Can Aquatic Plant Turions Serve as a Source of Arabinogalactans? Immunohistochemical Detection of AGPs in Turion Cells
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
41471715
PubMed Central
PMC12736068
DOI
10.3390/molecules30244689
PII: molecules30244689
Knihovny.cz E-zdroje
- Klíčová slova
- Aldrovanda, Caldesia, Utricularia, aquatic plants, arabinogalactan proteins, carnivorous plants, cell wall, turions, waterwheel plant,
- MeSH
- fyziologický stres MeSH
- galaktany * metabolismus MeSH
- imunohistochemie MeSH
- mukoproteiny * metabolismus MeSH
- rostlinné proteiny * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- arabinogalactan proteins MeSH Prohlížeč
- arabinogalactan MeSH Prohlížeč
- galaktany * MeSH
- mukoproteiny * MeSH
- rostlinné proteiny * MeSH
Turions (overwintering buds) as modified shoot apices constitute specialized vegetative structures that enable many aquatic vascular plants to withstand adverse environmental conditions such as low temperature, desiccation, or limited light availability. Turions serve as major storage sites for organic reserves, including sugars, proteins, fatty acids, and polyamines. Owing to their high content of energy-rich and nutritionally valuable compounds, turions represent a potential renewable resource for applications in biofuel production, animal feed, and the food industry. We investigated whether arabinogalactan proteins (AGPs) occur in aquatic plant turions and localized these compounds within specific tissues or cell types. This work was designed to evaluate whether stress-resistant storage organs may constitute a practical reservoir of AGPs. Considering the central role of AGPs in plant responses to abiotic stress, we hypothesized that turions, which routinely encounter cold, anoxia, and intermittent dehydration, would exhibit particularly high AGP accumulation. Mature turions of aquatic species (Aldrovanda vesiculosa, Utricularia australis, U. intermedia, and Caldesia parnassifolia) were used. Immunofluorescent labeling with AGP-specific antibodies (JIM8, JIM13, JIM14, LM2, MAC207) and confocal laser scanning microscopy were employed. In Aldrovanda vesiculosa and Caldesia parnassifolia, AGP epitopes were abundantly presented in cytoplasmic compartments. AGP epitopes occurred in secretory structures in turions of all examined species (trichomes of Aldrovanda and Utricularia, secretory ducts of Caldesia). In analyzing turions of four different species, we identified Aldrovanda vesiculosa turions as the most promising potential source of AGPs, also noting their high reserve potential for use in animal feed or the food industry.
Zobrazit více v PubMed
Sculthorpe C.D. The Biology of Aquatic Vascular Plants. Edward Arnold; London, UK: 1967.
Maier R. Das Austreiben der Turionen von Utricularia vulgaris L. nach verschiedenen langen Perioden der Austrocknung. Flora. 1973;162:269–283. doi: 10.1016/S0367-2530(17)31707-3. DOI
Maier R. Wirkung von Trockenheit auf den Austrieb der Turionen von Utricularia L. Österr. Bot. Z. 1973;122:15–20. doi: 10.1007/BF01373122. DOI
Winston R.D., Gorham P.R. Turions and dormancy states in Utricularia vulgaris. Can. J. Bot. 1979;57:2740–2749. doi: 10.1139/b79-324. DOI
Adamec L. Ecophysiological characteristics of turions of aquatic plants: A review. Aquat. Bot. 2018;148:64–77. doi: 10.1016/j.aquabot.2018.04.011. DOI
Ziegler P. The Developmental Cycle of Spirodela polyrhiza Turions: A Model for Turion-Based Duckweed Overwintering? Plants. 2024;13:2993. doi: 10.3390/plants13212993. PubMed DOI PMC
Figuerola J., Green A.J. Dispersal of aquatic organisms by waterbirds: A review of past research and priorities for future studies. Freshw. Biol. 2002;47:483–494. doi: 10.1046/j.1365-2427.2002.00829.x. DOI
Green A.J., Lovas-Kiss Á., Reynolds C., Sebastián-González E., Silva G.G., van Leeuwen C.H., Wilkinson D.M. Dispersal of aquatic and terrestrial organisms by waterbirds: A review of current knowledge and future priorities. Freshw. Biol. 2023;68:173–190. doi: 10.1111/fwb.14038. DOI
Adamec L. Dark respiration and photosynthesis of dormant and sprouting turions of aquatic plants. Fundam. Appl. Limnol. 2011;179:151–158. doi: 10.1127/1863-9135/2011/0179-0151. DOI
Reimann R., Hippler M., Machelett B., Appenroth K.-J. Light induces phosphorylation of glucan water dikinase, which precedes starch degradation in turions of the duckweed Spirodela polyrhiza. Plant Physiol. 2004;135:121–128. doi: 10.1104/pp.103.036236. PubMed DOI PMC
Appenroth K.-J., Ziegler P. Light-induced degradation of storage starch in turions of Spirodela polyrhiza depends on nitrate. Plant Cell Environ. 2008;31:1460–1469. doi: 10.1111/j.1365-3040.2008.01855.x. PubMed DOI
Appenroth K.J., Keresztes Á., Krzysztofowicz E., Gabrys H. Light-induced degradation of starch granules in turions of Spirodela polyrhiza studied by electron microscopy. Plant Cell Physiol. 2011;52:384–391. doi: 10.1093/pcp/pcq199. PubMed DOI
Płachno B.J., Adamec L., Kozieradzka-Kiszkurno M., Świątek P., Kamińska I. Cytochemical and ultrastructural aspects of aquatic carnivorous plant turions. Protoplasma. 2014;251:1449–1454. doi: 10.1007/s00709-014-0646-8. PubMed DOI PMC
Adamec L., Kučerová A., Janeček Š. Mineral nutrients, photosynthetic pigments and storage carbohydrates in turions of 21 aquatic plant species. Aquat. Bot. 2020;165:103238. doi: 10.1016/j.aquabot.2020.103238. DOI
Harada T., Ishizawa K. Starch degradation and sucrose metabolism during anaerobic growth of pondweed (Potamogeton distinctus A. Benn.) turions. Plant Soil. 2003;253:125–135. doi: 10.1023/A:1024585015697. DOI
Adamec L. Respiration of turions and winter apices in aquatic carnivorous plants. Biologia. 2008;63:515–520. doi: 10.2478/s11756-008-0073-4. DOI
Weber J.A., Nooden L.D. The causes of sinking and floating in turions of Myriophyllum verticillatum. Aquat. Bot. 2005;83:219–226. doi: 10.1016/j.aquabot.2005.06.008. DOI
Xu Y.L., Fang Y., Li Q., Yang G.L., Guo L., Chen G.K., Tan L., He K.-Z., Jin Y.-L., Zhao H. Turion, an innovative duckweed-based starch production system for economical biofuel manufacture. Ind. Crops Prod. 2018;124:108–114. doi: 10.1016/j.indcrop.2018.07.061. DOI
Villanueva V.R., Simola L.K., Mardon M. Polyamines in turions and young plants of Hydrocharis morsus-ranae and Utricularia intermedia. Phytochemistry. 1985;24:171–172. doi: 10.1016/S0031-9422(00)80829-8. DOI
Strzemski M., Adamec L., Dresler S., Mazurek B., Dubaj K., Stolarczyk P., Feldo M., Płachno B.J. Shoots and Turions of Aquatic Plants as a Source of Fatty Acids. Molecules. 2024;29:2062. doi: 10.3390/molecules29092062. PubMed DOI PMC
Genevès L., Vintejoux C. Sur la présence et l’organisation en un réseau tridimensionnel d’inclusions de nature protéique dans les noyaux cellulaires des hibernacles, d’Utricularia neglecta L. (Lentibulariacées) C. R. Acad. Sci. Paris D. 1967;264:2750–2753.
Vintejoux C. Inclusions intranucléaires d’Utricularia neglecta L. (Lentibulariacées) Ann. Sci. Nat. Bot. 1984;6:203–205.
Silva J., Ferraz R., Dupree P., Showalter A.M., Coimbra S. Three decades of advances in arabinogalactan-protein biosynthesis. Front. Plant Sci. 2020;11:610377. doi: 10.3389/fpls.2020.610377. PubMed DOI PMC
Showalter A.M. Arabinogalactan-proteins: Structure, expression and function. Cell. Mol. Life Sci. 2001;58:1399–1417. doi: 10.1007/PL00000784. PubMed DOI PMC
Seifert G.J., Roberts K. The biology of arabinogalactan proteins. Annu. Rev. Plant Biol. 2007;58:137–161. doi: 10.1146/annurev.arplant.58.032806.103801. PubMed DOI
Showalter A.M., Basu D. Extensin and arabinogalactan-protein biosynthesis: Glycosyltransferases, research challenges, and biosensors. Front. Plant Sci. 2016;7:814. doi: 10.3389/fpls.2016.00814. PubMed DOI PMC
Willats W.G., Knox J.P. A role for arabinogalactan-proteins in plant cell expansion: Evidence from studies on the interaction of β-glucosyl Yariv reagent with seedlings of Arabidopsis thaliana. Plant J. 1996;9:919–925. doi: 10.1046/j.1365-313X.1996.9060919.x. PubMed DOI
Ellis M., Egelund J., Schultz C.J., Bacic A. Arabinogalactan-proteins: Key regulators at the cell surface? Plant Physiol. 2010;153:403–419. doi: 10.1104/pp.110.156000. PubMed DOI PMC
Pereira A.M., Pereira L.G., Coimbra S. Arabinogalactan proteins: Rising attention from plant biologists. Plant Reprod. 2015;28:1–15. doi: 10.1007/s00497-015-0254-6. PubMed DOI
Lamport D.T.A., Tan L., Held M., Kieliszewski M.J. Pollen tube growth and guidance: Occam’s razor sharpened on a molecular arabinogalactan glycoprotein Rosetta Stone. New Phytol. 2018;217:491–500. doi: 10.1111/nph.14845. PubMed DOI
Ma Y., Johnson K. Arabinogalactan proteins—Multifunctional glycoproteins of the plant cell wall. Cell Surf. 2023;9:100102. doi: 10.1016/j.tcsw.2023.100102. PubMed DOI PMC
Cheung A.Y., Wu H.M. Arabinogalactan proteins in plant sexual reproduction. Protoplasma. 1999;208:87–98. doi: 10.1007/BF01279078. DOI
Coimbra S., Almeida J., Junqueira V., Costa M.L., Pereira L.G. Arabinogalactan proteins as molecular markers in Arabidopsis thaliana sexual reproduction. J. Exp. Bot. 2007;58:4027–4035. doi: 10.1093/jxb/erm259. PubMed DOI
Leszczuk A., Szczuka E., Zdunek A. Arabinogalactan proteins: Distribution during the development of male and female gametophytes. Plant Physiol. Biochem. 2019;135:9–18. doi: 10.1016/j.plaphy.2018.11.023. PubMed DOI
Lopes A.L., Moreira D., Pereira A.M., Ferraz R., Mendes S., Pereira L.G., Colombo L., Coimbra S. AGPs as molecular determinants of reproductive development. Ann. Bot. 2023;131:827–838. doi: 10.1093/aob/mcad046. PubMed DOI PMC
Silva J., Moreira D., Ferreira M.J., Pereira A.M., Pereira L.G., Coimbra S. Arabinogalactan proteins: Decoding the multifaceted roles in plant reproduction. Curr. Opin. Plant Biol. 2025;88:102800. doi: 10.1016/j.pbi.2025.102800. PubMed DOI
Kapusta M., Narajczyk M., Płachno B.J. Arabinogalactan Proteins Mark the Generative Cell–Vegetative Cell Interface in Monocotyledonous Pollen Grains. Cells. 2025;14:1549. doi: 10.3390/cells14191549. PubMed DOI PMC
Peng Q., Song J., Lv X., Wang Z., Huang L., Du Y. Structural characterization of an arabinogalactan-protein from the fruits of Lycium ruthenicum. J. Agric. Food Chem. 2012;60:9424–9429. doi: 10.1021/jf302619c. PubMed DOI
Leszczuk A., Chylińska M., Zięba E., Skrzypek T., Szczuka E., Zdunek A. Structural network of arabinogalactan proteins (AGPs) and pectins in apple fruit during ripening and senescence processes. Plant Sci. 2018;275:36–48. doi: 10.1016/j.plantsci.2018.07.019. PubMed DOI
Tsumuraya Y., Ozeki E., Ooki Y., Yoshimi Y., Hashizume K., Kotake T. Properties of arabinogalactan-proteins in European pear (Pyrus communis L.) fruits. Carbohydr. Res. 2019;485:107816. doi: 10.1016/j.carres.2019.107816. PubMed DOI
Leszczuk A., Kalaitzis P., Blazakis K.N., Zdunek A. The role of arabinogalactan proteins (AGPs) in fruit ripening—A review. Hortic. Res. 2020;7:176. doi: 10.1038/s41438-020-00397-8. PubMed DOI PMC
Harris S., Powers S., Monteagudo-Mera A., Kosik O., Lovegrove A., Shewry P., Charalampopoulos D. Determination of the prebiotic activity of wheat arabinogalactan peptide (AGP) using batch culture fermentation. Eur. J. Nutr. 2020;59:297–307. doi: 10.1007/s00394-019-01908-7. PubMed DOI PMC
Saeidy S., Petera B., Pierre G., Fenoradosoa T.A., Djomdi D., Michaud P., Delattre C. Plants arabinogalactans: From structures to physicochemical and biological properties. Biotechnol. Adv. 2021;53:107771. doi: 10.1016/j.biotechadv.2021.107771. PubMed DOI
Wang H., Shi S., Bao B., Li X., Wang S. Structure characterization of an arabinogalactan from green tea and its anti-diabetic effect. Carbohydr. Polym. 2015;124:98–108. doi: 10.1016/j.carbpol.2015.01.070. PubMed DOI
Tang S., Wang T., Huang C., Lai C., Fan Y., Yong Q. Sulfated modification of arabinogalactans from Larix principis-rupprechtii and their antitumor activities. Carbohydr. Polym. 2015;215:207–212. doi: 10.1016/j.carbpol.2019.03.069. PubMed DOI
Dai J., Zhou Z., Chen L., Cao S., Luo K., Zhang J., Dinnyés A., Wang D., Sun Q. A novel arabinogalactan extracted from Epiphyllum oxypetalum (DC.) Haw improves the immunity and gut microbiota in cyclophosphamide-induced immunosuppressed mice. eFood. 2024;5:e70002. doi: 10.1002/efd2.70002. DOI
Dai K.Y., Ding W.J., Li Z.T., Liu C., Ji H.Y., Liu A.J. Comparison of structural characteristics and antitumor activity of two alkali-extracted peach gum arabinogalactans. Int. J. Biol. Macromol. 2024;279:135407. doi: 10.1016/j.ijbiomac.2024.135407. PubMed DOI
Li N., Xu T., Wu Z., Zhao Y., Ruan M., Xu H., Chen W., Wang H., Wang S., Wang Y., et al. Arabinogalactan from Cynanchum atratum induces tolerogenic dendritic cells in gut to restrain autoimmune response and alleviate collagen-induced arthritis in mice. Phytomedicine. 2025;136:156269. doi: 10.1016/j.phymed.2024.156269. PubMed DOI
Liu Z., Persson S., Sánchez-Rodríguez C. At the Border: The Plasma Membrane–Cell Wall Continuum. J. Exp. Bot. 2015;66:1553–1563. doi: 10.1093/jxb/erv019. PubMed DOI
Rose J.K.C., Lee S.J. Straying off the Highway: Trafficking of Secreted Plant Proteins and Complexity in the Plant Cell Wall Proteome. Plant Physiol. 2010;153:433–436. doi: 10.1104/pp.110.154872. PubMed DOI PMC
Hijazi M., Velasquez S.M., Jamet E., Estevez J.M., Albenne C. An Update on Post-Translational Modifications of Hydroxyproline-Rich Glycoproteins: Toward a Model Highlighting Their Contribution to Plant Cell Wall Architecture. Front. Plant Sci. 2014;5:395. doi: 10.3389/fpls.2014.00395. PubMed DOI PMC
Nibbering P., Petersen B.L., Motawia M.S., Jørgensen B., Ulvskov P., Niittylä T. Golgi-Localized Exo-β1,3-Galactosidases Involved in Cell Expansion and Root Growth in Arabidopsis. J. Biol. Chem. 2020;295:10581–10592. doi: 10.1074/jbc.RA120.013878. PubMed DOI PMC
Gawecki R., Sala K., Kurczyńska E.U., Świątek P., Płachno B.J. Immunodetection of some pectic, arabinogalactan proteins and hemicellulose epitopes in the micropylar transmitting tissue of apomictic dandelions (Taraxacum, Asteraceae, Lactuceae) Protoplasma. 2017;254:657–668. doi: 10.1007/s00709-016-0980-0. PubMed DOI PMC
Potocka I., Godel K., Dobrowolska I., Kurczyńska E.U. Spatio-temporal localization of selected pectic and arabinogalactan protein epitopes and the ultrastructural characteristics of explant cells that accompany the changes in the cell fate during somatic embryogenesis in Arabidopsis thaliana. Plant Physiol. Biochem. 2018;127:573–589. doi: 10.1016/j.plaphy.2018.04.032. PubMed DOI
Šamaj J., Šamajová O., Peters M., Baluška F., Lichtscheidl I., Knox J.P., Volkmann D. Immunolocalization of LM2 Arabinogalactan Protein Epitope Associated with Endomembranes of Plant Cells. Protoplasma. 2000;212:186–196. doi: 10.1007/BF01282919. DOI
Leszczuk A., Szczuka E. Arabinogalactan Proteins: Immunolocalization in the Developing Ovary of a Facultative Apomict Fragaria × ananassa (Duch.) Plant Physiol. Biochem. 2018;123:24–33. doi: 10.1016/j.plaphy.2017.12.003. PubMed DOI
Leszczuk A., Wydrych J., Szczuka E. The Occurrence of Calcium Oxalate Crystals and Distribution of Arabinogalactan Proteins (AGPs) in Ovary Cells during Fragaria × ananassa (Duch.) Development. J. Plant Growth Regul. 2019;38:1028–1036. doi: 10.1007/s00344-018-09912-7. DOI
Płachno B.J., Kapusta M., Świątek P., Stolarczyk P., Kocki J. Immunodetection of Pectic Epitopes, Arabinogalactan Proteins, and Extensins in Mucilage Cells from the Ovules of Pilosella officinarum Vaill. and Taraxacum officinale Agg. (Asteraceae) Int. J. Mol. Sci. 2020;21:9642. doi: 10.3390/ijms21249642. PubMed DOI PMC
Costa M., Pereira A.M., Rudall P.J., Coimbra S. Immunolocalization of Arabinogalactan Proteins (AGPs) in Reproductive Structures of an Early-Divergent Angiosperm, Trithuria (Hydatellaceae) Ann. Bot. 2013;111:183–190. doi: 10.1093/aob/mcs256. PubMed DOI PMC
Płachno B.J., Adamec L., Świątek P., Kapusta M., Miranda V.F.O. Life in the Current: Anatomy and Morphology of Utricularia neottioides. Int. J. Mol. Sci. 2020;21:4474. doi: 10.3390/ijms21124474. PubMed DOI PMC
Płachno B.J., Kapusta M., Stolarczyk P., Feldo M., Świątek P. Cell Wall Microdomains in the External Glands of Utricularia dichotoma Traps. Int. J. Mol. Sci. 2024;25:6089. doi: 10.3390/ijms25116089. PubMed DOI PMC
Płachno B.J., Kapusta M., Stolarczyk P., Feldo M., Świątek P. Do Arabinogalactan Proteins Occur in the Transfer Cells of Utricularia dichotoma? Int. J. Mol. Sci. 2024;25:6623. doi: 10.3390/ijms25126623. PubMed DOI PMC
Płachno B.J., Kapusta M., Stolarczyk P., Wójciak M., Świątek P. Immunocytochemical Analysis of Bifid Trichomes in Aldrovanda vesiculosa L. Traps. Int. J. Mol. Sci. 2023;24:3358. doi: 10.3390/ijms24043358. PubMed DOI PMC
Płachno B.J., Kapusta M., Stolarczyk P., Świątek P., Lichtscheidl I. Differences in the Occurrence of Cell Wall Components between Distinct Cell Types in Glands of Drosophyllum lusitanicum. Int. J. Mol. Sci. 2023;24:15045. doi: 10.3390/ijms242015045. PubMed DOI PMC
Płachno B.J., Kapusta M., Stolarczyk P., Świątek P. Stellate Trichomes in Dionaea muscipula Ellis (Venus Flytrap) Traps: Structure and Functions. Int. J. Mol. Sci. 2023;24:553. doi: 10.3390/ijms24010553. PubMed DOI PMC
Płachno B.J., Kapusta M., Stolarczyk P., Feldo M., Świątek P., Miranda V.F.O. Immunocytochemical Analysis of the Wall Ingrowths in the Digestive Gland Transfer Cells in Aldrovanda vesiculosa L. (Droseraceae) Cells. 2022;11:2218. doi: 10.3390/cells11142218. PubMed DOI PMC
Płachno B.J., Kapusta M., Stolarczyk P., Świątek P. Arabinogalactan Proteins in the Digestive Glands of Dionaea muscipula J. Ellis Traps. Cells. 2022;11:586. doi: 10.3390/cells11030586. PubMed DOI PMC
McCurdy D.W., Patrick J.W., Offler C.E. Wall Ingrowth Formation in Transfer Cells: Novel Examples of Localized Wall Deposition in Plant Cells. Curr. Opin. Plant Biol. 2008;11:653–661. doi: 10.1016/j.pbi.2008.08.005. PubMed DOI
Schweingruber F.H., Kučerová A., Adamec L., Doležal J. Anatomic Atlas of Aquatic and Wetland Plant Stems. Springer Nature; Cham, Switzerland: 2020.
Leme F.M., Bento J.P.S.P., Fabiano V.S., González J.D.V., Pott V.J., Arruda R.D.C.O. New Aspects of Secretory Structures in Five Alismataceae Species: Laticifers or Ducts? Plants. 2021;10:2694. doi: 10.3390/plants10122694. PubMed DOI PMC
Michavila S., Encina A., De la Rubia A.G., Centeno M.L., García-Angulo P. An Immunohistochemical Approach to Cell Wall Polysaccharide Specialization in Maritime Pine (Pinus pinaster) Needles. Protoplasma. 2025;262:979–991. doi: 10.1007/s00709-025-02041-5. PubMed DOI PMC
Mastroberti A.A., Mariath J.E.D.A. Immunocytochemistry of the Mucilage Cells of Araucaria angustifolia (Bertol.) Kuntze (Araucariaceae) Braz. J. Bot. 2008;31:1–13. doi: 10.1590/S0100-84042008000100002. DOI
Haughn G.W., Western T.L. Arabidopsis Seed Coat Mucilage Is a Specialized Cell Wall That Can Be Used as a Model for Genetic Analysis of Plant Cell Wall Structure and Function. Front. Plant Sci. 2012;3:64. doi: 10.3389/fpls.2012.00064. PubMed DOI PMC
Ajayi O.O., Held M.A., Showalter A.M. Two β-Glucuronosyltransferases Involved in the Biosynthesis of Type II Arabinogalactans Function in Mucilage Polysaccharide Matrix Organization in Arabidopsis thaliana. BMC Plant Biol. 2021;21:245. doi: 10.1186/s12870-021-03012-7. PubMed DOI PMC
Marzec-Schmidt K., Ludwikow A., Wojciechowska N., Kasprowicz-Maluski A., Mucha J., Bagniewska-Zadworna A. Xylem Cell Wall Formation in Pioneer Roots and Stems of Populus trichocarpa (Torr. & Gray) Front. Plant Sci. 2019;10:1419. doi: 10.3389/fpls.2019.01419. PubMed DOI PMC
Michalak K.M., Wojciechowska N., Marzec-Schmidt K., Bagniewska-Zadworna A. Conserved Autophagy and Diverse Cell Wall Composition: Unifying Features of Vascular Tissues in Evolutionarily Distinct Plants. Ann. Bot. 2024;133:559–572. doi: 10.1093/aob/mcae015. PubMed DOI PMC
Marzec M., Szarejko I., Melzer M. Arabinogalactan Proteins Are Involved in Root Hair Development in Barley. J. Exp. Bot. 2015;66:1245–1257. doi: 10.1093/jxb/eru475. PubMed DOI PMC
Michalak K.M., Wojciechowska N., Kułak K., Minicka J., Jagodziński A.M., Bagniewska-Zadworna A. Is Autophagy Always a Death Sentence? A Case Study of Highly Selective Cytoplasmic Degradation during Phloemogenesis. Ann. Bot. 2025;135:681–696. doi: 10.1093/aob/mcae195. PubMed DOI PMC
Defaye J., Wong E. Structural Studies of Gum Arabic, the Exudate Polysaccharide from Acacia senegal. Carbohydr. Res. 1986;150:221–231. doi: 10.1016/0008-6215(86)80018-0. DOI
Lopez-Torrez L., Nigen M., Williams P., Doco T., Sanchez C. Acacia senegal vs. Acacia seyal Gums—Part 1: Composition and Structure of Hyperbranched Plant Exudates. Food Hydrocoll. 2015;51:41–53.
Bouaziz F., Koubaa M., Ghorbel R.E., Chaabouni S.E. Recent Advances in Rosaceae Gum Exudates: From Synthesis to Food and Non-Food Applications. Int. J. Biol. Macromol. 2016;86:535–545. doi: 10.1016/j.ijbiomac.2016.01.081. PubMed DOI
Babkin V.A., Neverova N.A., Medvedeva E.N., Fedorova T.E., Levchuk A.A. Investigation of Physicochemical Properties of Arabinogalactan of Different Larch Species. Russ. J. Bioorg. Chem. 2016;42:707–711. doi: 10.1134/S1068162016070025. DOI
Parzymies M., Pogorzelec M., Świstowska A. Optimization of Propagation of the Polish Strain of Aldrovanda vesiculosa in Tissue Culture. Biology. 2022;11:1389. doi: 10.3390/biology11101389. PubMed DOI PMC
Wójciak M., Sowa I., Strzemski M., Parzymies M., Pogorzelec M., Stolarczyk P., Płachno B.J. Phenolic Secondary Metabolites in Aldrovanda vesiculosa L. (Droseraceae) Molecules. 2025;30:3746. doi: 10.3390/molecules30183746. PubMed DOI PMC
Knox J.P., Linstead P.J., Peart J., Cooper C., Roberts K. Developmentally Regulated Epitopes of Cell Surface Arabinogalactan Proteins and Their Relation to Root Tissue Pattern Formation. Plant J. 1991;1:317–326. doi: 10.1046/j.1365-313X.1991.t01-9-00999.x. PubMed DOI
Yates E.A., Valdor J.F., Haslam S.M., Morris H.R., Dell A., Mackie W., Knox J.P. Characterization of Carbohydrate Structural Features Recognized by Anti-Arabinogalactan-Protein Monoclonal Antibodies. Glycobiology. 1996;6:131–139. doi: 10.1093/glycob/6.2.131. PubMed DOI
Smallwood M., Yates E.A., Willats W.G.T., Martin H., Knox J.P. Immunochemical Comparison of Membrane-Associated and Secreted Arabinogalactan Proteins in Rice and Carrot. Planta. 1996;198:452–459. doi: 10.1007/BF00620063. DOI