The interplay of microbiome, molecular mechanisms, and fertility -an integrated review
Status Publisher Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
LBH-Z21218
Postdoctoral funding of Heilongjiang Province
PubMed
41452451
DOI
10.1007/s12223-025-01404-y
PII: 10.1007/s12223-025-01404-y
Knihovny.cz E-zdroje
- Klíčová slova
- Dysbiosis, Gut-reproductive axis, Infertility, Microbial metabolites, Microbiome therapeutics,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The human microbiome, particularly the gut and reproductive tract microbiota, plays a critical role in regulating fertility through complex molecular and immunological mechanisms. This review synthesizes emerging evidence on the bidirectional communication along the gut-reproductive axis, emphasizing how microbial-derived metabolites, such as short-chain fatty acids (butyrate), bile acids, and indoles, modulate systemic inflammation, immune tolerance, hormone metabolism, and energy homeostasis. Dysbiosis, or microbial imbalance, is strongly associated with a range of reproductive pathologies, including polycystic ovary syndrome, endometriosis, premature ovarian insufficiency, impaired spermatogenesis, and recurrent implantation failure. Furthermore, site-specific microbiomes, such as Lactobacillus-dominated vaginal and uterine communities, are vital for successful implantation and pregnancy maintenance. External factors including diet, environmental toxins, and antibiotic use can disrupt these microbial ecosystems, whereas interventions like probiotics like Lactobacillus and Clostridium butyricum, prebiotics, postbiotics, and fecal microbiota transplantation offer promising avenues for restoring microbial and reproductive health. However, translational challenges remain, including methodological heterogeneity in microbiome research and the need to establish causal mechanisms beyond correlation. Future efforts should prioritize multi-omics integration, randomized controlled trials, and personalized microbiome-based diagnostics and therapeutics to effectively address infertility.
Zobrazit více v PubMed
Abbasi E, Khodadadi I (2025) High-fat diet may increase the risk of insulin resistance by inducing dysbiosis. Metabol Open 27:100381. https://doi.org/10.1016/j.metop.2025.100381 PubMed DOI PMC
Ali S, Tyagi A, Mushtaq M, Al-Mahmoudi H, Bae H (2022) Harnessing plant microbiome for mitigating arsenic toxicity in sustainable agriculture. Environ Pollut 300:118940. https://doi.org/10.1016/j.envpol.2022.118940 PubMed DOI
Asadi A, Shadab Mehr N, Mohamadi MH, Shokri F, Heidary M, Sadeghifard N, Khoshnood S (2022) Obesity and gut-microbiota-brain axis: a narrative review. J Clin Lab Anal 36:e24420. https://doi.org/10.1002/jcla.24420 PubMed DOI PMC
Ashonibare VJ, Akorede BA, Ashonibare PJ, Akhigbe TM, Akhigbe RE (2024) Gut microbiota-gonadal axis: the impact of gut microbiota on reproductive functions. Front Immunol 15:1346035. https://doi.org/10.3389/fimmu.2024.1346035 PubMed DOI PMC
Baker JM, Al-Nakkash L, Herbst-Kralovetz MM (2017) Estrogen–gut microbiome axis: physiological and clinical implications. Maturitas 103:45–53. https://doi.org/10.1016/j.maturitas.2017.06.025 PubMed DOI
Bardos J, Fiorentino D, Longman RE, Paidas M (2020) Immunological role of the maternal uterine microbiome in pregnancy: pregnancies pathologies and alterated microbiota. Front Immunol 10:2823. https://doi.org/10.3389/fimmu.2019.02823 PubMed DOI PMC
Burmeister AR, Hansen E, Cunningham JJ, Rego EH, Turner PE, Weitz JS, Hochberg ME (2021) Fighting microbial pathogens by integrating host ecosystem interactions and evolution. Bioessays 43:e2000272. https://doi.org/10.1002/bies.202000272 PubMed DOI
Castellanos-Ruiz D, Ojeda-Borbolla JG, Ruiz-García OV, Peña-Corona SI, Martínez-Peña AA, Ibarra-Rubio ME, Gavilanes-Ruiz M, Mendoza-Rodríguez CA (2025) Uterine microbiota and bisphenols: novel influencers in reproductive health. J Xenobiot 15:26. https://doi.org/10.3390/jox15010026 PubMed DOI PMC
Chadchan SB, Singh V, Kommagani R (2022) Female reproductive dysfunctions and the gut microbiota. J Mol Endocrinol 69:R81–R94. https://doi.org/10.1530/jme-21-0238 PubMed DOI PMC
Chee WJY, Chew SY, Than LTL (2020) Vaginal microbiota and the potential of Lactobacillus derivatives in maintaining vaginal health. Microb Cell Fact 19:203. https://doi.org/10.1186/s12934-020-01464-4 PubMed DOI PMC
Chen T, Zhang B, He G, Wang N, Cao M, Shen C, Chen X, Chen L, Liu K, Luo Y, Huang Y, Yuan C, Zhou X, Li C (2024) Gut-derived exosomes mediate the microbiota dysbiosis-induced spermatogenesis impairment by targeting meioc in mice. Adv Sci 11:e2310110. https://doi.org/10.1002/advs.202310110 DOI
Chen Y, Wang Y, Shaoyong W, He Y, Liu Y, Wei S, Gan Y, Sun L, Wang Y, Zong X, Xiang Y, Wang Y, Jin M (2025a) High-fertility sows reshape gut microbiota: the rise of serotonin-related bacteria and its impact on sustaining reproductive performance. J Anim Sci Biotechnol 16:73. https://doi.org/10.1186/s40104-025-01191-z PubMed DOI PMC
Chen YC, Chiang YF, Huang KC, Wang KL, Huang YJ, Shieh TM, Ali M, Hsia SM (2025b) The vaginal microbiome: associations with vaginal pH, menopause and metabolic parameters. Microorganisms 13:1317. https://doi.org/10.3390/microorganisms13061317 PubMed DOI PMC
Ding Y, Luo X, Guo J, Xing B, Lin H, Ma H, Wang Y, Li M, Ye C, Yan S, Lin K, Zhang J, Zhuo Y, Nie Q, Yang D, Zhang Z, Pang Y, Wang K, Ma M, Lai L, Jiang C (2025) Identification of gut microbial bile acid metabolic enzymes via an AI-assisted pipeline. Cell 188:6012–6027.e6020. https://doi.org/10.1016/j.cell.2025.07.017 PubMed DOI
Dricot C, Erreygers I, Cauwenberghs E, De Paz J, Spacova I, Verhoeven V, Ahannach S, Lebeer S (2024) Riboflavin for women’s health and emerging microbiome strategies. NPJ Biofilms Microbiomes 10:107. https://doi.org/10.1038/s41522-024-00579-5 PubMed DOI PMC
Dukare A, Mhatre P, Maheshwari HS, Bagul S, Manjunatha BS, Khade Y, Kamble U (2022) Delineation of mechanistic approaches of rhizosphere microorganisms facilitated plant health and resilience under challenging conditions. 3 Biotech 12:57. https://doi.org/10.1007/s13205-022-03115-4 PubMed DOI PMC
Escorcia Mora P, Valbuena D, Diez-Juan A (2025) The role of the gut microbiota in female reproductive and gynecological health: insights into endometrial signaling pathways. Life (Basel) 15:762. https://doi.org/10.3390/life15050762 PubMed DOI
Farahani L, Tharakan T, Yap T, Ramsay JW, Jayasena CN, Minhas S (2021) The semen microbiome and its impact on sperm function and male fertility: a systematic review and meta-analysis. Andrology 9:115–144. https://doi.org/10.1111/andr.12886 PubMed DOI
Gao H, Cao M, Yao Y, Hu W, Sun H, Zhang Y, Zeng C, Tang J, Luan S, Chen P (2021) Dysregulated microbiota-driven gasdermin D activation promotes colitis development by mediating IL-18 release. Front Immunol 12:750841. https://doi.org/10.3389/fimmu.2021.750841 PubMed DOI PMC
Garmendia JV, De Sanctis CV, Hajdúch M, De Sanctis JB (2024) Microbiota and recurrent pregnancy loss (RPL); more than a simple connection. Microorganisms 12:1641. https://doi.org/10.3390/microorganisms12081641 PubMed DOI PMC
Guo H, Pan L, Wu Q, Wang L, Huang Z, Wang J, Wang L, Fang X, Dong S, Zhu Y, Liao Z (2025) Type 2 diabetes and the multifaceted gut-X axes. Nutrients 17:2708. https://doi.org/10.3390/nu17162708 PubMed DOI PMC
Hagihara M, Ariyoshi T, Eguchi S, Oka K, Takahashi M, Kato H, Shibata Y, Umemura T, Mori T, Miyazaki N, Hirai J, Asai N, Mori N, Mikamo H (2024) Oral Clostridium Butyricum on mice endometritis through uterine microbiome and metabolic alternations. Front Microbiol 15:1351899. https://doi.org/10.3389/fmicb.2024.1351899 PubMed DOI PMC
Hofacker AC, Knop M, Krauss-Etschmann S, Roeder T (2025) Time-restricted feeding promotes longevity and gut health without fitness trade-offs. FASEB J 39:e70627. https://doi.org/10.1096/fj.202500875R PubMed DOI
Hugerth LW, Krog MC, Vomstein K, Du J, Bashir Z, Kaldhusdal V, Fransson E, Engstrand L, Nielsen HS, Schuppe-Koistinen I (2024) Defining vaginal community dynamics: daily microbiome transitions, the role of menstruation, bacteriophages, and bacterial genes. Microbiome 12:153. https://doi.org/10.1186/s40168-024-01870-5 PubMed DOI PMC
Huo D, Wang X (2024) A new era in healthcare: the integration of artificial intelligence and microbial. Medicine in Novel Technology and Devices 23:100319. https://doi.org/10.1016/j.medntd.2024.100319 DOI
Kalinen S, Kallonen T, Gunell M, Ettala O, Jambor I, Knaapila J, Syvänen KT, Taimen P, Poutanen M, Aronen HJ, Ollila H, Pietilä S, Elo LL, Lamminen T, Hakanen AJ, Munukka E, Boström PJ (2024) Differences in gut microbiota profiles and microbiota steroid hormone biosynthesis in men with and without prostate cancer. Eur Urol Open Sci 62:140–150. https://doi.org/10.1016/j.euros.2024.02.004 PubMed DOI PMC
Kang GG, Trevaskis NL, Murphy AJ, Febbraio MA (2023) Diet-induced gut dysbiosis and inflammation: key drivers of obesity-driven NASH. iScience 26:105905. https://doi.org/10.1016/j.isci.2022.105905 PubMed DOI
Koedooder R, Schoenmakers S, Singer M, Bos M, Poort L, Savelkoul P, Morré S, de Jonge J, Budding D, Laven J (2024) Clinical applicability of microbiota sampling in a subfertile population: urine versus vagina. Microorganisms 12:1789. https://doi.org/10.3390/microorganisms12091789 PubMed DOI PMC
Koren O, Konnikova L, Brodin P, Mysorekar IU, Collado MC (2024) The maternal gut microbiome in pregnancy: implications for the developing immune system. Nat Rev Gastroenterol Hepatol 21:35–45. https://doi.org/10.1038/s41575-023-00864-2 PubMed DOI
Leelani N, Bajic P, Parekh N, Vij SC, Lundy SD (2023) The emerging role of the gut-testis axis in male reproductive health and infertility. F&S Reviews 4:131–141. https://doi.org/10.1016/j.xfnr.2023.01.001 DOI
Lema NK, Gemeda MT, Woldesemayat AA (2023) Recent advances in metagenomic approaches, applications, and challenge. Curr Microbiol 80:347. https://doi.org/10.1007/s00284-023-03451-5 PubMed DOI
Li P, Wang H, Guo L, Gou X, Chen G, Lin D, Fan D, Guo X, Liu Z (2022) Association between gut microbiota and preeclampsia-eclampsia: a two-sample Mendelian randomization study. BMC Med 20:443. https://doi.org/10.1186/s12916-022-02657-x PubMed DOI PMC
Li B, Xiong Y, Guo D, Deng G, Wu H (2025) The gut-reproductive axis: bridging microbiota balances to reproductive health and fetal development. Int Immunopharmacol 144:113627. https://doi.org/10.1016/j.intimp.2024.113627 PubMed DOI
Liu D, Han X, Zou W, Yang Z, Peng J, Li Y, Liu Y, Jia M, Liu W, Li H, Zhou Q, Tan Z, Zhang J (2025a) Probiotics combined with metformin improves sperm parameters in obese male mice through modulation of intestinal microbiota equilibrium. Reprod Sci 32:116–130. https://doi.org/10.1007/s43032-024-01748-9 PubMed DOI
Liu X, Qi Y, Zhu T, Ding X, Zhou D, Han C (2025b) Butyrate improves testicular spermatogenic dysfunction induced by a high-fat diet. Transl Androl Urol 14:627–636. https://doi.org/10.21037/tau-2024-660 PubMed DOI PMC
Ma Z, Zuo T, Frey N, Rangrez AY (2024) A systematic framework for understanding the microbiome in human health and disease: from basic principles to clinical translation. Signal Transduct Target Ther 9:237. https://doi.org/10.1038/s41392-024-01946-6 PubMed DOI PMC
Ma H, Wang K, Jiang C (2025) Microbiota-derived bile acid metabolic enzymes and their impacts on host health. Cell Insight 4:100265. https://doi.org/10.1016/j.cellin.2025.100265 PubMed DOI PMC
Mairi A, Hamza L, Touati A (2025) Artificial intelligence and its application in clinical microbiology. Expert Rev Anti-Infect Ther 23:469–490. https://doi.org/10.1080/14787210.2025.2484284 PubMed DOI
Mann ER, Lam YK, Uhlig HH (2024) Short-chain fatty acids: linking diet, the Microbiome and immunity. Nat Rev Immunol 24:577–595. https://doi.org/10.1038/s41577-024-01014-8 PubMed DOI
Medenica S, Spoltore ME, Ormazabal P, Marina LV, Sojat AS, Faggiano A, Gnessi L, Mazzilli R, Watanabe M (2023) Female infertility in the era of obesity: the clash of two pandemics or inevitable consequence? Clin Endocrinol (Oxf) 98:141–152. https://doi.org/10.1111/cen.14785 PubMed DOI
Mishra S, Jain S, Agadzi B, Yadav H (2025) A cascade of microbiota-leaky gut-inflammation- is it a key player in metabolic disorders? Curr Obes Rep 14:32. https://doi.org/10.1007/s13679-025-00624-0 PubMed DOI
Moustakli E, Stavros S, Katopodis P, Potiris A, Drakakis P, Dafopoulos S, Zachariou A, Dafopoulos K, Zikopoulos K, Zikopoulos A (2025) Gut microbiome dysbiosis and its impact on reproductive health: mechanisms and clinical applications. Metabolites 15:390. https://doi.org/10.3390/metabo15060390 PubMed DOI PMC
Negroni MA, Segers F, Vogelweith F, Foitzik S (2020) Immune challenge reduces gut microbial diversity and triggers fertility-dependent gene expression changes in a social insect. BMC Genomics 21:816. https://doi.org/10.1186/s12864-020-07191-9 PubMed DOI PMC
Nie Q, Luo X, Wang K, Ding Y, Jia S, Zhao Q, Li M, Zhang J, Zhuo Y, Lin J, Guo C, Zhang Z, Liu H, Zeng G, You J, Sun L, Lu H, Ma M, Jia Y, Zheng M-H, Pang Y, Qiao J, Jiang C (2024) Gut symbionts alleviate MASH through a secondary bile acid biosynthetic pathway. Cell 187:2717–2734.e2733. https://doi.org/10.1016/j.cell.2024.03.034 PubMed DOI
Park JC, Chang L, Kwon HK, Im SH (2025) Beyond the gut: decoding the gut-immune-brain axis in health and disease. Cell Mol Immunol. https://doi.org/10.1038/s41423-025-01333-3 PubMed DOI PMC
Patel N, Patel N, Pal S, Nathani N, Pandit R, Patel M, Patel N, Joshi C, Parekh B (2022) Distinct gut and vaginal microbiota profile in women with recurrent implantation failure and unexplained infertility. BMC Womens Health 22:113. https://doi.org/10.1186/s12905-022-01681-6 PubMed DOI PMC
Pérez-Prieto I, Rodríguez-Santisteban A, Altmäe S (2024) Beyond the reproductive tract: gut microbiome and its influence on gynecological health. Curr Opin Obstet Gynecol 36:134–147. https://doi.org/10.1097/01.gco.0001016536.06312.72 PubMed DOI
Puig-Castellví F, Pacheco-Tapia R, Deslande M, Jia M, Andrikopoulos P, Chechi K, Bonnefond A, Froguel P, Dumas M-E (2023) Advances in the integration of metabolomics and metagenomics for human gut microbiome and their clinical applications. TrAC Trend Anal Chem 167:117248. https://doi.org/10.1016/j.trac.2023.117248 DOI
Qin R, Tian G, Liu J, Cao L (2022) The gut microbiota and endometriosis: from pathogenesis to diagnosis and treatment. Front Cell Infect Microbiol 12:1069557. https://doi.org/10.3389/fcimb.2022.1069557 PubMed DOI PMC
Ramadan YN, Alqifari SF, Alshehri K, Alhowiti A, Mirghani H, Alrasheed T, Aljohani F, Alghamdi A, Hetta HF (2025) Microbiome gut-brain-axis: impact on brain development and mental health. Mol Neurobiol 62:10813–10833. https://doi.org/10.1007/s12035-025-04846-0 PubMed DOI PMC
Rokhsartalab Azar P, Karimi S, Haghtalab A, Taram S, Hejazi M, Sadeghpour S, Pashaei MR, Ghasemnejad-Berenji H, Taheri-Anganeh M (2024) The role of the endometrial microbiome in embryo implantation and recurrent implantation failure. J Reprod Immunol 162:104192. https://doi.org/10.1016/j.jri.2024.104192 PubMed DOI
Salliss ME, Farland LV, Mahnert ND, Herbst-Kralovetz MM (2021) The role of gut and genital microbiota and the estrobolome in endometriosis, infertility and chronic pelvic pain. Hum Reprod Update 28:92–131. https://doi.org/10.1093/humupd/dmab035 PubMed DOI
Sengupta P, Dutta S, Liew F, Samrot A, Dasgupta S, Rajput MA, Slama P, Kolesarova A, Roychoudhury S (2024) Reproductomics: exploring the applications and advancements of computational tools. Physiol Res 73:687–702. https://doi.org/10.33549/physiolres.935389 PubMed DOI PMC
Sharma A, Sharma G, Im SH (2025) Gut microbiota in regulatory T cell generation and function: mechanisms and health implications. Gut Microbes 17:2516702. https://doi.org/10.1080/19490976.2025.2516702 PubMed DOI PMC
Shen L, Wang W, Hou W, Jiang C, Yuan Y, Hu L, Shang A (2022) The function and mechanism of action of uterine microecology in pregnancy immunity and its complications. Front Cell Infect Microbiol 12:1025714. https://doi.org/10.3389/fcimb.2022.1025714 PubMed DOI
Sheng M, Rosche C, Al-Gharaibeh M, Bullington LS, Callaway RM, Clark T, Cleveland CC, Duan W, Flory SL, Khasa DP, Klironomos JN, McLeod M, Okada M, Pal RW, Shah MA, Lekberg Y (2022) Acquisition and evolution of enhanced mutualism-an underappreciated mechanism for invasive success? ISME J 16:2467–2478. https://doi.org/10.1038/s41396-022-01293-w PubMed DOI PMC
Sonowal R, Swimm AI, Cingolani F, Parulekar N, Cleverley TL, Sahoo A, Ranawade A, Chaudhuri D, Mocarski ES, Koehler H, Nitsche K, Mesiano S, Kalman D (2023) A microbiota and dietary metabolite integrates DNA repair and cell death to regulate embryo viability and aneuploidy during aging. Sci Adv 9:eade8653. https://doi.org/10.1126/sciadv.ade8653 PubMed DOI PMC
Sun Y, Gao S, Ye C, Zhao W (2023) Gut microbiota dysbiosis in polycystic ovary syndrome: mechanisms of progression and clinical applications. Front Cell Infect Microbiol 13:1142041. https://doi.org/10.3389/fcimb.2023.1142041 PubMed DOI PMC
Tegegne HA, Savidge TC (2025) Leveraging human microbiomes for disease prediction and treatment. Trends Pharmacol Sci 46:32–44. https://doi.org/10.1016/j.tips.2024.11.007 PubMed DOI
Timmis K, Hallsworth JE, McGenity TJ, Armstrong R, Colom MF, Karahan ZC, Chavarría M, Bernal P, Boyd ES, Ramos JL, Kaltenpoth M, Pruzzo C, Clarke G, López-Garcia P, Yakimov MM, Perlmutter J, Greening C, Eloe-Fadrosh E, Verstraete W, Nunes OC, Kotsyurbenko O, Nikel PI, Scavone P, Häggblom MM, Lavigne R, Le Roux F, Timmis JK, Parro V, Michán C, García JL, Casadevall A, Payne SM, Frey J, Koren O, Prosser JI, Lahti L, Lal R, Anand S, Sood U, Offre P, Bryce CC, Mswaka AY, Jores J, Kaçar B, Blank LM, Maaßen N, Pope PB, Banciu HL, Armitage J, Lee SY, Wang F, Makhalanyane TP, Gilbert JA, Wood TK, Vasiljevic B, Soberón M, Udaondo Z, Rojo F, Tamang JP, Giraud T, Ropars J, Ezeji T, Müller V, Danbara H, Averhoff B, Sessitsch A, Partida-Martínez LP, Huang W, Molin S, Junier P, Amils R, Wu XL, Ron E, Erten H, de Martinis ECP, Rapoport A, Öpik M, Pokatong WDR, Stairs C, Amoozegar MA, Serna JG (2024) A concept for international societally relevant microbiology education and microbiology knowledge promulgation in society. Microb Biotechnol 17:e14456. https://doi.org/10.1111/1751-7915.14456 PubMed DOI PMC
Tumbarski Y, Peykova-Shapkova I, Ivanova M, Cholakov R, Dutkiewicz A, Grzymajło K (2025) Characterization and selection of Lactobacillus strains with potential probiotic applications. Appl Sci. https://doi.org/10.3390/app15062902 DOI
Vacca M, Calabrese FM, Loperfido F, Maccarini B, Cerbo RM, Sommella E, Salviati E, Voto L, De Angelis M, Ceccarelli G, Di Napoli I, Raspini B, Porri D, Civardi E, Garofoli F, Campiglia P, Cena H, De Giuseppe R (2024) Maternal exposure to endocrine-disrupting chemicals: analysis of their impact on infant gut microbiota composition. Biomedicines 12:234. https://doi.org/10.3390/biomedicines12010234 PubMed DOI PMC
Vujkovic-Cvijin I, Sklar J, Jiang L, Natarajan L, Knight R, Belkaid Y (2020) Host variables confound gut microbiota studies of human disease. Nature 587:448–454. https://doi.org/10.1038/s41586-020-2881-9 PubMed DOI PMC
Wang J, Gao Y, Ren S, Li J, Chen S, Feng J, He B, Zhou Y, Xuan R (2024) Gut microbiota-derived trimethylamine N-Oxide: a novel target for the treatment of preeclampsia. Gut Microbes 16:2311888. https://doi.org/10.1080/19490976.2024.2311888 PubMed DOI PMC
Wu J, Zhuo Y, Liu Y, Chen Y, Ning Y, Yao J (2021) Association between premature ovarian insufficiency and gut microbiota. BMC Pregnancy Childbirth 21:418. https://doi.org/10.1186/s12884-021-03855-w PubMed DOI PMC
Xing PY, Agrawal R, Jayaraman A, Martin KA, Zhang GW, Ngu EL, Faylon LE, Kjelleberg S, Rice SA, Wang Y, Bello AT, Holmes E, Nicholson JK, Whiley L, Pettersson S (2024) Microbial indoles: key regulators of organ growth and metabolic function. Microorganisms 12:719. https://doi.org/10.3390/microorganisms12040719 PubMed DOI PMC
Xu L, Zhang Q, Dou X, Wang Y, Wang J, Zhou Y, Liu X, Li J (2022) Fecal microbiota transplantation from young donor mice improves ovarian function in aged mice. J Genet Genomics 49:1042–1052. https://doi.org/10.1016/j.jgg.2022.05.006 PubMed DOI
Xu H, Zhang S, Zhang B, Jiang N, Xu Y, Chen X, Han L (2025) Vaginal colonization of Lactobacilli: mechanism and function. Microb Pathog 198:107141. https://doi.org/10.1016/j.micpath.2024.107141 PubMed DOI
Yan J, Zhang X, Zhu K, Yu M, Liu Q, De Felici M, Zhang T, Wang J, Shen W (2024) Sleep deprivation causes gut dysbiosis impacting on systemic metabolomics leading to premature ovarian insufficiency in adolescent mice. Theranostics 14:3760–3776. https://doi.org/10.7150/thno.95197 PubMed DOI PMC
Yuan X, Gao J, Bajinka O, Feng X (2025) Vaginal microbiome and recurrent pregnancy loss. Infect Immun 93:e0005325. https://doi.org/10.1128/iai.00053-25 PubMed DOI
Yurtdaş G, Akdevelioğlu Y (2020) A new approach to polycystic ovary syndrome: the gut microbiota. J Am Coll Nutr 39:371–382. https://doi.org/10.1080/07315724.2019.1657515 PubMed DOI
Zha X, Elsabagh M, Zheng Y, Zhang B, Wang H, Bai Y, Zhao J, Wang M, Zhang H (2024) Impact of bisphenol a exposure on maternal gut microbial homeostasis, placental function, and fetal development during pregnancy. Reprod Toxicol 129:108677. https://doi.org/10.1016/j.reprotox.2024.108677 PubMed DOI
Zhang Y, Wang X, Lin J, Liu J, Wang K, Nie Q, Ye C, Sun L, Ma Y, Qu R, Mao Y, Zhang X, Lu H, Xia P, Zhao D, Wang G, Zhang Z, Fu W, Jiang C, Pang Y (2024) A microbial metabolite inhibits the HIF-2α-ceramide pathway to mediate the beneficial effects of time-restricted feeding on MASH. Cell Metab 36:1823–1838.e1826. https://doi.org/10.1016/j.cmet.2024.07.004 PubMed DOI
Zhang X, Gao J, Yang L, Feng X, Yuan X (2025) Recurrent pregnancy loss: risk factors and predictive modeling approaches. J Matern Fetal Neonatal Med 38:2440043. https://doi.org/10.1080/14767058.2024.2440043 PubMed DOI
Zhou Y, Wei Z, Tan J, Sun H, Jiang H, Gao Y, Zhang H, Schroyen M (2023) Alginate oligosaccharide extends the service lifespan by improving the sperm metabolome and gut microbiota in an aging duroc boars model. Front Cell Infect Microbiol 13:1308484. https://doi.org/10.3389/fcimb.2023.1308484 PubMed DOI PMC
Zommiti M, Feuilloley MGJ (2025) Sex hormones–gut microbiome axis: an update of what is known so far. Curr Opin Endocr Metab Res 38:100571. https://doi.org/10.1016/j.coemr.2025.100571 DOI