M. P., Que L., Bominaar E. L., Münck E. M.. Mössbauer, Electron Paramagnetic Resonance, and Density Functional Theory Studies of Synthetic S = 1/2 FeIII–O–FeIVO Complexes. Superexchange-Mediated Spin Transition at the FeIVO Site. Inorg. Chem. 2010;49(18):8310–8322. doi: 10.1021/ic100870v. PubMed DOI PMC
Ma J., Du Z., Xu J., Chu Q., Pang Y.. Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran, and synthesis of a fluorescent material. ChemSuschem. 2011;4(1):51–54. doi: 10.1002/cssc.201000273. PubMed DOI
Mishra D. K., Cho J. K., Kim Y. J.. Facile production of 2,5-diformylfuran from base-free oxidation of 5-hydroxymethyl furfural over manganese–cobalt spinels supported ruthenium nanoparticles. J. Ind. Eng. Chem. 2018;60:513–519. doi: 10.1016/j.jiec.2017.11.040. DOI
Chen L., Zhang T., Cheng H., Richards R. M., Qi Z.. A microwave assisted ionic liquid route to prepare bivalent Mn5O8 nanoplates for 5-hydroxymethylfurfural oxidation. Nanoscale. 2020;12(34):17902–17914. doi: 10.1039/D0NR04738D. PubMed DOI
Liu H., Cao X., Wei J., Jia W., Li M., Tang X., Zeng X., Sun Y., Lei T., Liu S., Lin L.. Efficient Aerobic Oxidation of 5-Hydroxymethylfurfural to 2,5-Diformylfuran over Fe2O3-Promoted MnO2 Catalyst. ACS Sustainable Chem. Eng. 2019;7(8):7812–7822. doi: 10.1021/acssuschemeng.9b00010. DOI
Fang R., Luque R., Li Y.. Selective aerobic oxidation of biomass-derived HMF to 2,5-diformylfuran using a MOF-derived magnetic hollow Fe–Co nanocatalyst. Green Chem. 2016;18(10):3152–3157. doi: 10.1039/C5GC03051J. DOI
Wang Y., Liu H., Lv T., Jia W., Zhang R., Peng L., Zhang J.. Synergetic Effect of Heterojunction and Sulfur Vacancy on ZnIn2S4/CeO2 to Enhance the Photocatalytic Performance of 5-Hydroxymethylfurfural into 2,5-Diformylfuran. Adv. Funct. Mater. 2025;35:2415842. doi: 10.1002/adfm.202415842. DOI