Redox-Switchable Single-Atom Catalyst Enables Efficient Aqueous Hydroxymethylfurfural Oxidation

. 2025 Dec 19 ; 15 (24) : 21057-21068. [epub] 20251208

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41446538

The selective aerobic oxidation of biomass-derived 5-hydroxymethylfurfural (HMF) to 2,5-diformylfuran (DFF) is a pivotal step toward biobased polymers, pharmaceuticals, and fuels. Yet, most high-performance catalysts require noble metals and organic solvents and lose activity in water. Here, we report a robust and recyclable heterogeneous catalyst comprising mixed-valence single-atom iron dimers anchored on nitrogen-doped graphene acid (Fe-NGA), which mimics the powerful oxidation center in nonheme diiron oxidases. Spectroscopic and theoretical studies reveal a redox-flexible Fe2+/Fe3+ manifold that, under basic aqueous conditions, evolves into a Fe3+-Fe4+ ferryl species capable of highly selective proton-coupled two-electron oxidations. Fe-NGA achieves 97% HMF conversion with 95% DFF selectivity, a turnover frequency of 17.3 h-1, and a specific productivity of 12.5 mmolDFF gcat -1 h-1 in pure water, surpassing state-of-the-art homogeneous and heterogeneous catalysts. The catalyst is stable with very low performance loss for at least six reactions. By merging such functionalities within a stable and reusable heterogeneous framework, Fe-NGA provides a benchmark earth-abundant catalyst for the effective oxidation of renewable feedstocks.

Zobrazit více v PubMed

Huang X., Akdim O., Douthwaite M., Wang K., Zhao L., Lewis R. J., Pattisson S., Daniel I. T., Miedziak P. J., Shaw G., Morgan D. J., Althahban S. M., Davies T. E., He Q., Wang F., Fu J., Bethell D., McIntosh S., Kiely C. J., Hutchings G. J.. Au-Pd separation enhances bimetallic catalysis of alcohol oxidation. Nature. 2022;603(7900):271–275. doi: 10.1038/s41586-022-04397-7. PubMed DOI

Mallat T., Baiker A.. Oxidation of alcohols with molecular oxygen on solid catalysts. Chem. Rev. 2004;104(6):3037–3058. doi: 10.1021/cr0200116. PubMed DOI

Liu C., Li T., Dai X., Zhao J., He D., Li G., Wang B., Cui X.. Catalytic Activity Enhancement on Alcohol Dehydrogenation via Directing Reaction Pathways from Single- to Double-Atom Catalysis. J. Am. Chem. Soc. 2022;144(11):4913–4924. doi: 10.1021/jacs.1c12705. PubMed DOI

Enache D. I., Edwards J. K., Landon P., Solsona-Espriu B., Carley A. F., Herzing A. A., Watanabe M., Kiely C. J., Knight D. W., Hutchings G. J.. Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2 catalysts. Science. 2006;311(5759):362–365. doi: 10.1126/science.1120560. PubMed DOI

Bakandritsos A., Kadam R. G., Kumar P., Zoppellaro G., Medved’ M., Tuček J., Montini T., Tomanec O., Andrýsková P., Drahoš B., Varma R. S., Otyepka M., Gawande M. B., Fornasiero P., Zbořil R.. Mixed-Valence Single-Atom Catalyst Derived from Functionalized Graphene. Adv. Mater. 2019;31(17):1900323. doi: 10.1002/adma.201900323. PubMed DOI

Birmingham W. R., Toftgaard Pedersen A., Dias Gomes M., Boje Madsen M., Breuer M., Woodley J. M., Turner N. J.. Toward scalable biocatalytic conversion of 5-hydroxymethylfurfural by galactose oxidase using coordinated reaction and enzyme engineering. Nat. Commun. 2021;12(1):4946. doi: 10.1038/s41467-021-25034-3. PubMed DOI PMC

Chen C., Lv M., Hu H., Huai L., Zhu B., Fan S., Wang Q., Zhang J.. 5-Hydroxymethylfurfural and its Downstream Chemicals: A Review of Catalytic Routes. Adv. Mater. 2024;36(37):e2311464. doi: 10.1002/adma.202311464. PubMed DOI

Zhang Z., Huber G. W.. Catalytic oxidation of carbohydrates into organic acids and furan chemicals. Chem. Soc. Rev. 2018;47(4):1351–1390. doi: 10.1039/C7CS00213K. PubMed DOI

Van Putten R. J., Van der Waal J. C., De Jong E., Rasrendra C. B., Heeres H. J., de Vries J. G.. Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem. Rev. 2013;113(3):1499–1597. doi: 10.1021/cr300182k. PubMed DOI

Nguyen T. H., Nguyen D. A. L., Mai D. Q., Le M. N. T., Le D. D., Phan H. B., Tran P. H.. Cobalt-modified nitrogen-doped carbon nanotubes as bifunctional catalysts for one-pot synthesis of 2,5-diformylfuran from glucose. J. Energy Chem. 2025;103:440–447. doi: 10.1016/j.jechem.2024.11.074. DOI

Advani J. H., More G. S., Srivastava R.. Spinel-based catalysts for the biomass valorisation of platform molecules via oxidative and reductive transformations. Green Chem. 2022;24(9):3574–3604. doi: 10.1039/D1GC04592J. DOI

Zhu Y., Deng W., Tan Y., Shi J., Wu J., Lu W., Jia J., Wang S., Zou Y.. In Situ Topochemical Transformation of ZnIn2S4 for Efficient Photocatalytic Oxidation of 5-Hydroxymethylfurfural to 2,5-Diformylfuran. Adv. Funct. Mater. 2023;33(45):2304985. doi: 10.1002/adfm.202304985. DOI

Xia T., Gong W., Chen Y., Duan M., Ma J., Cui X., Dai Y., Gao C., Xiong Y.. Sunlight-Driven Highly Selective Catalytic Oxidation of 5-Hydroxymethylfurfural Towards Tunable Products. Angew. Chem. Int. Ed. 2022;61(29):e202204225. doi: 10.1002/anie.202204225. PubMed DOI

Hao Nguyen T., Dinh Le D., Le Nguyen D. A., Liang C. F., Bich Phan H., Hoang Tran P.. One-Pot Effective Approach to 2,5-Diformylfuran From Carbohydrates Using MoS(2)-Decorated Carbonaceous Sugarcane Bagasse. ChemSuschem. 2024;17(24):e202400657. doi: 10.1002/cssc.202400657. PubMed DOI

Peng Y., Qiu B., Ding S., Hu M., Zhang Y., Jiao Y., Fan X., Parlett C. M. A.. A Facile Synthesis Route to AuPd Alloys for the Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid. Chempluschem. 2024;89(1):e202300545. doi: 10.1002/cplu.202300545. PubMed DOI

Liao X., Guo M., Tang W., Liu C., Luo W., Tan L., Noguchi T. G., Yamauchi M., Zhao Y., Li X.. Bimetallic single atom promoted α-MnO2 for enhanced catalytic oxidation of 5-hydroxymethylfurfural. Green Chem. 2022;24(21):8424–8433. doi: 10.1039/D2GC01769E. DOI

Boonyakarn T., Wiesfeld J. J., Asakawa M., Chen L., Fukuoka A., Hensen E. J. M., Nakajima K.. Effective Oxidation of 5-Hydroxymethylfurfural to 2,5-Diformylfuran by an Acetal Protection Strategy. ChemSuschem. 2022;15(7):e202200059. doi: 10.1002/cssc.202200059. PubMed DOI

Artz J., Mallmann S., Palkovits R.. Selective Aerobic Oxidation of HMF to 2,5-Diformylfuran on Covalent Triazine Frameworks-Supported Ru Catalysts. ChemSuschem. 2015;8(4):672–679. doi: 10.1002/cssc.201403078. PubMed DOI

Jing W., Shen H., Qin R., Wu Q., Liu K., Zheng N.. Surface and Interface Coordination Chemistry Learned from Model Heterogeneous Metal Nanocatalysts: From Atomically Dispersed Catalysts to Atomically Precise Clusters. Chem. Rev. 2023;123(9):5948–6002. doi: 10.1021/acs.chemrev.2c00569. PubMed DOI

Advani J. H., Bankar B. D., Bajaj H. C., Biradar A. V.. Chitosan supported molybdate nanoclusters as an efficient catalyst for oxidation of alkenes and alcohols. Cellulose. 2020;27(15):8769–8783. doi: 10.1007/s10570-020-03368-3. DOI

Fan X., Ma J., Wang M., Gao M., Xu J.. Selective Aerobic Oxidation of Hydroxyl Compounds Catalyzed by Dimeric N-Salicylidene Oxovanadium Complexes. ACS Catal. 2024;14(14):10538–10548. doi: 10.1021/acscatal.4c02766. DOI

Zhao L., Yang P., Shi S., Zhu G., Feng X., Zheng W., Vlachos D. G., Xu J.. Activation of Molecular Oxygen for Alcohol Oxidation over Vanadium Carbon Catalysts Synthesized via the Heterogeneous Ligand Strategy. ACS Catal. 2022;12(24):15249–15258. doi: 10.1021/acscatal.2c04601. DOI

Wang G., Huang R., Zhang J., Mao J., Wang D., Li Y.. Synergistic Modulation of the Separation of Photo-Generated Carriers via Engineering of Dual Atomic Sites for Promoting Photocatalytic Performance. Adv. Mater. 2021;33(52):e2105904. doi: 10.1002/adma.202105904. PubMed DOI

Buonerba A., Impemba S., Litta A. D., Capacchione C., Milione S., Grassi A.. Aerobic Oxidation and Oxidative Esterification of 5-Hydroxymethylfurfural by Gold Nanoparticles Supported on Nanoporous Polymer Host Matrix. ChemSuschem. 2018;11(18):3139–3149. doi: 10.1002/cssc.201801560. PubMed DOI

Zhang Z., Yuan Z., Tang D., Ren Y., Lv K., Liu B.. Iron Oxide Encapsulated by Ruthenium Hydroxyapatite as Heterogeneous Catalyst for the Synthesis of 2,5-Diformylfuran. ChemSuschem. 2014;7(12):3496–3504. doi: 10.1002/cssc.201402402. PubMed DOI

Xue W., Ye J., Zhu Z., Kumar R., Zhao J.. Harnessing trace water for enhanced photocatalytic oxidation of biomass-derived alcohols to aldehydes. Energy Environ. Sci. 2025;18(1):214–226. doi: 10.1039/D4EE02301C. DOI

Andrushkevich T. V., Ovchinnikova E. V.. The role of water in selective heterogeneous catalytic oxidation of hydrocarbons. Mol. Catal. 2020;484:110734. doi: 10.1016/j.mcat.2019.110734. DOI

Wallar B. J., Lipscomb J. D.. Dioxygen Activation by Enzymes Containing Binuclear Non-Heme Iron Clusters. Chem. Rev. 1996;96(7):2625–2658. doi: 10.1021/cr9500489. PubMed DOI

Panáček D., Zdražil L., Langer M., Sedajova V., Badura Z., Zoppellaro G., Yang Q., Nguyen E. P., Alvarez-Diduk R., Hruby V., Kolarik J., Chalmpes N., Bourlinos A. B., Zboril R., Merkoci A., Bakandritsos A., Otyepka M.. Graphene Nanobeacons with High-Affinity Pockets for Combined, Selective, and Effective Decontamination and Reagentless Detection of Heavy Metals. Small. 2022;18(33):e2201003. doi: 10.1002/smll.202201003. PubMed DOI

Medved́ M., Zoppellaro G., Ugolotti J., Matochova D., Lazar P., Pospisil T., Bakandritsos A., Tucek J., Zboril R., Otyepka M.. Reactivity of fluorographene is triggered by point defects: beyond the perfect 2D world. Nanoscale. 2018;10(10):4696–4707. doi: 10.1039/C7NR09426D. PubMed DOI PMC

Šedajová V., Bakandritsos A., Blonski P., Medved M., Langer R., Zaoralova D., Ugolotti J., Dzibelova J., Jakubec P., Kupka V., Otyepka M.. Nitrogen doped graphene with diamond-like bonds achieves unprecedented energy density at high power in a symmetric sustainable supercapacitor. Energy Environ. Sci. 2022;15(2):740–748. doi: 10.1039/D1EE02234B. PubMed DOI PMC

Panáček D., Belza J., Hochvaldova L., Badura Z., Zoppellaro G., Srejber M., Malina T., Sedajova V., Paloncyova M., Langer R., Zdrazil L., Zeng J., Li L., Zhao E., Chen Z., Xiong Z., Li R., Panacek A., Vecerova R., Kucova P., Kolar M., Otyepka M., Bakandritsos A., Zboril R.. Single Atom Engineered Antibiotics Overcome Bacterial Resistance. Adv. Mater. 2024;36(50):e2410652. doi: 10.1002/adma.202410652. PubMed DOI PMC

Wang X., Bazuin C. G., Pellerin C.. Quantitative analysis of hydrogen bonding in electrospun fibers of poly­(4-vinyl pyridine)/(4,4′-biphenol) complexes by ATR using liquid blends as models. Vib. Spectrosc. 2014;71:18–23. doi: 10.1016/j.vibspec.2013.12.011. DOI

Zaoralová D., Hrubý V., Šedajová V., Mach R., Kupka V., Ugolotti J., Bakandritsos A., Medved’ M., Otyepka M.. Tunable Synthesis of Nitrogen Doped Graphene from Fluorographene under Mild Conditions. ACS Sustainable Chem. Eng. 2020;8(12):4764–4772. doi: 10.1021/acssuschemeng.9b07161. DOI

Socrates, G. Infrared and Raman characteristic group frequencies: tables and charts; John Wiley & Sons, 2004.

Oomens J., Steill J. D.. Free Carboxylate Stretching Modes. J. Phys. Chem. A. 2008;112(15):3281–3283. doi: 10.1021/jp801806e. PubMed DOI

Kadam R. G., Medved’ M., Kumar S., Zaoralová D., Zoppellaro G., Bad’ura Z., Montini T., Bakandritsos A., Fonda E., Tomanec O.. et al. Linear-Structure Single-Atom Gold­(I) Catalyst for Dehydrogenative Coupling of Organosilanes with Alcohols. ACS Catal. 2023;13(24):16067–16077. doi: 10.1021/acscatal.3c03937. PubMed DOI PMC

Liu L., Xiao T., Fu H., Chen Z., Qu X., Zheng S.. Construction and identification of highly active single-atom Fe1-NC catalytic site for electrocatalytic nitrate reduction. Appl. Catal., B. 2023;323:122181. doi: 10.1016/j.apcatb.2022.122181. DOI

Westre T. E., Kennepohl P., DeWitt J. G., Hedman B., Hodgson K. O., Solomon E. I.. A Multiplet Analysis of Fe K-Edge 1s → 3d Pre-Edge Features of Iron Complexes. J. Am. Chem. Soc. 1997;119(27):6297–6314. doi: 10.1021/ja964352a. DOI

X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS and XANES; Koningsberger, D. C. ; Prins, R. eds., Wiley, 1987.

Zhang P., Chen H. C., Zhu H., Chen K., Li T., Zhao Y., Li J., Hu R., Huang S., Zhu W., Liu Y., Pan Y.. Inter-site structural heterogeneity induction of single atom Fe catalysts for robust oxygen reduction. Nat. Commun. 2024;15(1):2062. doi: 10.1038/s41467-024-46389-3. PubMed DOI PMC

Liu Y., Shen Y., Sun L., Li J., Liu C., Ren W., Li F., Gao L., Chen J., Liu F., Sun Y., Tang N., Cheng H. M., Du Y.. Elemental superdoping of graphene and carbon nanotubes. Nat. Commun. 2016;7:10921. doi: 10.1038/ncomms10921. PubMed DOI PMC

Van Vleck J. H.. The Dipolar Broadening of Magnetic Resonance Lines in Crystals. Phys. Rev. 1948;74(9):1168–1183. doi: 10.1103/PhysRev.74.1168. DOI

Davydov R. M., Smieja J., Dikanov S. A., Zang Y., Que L., Bowman M. K.. EPR properties of mixed-valent mu-oxo and mu-hydroxo dinuclear iron complexes produced by radiolytic reduction at 77 K. J. Biol. Inorg. Chem. 1999;4(3):292–301. doi: 10.1007/s007750050315. PubMed DOI

Johnson E. J., Kleinlein C., Musgrave R. A., Betley T. A.. Diiron oxo reactivity in a weak-field environment. Chem. Sci. 2019;10(25):6304–6310. doi: 10.1039/C9SC00605B. PubMed DOI PMC

Jasniewski A. J., Que L.. Dioxygen Activation by Nonheme Diiron Enzymes: Diverse Dioxygen Adducts, High-Valent Intermediates, and Related Model Complexes. Chem. Rev. 2018;118(5):2554–2592. doi: 10.1021/acs.chemrev.7b00457. PubMed DOI PMC

Sturgeon B. E., Burdi D., Chen S., Huynh B.-H., Edmondson D. E., Stubbe J., Hoffman B. M.. Reconsideration of X, the Diiron Intermediate Formed during Cofactor Assembly in E. coli Ribonucleotide Reductase. J. Am. Chem. Soc. 1996;118(32):7551–7557. doi: 10.1021/ja960399k. DOI

Stubbe J. A., Nocera D. G., Yee C. S., Chang M. C.. Radical initiation in the class I ribonucleotide reductase: long-range proton-coupled electron transfer? Chem. Rev. 2003;103(6):2167–2201. doi: 10.1021/cr020421u. PubMed DOI

Mitić N., Clay M. D., Saleh L., Bollinger J. M., Solomon E. I.. Spectroscopic and Electronic Structure Studies of Intermediate X in Ribonucleotide Reductase R2 and Two Variants: A Description of the FeIV-Oxo Bond in the FeIII–O–FeIV Dimer. J. Am. Chem. Soc. 2007;129(29):9049–9065. doi: 10.1021/ja070909i. PubMed DOI PMC

De Hont R. F., Xue G., Hendrich M. P., Que L., Bominaar E. L., Münck E. M.. Mössbauer, Electron Paramagnetic Resonance, and Density Functional Theory Studies of Synthetic S = 1/2 FeIII–O–FeIVO Complexes. Superexchange-Mediated Spin Transition at the FeIVO Site. Inorg. Chem. 2010;49(18):8310–8322. doi: 10.1021/ic100870v. PubMed DOI PMC

Ma J., Du Z., Xu J., Chu Q., Pang Y.. Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran, and synthesis of a fluorescent material. ChemSuschem. 2011;4(1):51–54. doi: 10.1002/cssc.201000273. PubMed DOI

Mishra D. K., Cho J. K., Kim Y. J.. Facile production of 2,5-diformylfuran from base-free oxidation of 5-hydroxymethyl furfural over manganese–cobalt spinels supported ruthenium nanoparticles. J. Ind. Eng. Chem. 2018;60:513–519. doi: 10.1016/j.jiec.2017.11.040. DOI

Chen L., Zhang T., Cheng H., Richards R. M., Qi Z.. A microwave assisted ionic liquid route to prepare bivalent Mn5O8 nanoplates for 5-hydroxymethylfurfural oxidation. Nanoscale. 2020;12(34):17902–17914. doi: 10.1039/D0NR04738D. PubMed DOI

Liu H., Cao X., Wei J., Jia W., Li M., Tang X., Zeng X., Sun Y., Lei T., Liu S., Lin L.. Efficient Aerobic Oxidation of 5-Hydroxymethylfurfural to 2,5-Diformylfuran over Fe2O3-Promoted MnO2 Catalyst. ACS Sustainable Chem. Eng. 2019;7(8):7812–7822. doi: 10.1021/acssuschemeng.9b00010. DOI

Fang R., Luque R., Li Y.. Selective aerobic oxidation of biomass-derived HMF to 2,5-diformylfuran using a MOF-derived magnetic hollow Fe–Co nanocatalyst. Green Chem. 2016;18(10):3152–3157. doi: 10.1039/C5GC03051J. DOI

Wang Y., Liu H., Lv T., Jia W., Zhang R., Peng L., Zhang J.. Synergetic Effect of Heterojunction and Sulfur Vacancy on ZnIn2S4/CeO2 to Enhance the Photocatalytic Performance of 5-Hydroxymethylfurfural into 2,5-Diformylfuran. Adv. Funct. Mater. 2025;35:2415842. doi: 10.1002/adfm.202415842. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...