Can Aquatic Plant Turions Serve as a Source of Arabinogalactans? Immunohistochemical Detection of AGPs in Turion Cells

. 2025 Dec 07 ; 30 (24) : . [epub] 20251207

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41471715

Turions (overwintering buds) as modified shoot apices constitute specialized vegetative structures that enable many aquatic vascular plants to withstand adverse environmental conditions such as low temperature, desiccation, or limited light availability. Turions serve as major storage sites for organic reserves, including sugars, proteins, fatty acids, and polyamines. Owing to their high content of energy-rich and nutritionally valuable compounds, turions represent a potential renewable resource for applications in biofuel production, animal feed, and the food industry. We investigated whether arabinogalactan proteins (AGPs) occur in aquatic plant turions and localized these compounds within specific tissues or cell types. This work was designed to evaluate whether stress-resistant storage organs may constitute a practical reservoir of AGPs. Considering the central role of AGPs in plant responses to abiotic stress, we hypothesized that turions, which routinely encounter cold, anoxia, and intermittent dehydration, would exhibit particularly high AGP accumulation. Mature turions of aquatic species (Aldrovanda vesiculosa, Utricularia australis, U. intermedia, and Caldesia parnassifolia) were used. Immunofluorescent labeling with AGP-specific antibodies (JIM8, JIM13, JIM14, LM2, MAC207) and confocal laser scanning microscopy were employed. In Aldrovanda vesiculosa and Caldesia parnassifolia, AGP epitopes were abundantly presented in cytoplasmic compartments. AGP epitopes occurred in secretory structures in turions of all examined species (trichomes of Aldrovanda and Utricularia, secretory ducts of Caldesia). In analyzing turions of four different species, we identified Aldrovanda vesiculosa turions as the most promising potential source of AGPs, also noting their high reserve potential for use in animal feed or the food industry.

Zobrazit více v PubMed

Sculthorpe C.D. The Biology of Aquatic Vascular Plants. Edward Arnold; London, UK: 1967.

Maier R. Das Austreiben der Turionen von Utricularia vulgaris L. nach verschiedenen langen Perioden der Austrocknung. Flora. 1973;162:269–283. doi: 10.1016/S0367-2530(17)31707-3. DOI

Maier R. Wirkung von Trockenheit auf den Austrieb der Turionen von Utricularia L. Österr. Bot. Z. 1973;122:15–20. doi: 10.1007/BF01373122. DOI

Winston R.D., Gorham P.R. Turions and dormancy states in Utricularia vulgaris. Can. J. Bot. 1979;57:2740–2749. doi: 10.1139/b79-324. DOI

Adamec L. Ecophysiological characteristics of turions of aquatic plants: A review. Aquat. Bot. 2018;148:64–77. doi: 10.1016/j.aquabot.2018.04.011. DOI

Ziegler P. The Developmental Cycle of Spirodela polyrhiza Turions: A Model for Turion-Based Duckweed Overwintering? Plants. 2024;13:2993. doi: 10.3390/plants13212993. PubMed DOI PMC

Figuerola J., Green A.J. Dispersal of aquatic organisms by waterbirds: A review of past research and priorities for future studies. Freshw. Biol. 2002;47:483–494. doi: 10.1046/j.1365-2427.2002.00829.x. DOI

Green A.J., Lovas-Kiss Á., Reynolds C., Sebastián-González E., Silva G.G., van Leeuwen C.H., Wilkinson D.M. Dispersal of aquatic and terrestrial organisms by waterbirds: A review of current knowledge and future priorities. Freshw. Biol. 2023;68:173–190. doi: 10.1111/fwb.14038. DOI

Adamec L. Dark respiration and photosynthesis of dormant and sprouting turions of aquatic plants. Fundam. Appl. Limnol. 2011;179:151–158. doi: 10.1127/1863-9135/2011/0179-0151. DOI

Reimann R., Hippler M., Machelett B., Appenroth K.-J. Light induces phosphorylation of glucan water dikinase, which precedes starch degradation in turions of the duckweed Spirodela polyrhiza. Plant Physiol. 2004;135:121–128. doi: 10.1104/pp.103.036236. PubMed DOI PMC

Appenroth K.-J., Ziegler P. Light-induced degradation of storage starch in turions of Spirodela polyrhiza depends on nitrate. Plant Cell Environ. 2008;31:1460–1469. doi: 10.1111/j.1365-3040.2008.01855.x. PubMed DOI

Appenroth K.J., Keresztes Á., Krzysztofowicz E., Gabrys H. Light-induced degradation of starch granules in turions of Spirodela polyrhiza studied by electron microscopy. Plant Cell Physiol. 2011;52:384–391. doi: 10.1093/pcp/pcq199. PubMed DOI

Płachno B.J., Adamec L., Kozieradzka-Kiszkurno M., Świątek P., Kamińska I. Cytochemical and ultrastructural aspects of aquatic carnivorous plant turions. Protoplasma. 2014;251:1449–1454. doi: 10.1007/s00709-014-0646-8. PubMed DOI PMC

Adamec L., Kučerová A., Janeček Š. Mineral nutrients, photosynthetic pigments and storage carbohydrates in turions of 21 aquatic plant species. Aquat. Bot. 2020;165:103238. doi: 10.1016/j.aquabot.2020.103238. DOI

Harada T., Ishizawa K. Starch degradation and sucrose metabolism during anaerobic growth of pondweed (Potamogeton distinctus A. Benn.) turions. Plant Soil. 2003;253:125–135. doi: 10.1023/A:1024585015697. DOI

Adamec L. Respiration of turions and winter apices in aquatic carnivorous plants. Biologia. 2008;63:515–520. doi: 10.2478/s11756-008-0073-4. DOI

Weber J.A., Nooden L.D. The causes of sinking and floating in turions of Myriophyllum verticillatum. Aquat. Bot. 2005;83:219–226. doi: 10.1016/j.aquabot.2005.06.008. DOI

Xu Y.L., Fang Y., Li Q., Yang G.L., Guo L., Chen G.K., Tan L., He K.-Z., Jin Y.-L., Zhao H. Turion, an innovative duckweed-based starch production system for economical biofuel manufacture. Ind. Crops Prod. 2018;124:108–114. doi: 10.1016/j.indcrop.2018.07.061. DOI

Villanueva V.R., Simola L.K., Mardon M. Polyamines in turions and young plants of Hydrocharis morsus-ranae and Utricularia intermedia. Phytochemistry. 1985;24:171–172. doi: 10.1016/S0031-9422(00)80829-8. DOI

Strzemski M., Adamec L., Dresler S., Mazurek B., Dubaj K., Stolarczyk P., Feldo M., Płachno B.J. Shoots and Turions of Aquatic Plants as a Source of Fatty Acids. Molecules. 2024;29:2062. doi: 10.3390/molecules29092062. PubMed DOI PMC

Genevès L., Vintejoux C. Sur la présence et l’organisation en un réseau tridimensionnel d’inclusions de nature protéique dans les noyaux cellulaires des hibernacles, d’Utricularia neglecta L. (Lentibulariacées) C. R. Acad. Sci. Paris D. 1967;264:2750–2753.

Vintejoux C. Inclusions intranucléaires d’Utricularia neglecta L. (Lentibulariacées) Ann. Sci. Nat. Bot. 1984;6:203–205.

Silva J., Ferraz R., Dupree P., Showalter A.M., Coimbra S. Three decades of advances in arabinogalactan-protein biosynthesis. Front. Plant Sci. 2020;11:610377. doi: 10.3389/fpls.2020.610377. PubMed DOI PMC

Showalter A.M. Arabinogalactan-proteins: Structure, expression and function. Cell. Mol. Life Sci. 2001;58:1399–1417. doi: 10.1007/PL00000784. PubMed DOI PMC

Seifert G.J., Roberts K. The biology of arabinogalactan proteins. Annu. Rev. Plant Biol. 2007;58:137–161. doi: 10.1146/annurev.arplant.58.032806.103801. PubMed DOI

Showalter A.M., Basu D. Extensin and arabinogalactan-protein biosynthesis: Glycosyltransferases, research challenges, and biosensors. Front. Plant Sci. 2016;7:814. doi: 10.3389/fpls.2016.00814. PubMed DOI PMC

Willats W.G., Knox J.P. A role for arabinogalactan-proteins in plant cell expansion: Evidence from studies on the interaction of β-glucosyl Yariv reagent with seedlings of Arabidopsis thaliana. Plant J. 1996;9:919–925. doi: 10.1046/j.1365-313X.1996.9060919.x. PubMed DOI

Ellis M., Egelund J., Schultz C.J., Bacic A. Arabinogalactan-proteins: Key regulators at the cell surface? Plant Physiol. 2010;153:403–419. doi: 10.1104/pp.110.156000. PubMed DOI PMC

Pereira A.M., Pereira L.G., Coimbra S. Arabinogalactan proteins: Rising attention from plant biologists. Plant Reprod. 2015;28:1–15. doi: 10.1007/s00497-015-0254-6. PubMed DOI

Lamport D.T.A., Tan L., Held M., Kieliszewski M.J. Pollen tube growth and guidance: Occam’s razor sharpened on a molecular arabinogalactan glycoprotein Rosetta Stone. New Phytol. 2018;217:491–500. doi: 10.1111/nph.14845. PubMed DOI

Ma Y., Johnson K. Arabinogalactan proteins—Multifunctional glycoproteins of the plant cell wall. Cell Surf. 2023;9:100102. doi: 10.1016/j.tcsw.2023.100102. PubMed DOI PMC

Cheung A.Y., Wu H.M. Arabinogalactan proteins in plant sexual reproduction. Protoplasma. 1999;208:87–98. doi: 10.1007/BF01279078. DOI

Coimbra S., Almeida J., Junqueira V., Costa M.L., Pereira L.G. Arabinogalactan proteins as molecular markers in Arabidopsis thaliana sexual reproduction. J. Exp. Bot. 2007;58:4027–4035. doi: 10.1093/jxb/erm259. PubMed DOI

Leszczuk A., Szczuka E., Zdunek A. Arabinogalactan proteins: Distribution during the development of male and female gametophytes. Plant Physiol. Biochem. 2019;135:9–18. doi: 10.1016/j.plaphy.2018.11.023. PubMed DOI

Lopes A.L., Moreira D., Pereira A.M., Ferraz R., Mendes S., Pereira L.G., Colombo L., Coimbra S. AGPs as molecular determinants of reproductive development. Ann. Bot. 2023;131:827–838. doi: 10.1093/aob/mcad046. PubMed DOI PMC

Silva J., Moreira D., Ferreira M.J., Pereira A.M., Pereira L.G., Coimbra S. Arabinogalactan proteins: Decoding the multifaceted roles in plant reproduction. Curr. Opin. Plant Biol. 2025;88:102800. doi: 10.1016/j.pbi.2025.102800. PubMed DOI

Kapusta M., Narajczyk M., Płachno B.J. Arabinogalactan Proteins Mark the Generative Cell–Vegetative Cell Interface in Monocotyledonous Pollen Grains. Cells. 2025;14:1549. doi: 10.3390/cells14191549. PubMed DOI PMC

Peng Q., Song J., Lv X., Wang Z., Huang L., Du Y. Structural characterization of an arabinogalactan-protein from the fruits of Lycium ruthenicum. J. Agric. Food Chem. 2012;60:9424–9429. doi: 10.1021/jf302619c. PubMed DOI

Leszczuk A., Chylińska M., Zięba E., Skrzypek T., Szczuka E., Zdunek A. Structural network of arabinogalactan proteins (AGPs) and pectins in apple fruit during ripening and senescence processes. Plant Sci. 2018;275:36–48. doi: 10.1016/j.plantsci.2018.07.019. PubMed DOI

Tsumuraya Y., Ozeki E., Ooki Y., Yoshimi Y., Hashizume K., Kotake T. Properties of arabinogalactan-proteins in European pear (Pyrus communis L.) fruits. Carbohydr. Res. 2019;485:107816. doi: 10.1016/j.carres.2019.107816. PubMed DOI

Leszczuk A., Kalaitzis P., Blazakis K.N., Zdunek A. The role of arabinogalactan proteins (AGPs) in fruit ripening—A review. Hortic. Res. 2020;7:176. doi: 10.1038/s41438-020-00397-8. PubMed DOI PMC

Harris S., Powers S., Monteagudo-Mera A., Kosik O., Lovegrove A., Shewry P., Charalampopoulos D. Determination of the prebiotic activity of wheat arabinogalactan peptide (AGP) using batch culture fermentation. Eur. J. Nutr. 2020;59:297–307. doi: 10.1007/s00394-019-01908-7. PubMed DOI PMC

Saeidy S., Petera B., Pierre G., Fenoradosoa T.A., Djomdi D., Michaud P., Delattre C. Plants arabinogalactans: From structures to physicochemical and biological properties. Biotechnol. Adv. 2021;53:107771. doi: 10.1016/j.biotechadv.2021.107771. PubMed DOI

Wang H., Shi S., Bao B., Li X., Wang S. Structure characterization of an arabinogalactan from green tea and its anti-diabetic effect. Carbohydr. Polym. 2015;124:98–108. doi: 10.1016/j.carbpol.2015.01.070. PubMed DOI

Tang S., Wang T., Huang C., Lai C., Fan Y., Yong Q. Sulfated modification of arabinogalactans from Larix principis-rupprechtii and their antitumor activities. Carbohydr. Polym. 2015;215:207–212. doi: 10.1016/j.carbpol.2019.03.069. PubMed DOI

Dai J., Zhou Z., Chen L., Cao S., Luo K., Zhang J., Dinnyés A., Wang D., Sun Q. A novel arabinogalactan extracted from Epiphyllum oxypetalum (DC.) Haw improves the immunity and gut microbiota in cyclophosphamide-induced immunosuppressed mice. eFood. 2024;5:e70002. doi: 10.1002/efd2.70002. DOI

Dai K.Y., Ding W.J., Li Z.T., Liu C., Ji H.Y., Liu A.J. Comparison of structural characteristics and antitumor activity of two alkali-extracted peach gum arabinogalactans. Int. J. Biol. Macromol. 2024;279:135407. doi: 10.1016/j.ijbiomac.2024.135407. PubMed DOI

Li N., Xu T., Wu Z., Zhao Y., Ruan M., Xu H., Chen W., Wang H., Wang S., Wang Y., et al. Arabinogalactan from Cynanchum atratum induces tolerogenic dendritic cells in gut to restrain autoimmune response and alleviate collagen-induced arthritis in mice. Phytomedicine. 2025;136:156269. doi: 10.1016/j.phymed.2024.156269. PubMed DOI

Liu Z., Persson S., Sánchez-Rodríguez C. At the Border: The Plasma Membrane–Cell Wall Continuum. J. Exp. Bot. 2015;66:1553–1563. doi: 10.1093/jxb/erv019. PubMed DOI

Rose J.K.C., Lee S.J. Straying off the Highway: Trafficking of Secreted Plant Proteins and Complexity in the Plant Cell Wall Proteome. Plant Physiol. 2010;153:433–436. doi: 10.1104/pp.110.154872. PubMed DOI PMC

Hijazi M., Velasquez S.M., Jamet E., Estevez J.M., Albenne C. An Update on Post-Translational Modifications of Hydroxyproline-Rich Glycoproteins: Toward a Model Highlighting Their Contribution to Plant Cell Wall Architecture. Front. Plant Sci. 2014;5:395. doi: 10.3389/fpls.2014.00395. PubMed DOI PMC

Nibbering P., Petersen B.L., Motawia M.S., Jørgensen B., Ulvskov P., Niittylä T. Golgi-Localized Exo-β1,3-Galactosidases Involved in Cell Expansion and Root Growth in Arabidopsis. J. Biol. Chem. 2020;295:10581–10592. doi: 10.1074/jbc.RA120.013878. PubMed DOI PMC

Gawecki R., Sala K., Kurczyńska E.U., Świątek P., Płachno B.J. Immunodetection of some pectic, arabinogalactan proteins and hemicellulose epitopes in the micropylar transmitting tissue of apomictic dandelions (Taraxacum, Asteraceae, Lactuceae) Protoplasma. 2017;254:657–668. doi: 10.1007/s00709-016-0980-0. PubMed DOI PMC

Potocka I., Godel K., Dobrowolska I., Kurczyńska E.U. Spatio-temporal localization of selected pectic and arabinogalactan protein epitopes and the ultrastructural characteristics of explant cells that accompany the changes in the cell fate during somatic embryogenesis in Arabidopsis thaliana. Plant Physiol. Biochem. 2018;127:573–589. doi: 10.1016/j.plaphy.2018.04.032. PubMed DOI

Šamaj J., Šamajová O., Peters M., Baluška F., Lichtscheidl I., Knox J.P., Volkmann D. Immunolocalization of LM2 Arabinogalactan Protein Epitope Associated with Endomembranes of Plant Cells. Protoplasma. 2000;212:186–196. doi: 10.1007/BF01282919. DOI

Leszczuk A., Szczuka E. Arabinogalactan Proteins: Immunolocalization in the Developing Ovary of a Facultative Apomict Fragaria × ananassa (Duch.) Plant Physiol. Biochem. 2018;123:24–33. doi: 10.1016/j.plaphy.2017.12.003. PubMed DOI

Leszczuk A., Wydrych J., Szczuka E. The Occurrence of Calcium Oxalate Crystals and Distribution of Arabinogalactan Proteins (AGPs) in Ovary Cells during Fragaria × ananassa (Duch.) Development. J. Plant Growth Regul. 2019;38:1028–1036. doi: 10.1007/s00344-018-09912-7. DOI

Płachno B.J., Kapusta M., Świątek P., Stolarczyk P., Kocki J. Immunodetection of Pectic Epitopes, Arabinogalactan Proteins, and Extensins in Mucilage Cells from the Ovules of Pilosella officinarum Vaill. and Taraxacum officinale Agg. (Asteraceae) Int. J. Mol. Sci. 2020;21:9642. doi: 10.3390/ijms21249642. PubMed DOI PMC

Costa M., Pereira A.M., Rudall P.J., Coimbra S. Immunolocalization of Arabinogalactan Proteins (AGPs) in Reproductive Structures of an Early-Divergent Angiosperm, Trithuria (Hydatellaceae) Ann. Bot. 2013;111:183–190. doi: 10.1093/aob/mcs256. PubMed DOI PMC

Płachno B.J., Adamec L., Świątek P., Kapusta M., Miranda V.F.O. Life in the Current: Anatomy and Morphology of Utricularia neottioides. Int. J. Mol. Sci. 2020;21:4474. doi: 10.3390/ijms21124474. PubMed DOI PMC

Płachno B.J., Kapusta M., Stolarczyk P., Feldo M., Świątek P. Cell Wall Microdomains in the External Glands of Utricularia dichotoma Traps. Int. J. Mol. Sci. 2024;25:6089. doi: 10.3390/ijms25116089. PubMed DOI PMC

Płachno B.J., Kapusta M., Stolarczyk P., Feldo M., Świątek P. Do Arabinogalactan Proteins Occur in the Transfer Cells of Utricularia dichotoma? Int. J. Mol. Sci. 2024;25:6623. doi: 10.3390/ijms25126623. PubMed DOI PMC

Płachno B.J., Kapusta M., Stolarczyk P., Wójciak M., Świątek P. Immunocytochemical Analysis of Bifid Trichomes in Aldrovanda vesiculosa L. Traps. Int. J. Mol. Sci. 2023;24:3358. doi: 10.3390/ijms24043358. PubMed DOI PMC

Płachno B.J., Kapusta M., Stolarczyk P., Świątek P., Lichtscheidl I. Differences in the Occurrence of Cell Wall Components between Distinct Cell Types in Glands of Drosophyllum lusitanicum. Int. J. Mol. Sci. 2023;24:15045. doi: 10.3390/ijms242015045. PubMed DOI PMC

Płachno B.J., Kapusta M., Stolarczyk P., Świątek P. Stellate Trichomes in Dionaea muscipula Ellis (Venus Flytrap) Traps: Structure and Functions. Int. J. Mol. Sci. 2023;24:553. doi: 10.3390/ijms24010553. PubMed DOI PMC

Płachno B.J., Kapusta M., Stolarczyk P., Feldo M., Świątek P., Miranda V.F.O. Immunocytochemical Analysis of the Wall Ingrowths in the Digestive Gland Transfer Cells in Aldrovanda vesiculosa L. (Droseraceae) Cells. 2022;11:2218. doi: 10.3390/cells11142218. PubMed DOI PMC

Płachno B.J., Kapusta M., Stolarczyk P., Świątek P. Arabinogalactan Proteins in the Digestive Glands of Dionaea muscipula J. Ellis Traps. Cells. 2022;11:586. doi: 10.3390/cells11030586. PubMed DOI PMC

McCurdy D.W., Patrick J.W., Offler C.E. Wall Ingrowth Formation in Transfer Cells: Novel Examples of Localized Wall Deposition in Plant Cells. Curr. Opin. Plant Biol. 2008;11:653–661. doi: 10.1016/j.pbi.2008.08.005. PubMed DOI

Schweingruber F.H., Kučerová A., Adamec L., Doležal J. Anatomic Atlas of Aquatic and Wetland Plant Stems. Springer Nature; Cham, Switzerland: 2020.

Leme F.M., Bento J.P.S.P., Fabiano V.S., González J.D.V., Pott V.J., Arruda R.D.C.O. New Aspects of Secretory Structures in Five Alismataceae Species: Laticifers or Ducts? Plants. 2021;10:2694. doi: 10.3390/plants10122694. PubMed DOI PMC

Michavila S., Encina A., De la Rubia A.G., Centeno M.L., García-Angulo P. An Immunohistochemical Approach to Cell Wall Polysaccharide Specialization in Maritime Pine (Pinus pinaster) Needles. Protoplasma. 2025;262:979–991. doi: 10.1007/s00709-025-02041-5. PubMed DOI PMC

Mastroberti A.A., Mariath J.E.D.A. Immunocytochemistry of the Mucilage Cells of Araucaria angustifolia (Bertol.) Kuntze (Araucariaceae) Braz. J. Bot. 2008;31:1–13. doi: 10.1590/S0100-84042008000100002. DOI

Haughn G.W., Western T.L. Arabidopsis Seed Coat Mucilage Is a Specialized Cell Wall That Can Be Used as a Model for Genetic Analysis of Plant Cell Wall Structure and Function. Front. Plant Sci. 2012;3:64. doi: 10.3389/fpls.2012.00064. PubMed DOI PMC

Ajayi O.O., Held M.A., Showalter A.M. Two β-Glucuronosyltransferases Involved in the Biosynthesis of Type II Arabinogalactans Function in Mucilage Polysaccharide Matrix Organization in Arabidopsis thaliana. BMC Plant Biol. 2021;21:245. doi: 10.1186/s12870-021-03012-7. PubMed DOI PMC

Marzec-Schmidt K., Ludwikow A., Wojciechowska N., Kasprowicz-Maluski A., Mucha J., Bagniewska-Zadworna A. Xylem Cell Wall Formation in Pioneer Roots and Stems of Populus trichocarpa (Torr. & Gray) Front. Plant Sci. 2019;10:1419. doi: 10.3389/fpls.2019.01419. PubMed DOI PMC

Michalak K.M., Wojciechowska N., Marzec-Schmidt K., Bagniewska-Zadworna A. Conserved Autophagy and Diverse Cell Wall Composition: Unifying Features of Vascular Tissues in Evolutionarily Distinct Plants. Ann. Bot. 2024;133:559–572. doi: 10.1093/aob/mcae015. PubMed DOI PMC

Marzec M., Szarejko I., Melzer M. Arabinogalactan Proteins Are Involved in Root Hair Development in Barley. J. Exp. Bot. 2015;66:1245–1257. doi: 10.1093/jxb/eru475. PubMed DOI PMC

Michalak K.M., Wojciechowska N., Kułak K., Minicka J., Jagodziński A.M., Bagniewska-Zadworna A. Is Autophagy Always a Death Sentence? A Case Study of Highly Selective Cytoplasmic Degradation during Phloemogenesis. Ann. Bot. 2025;135:681–696. doi: 10.1093/aob/mcae195. PubMed DOI PMC

Defaye J., Wong E. Structural Studies of Gum Arabic, the Exudate Polysaccharide from Acacia senegal. Carbohydr. Res. 1986;150:221–231. doi: 10.1016/0008-6215(86)80018-0. DOI

Lopez-Torrez L., Nigen M., Williams P., Doco T., Sanchez C. Acacia senegal vs. Acacia seyal Gums—Part 1: Composition and Structure of Hyperbranched Plant Exudates. Food Hydrocoll. 2015;51:41–53.

Bouaziz F., Koubaa M., Ghorbel R.E., Chaabouni S.E. Recent Advances in Rosaceae Gum Exudates: From Synthesis to Food and Non-Food Applications. Int. J. Biol. Macromol. 2016;86:535–545. doi: 10.1016/j.ijbiomac.2016.01.081. PubMed DOI

Babkin V.A., Neverova N.A., Medvedeva E.N., Fedorova T.E., Levchuk A.A. Investigation of Physicochemical Properties of Arabinogalactan of Different Larch Species. Russ. J. Bioorg. Chem. 2016;42:707–711. doi: 10.1134/S1068162016070025. DOI

Parzymies M., Pogorzelec M., Świstowska A. Optimization of Propagation of the Polish Strain of Aldrovanda vesiculosa in Tissue Culture. Biology. 2022;11:1389. doi: 10.3390/biology11101389. PubMed DOI PMC

Wójciak M., Sowa I., Strzemski M., Parzymies M., Pogorzelec M., Stolarczyk P., Płachno B.J. Phenolic Secondary Metabolites in Aldrovanda vesiculosa L. (Droseraceae) Molecules. 2025;30:3746. doi: 10.3390/molecules30183746. PubMed DOI PMC

Knox J.P., Linstead P.J., Peart J., Cooper C., Roberts K. Developmentally Regulated Epitopes of Cell Surface Arabinogalactan Proteins and Their Relation to Root Tissue Pattern Formation. Plant J. 1991;1:317–326. doi: 10.1046/j.1365-313X.1991.t01-9-00999.x. PubMed DOI

Yates E.A., Valdor J.F., Haslam S.M., Morris H.R., Dell A., Mackie W., Knox J.P. Characterization of Carbohydrate Structural Features Recognized by Anti-Arabinogalactan-Protein Monoclonal Antibodies. Glycobiology. 1996;6:131–139. doi: 10.1093/glycob/6.2.131. PubMed DOI

Smallwood M., Yates E.A., Willats W.G.T., Martin H., Knox J.P. Immunochemical Comparison of Membrane-Associated and Secreted Arabinogalactan Proteins in Rice and Carrot. Planta. 1996;198:452–459. doi: 10.1007/BF00620063. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...