Claudin 1-mediated positioning of DC1 to mTECs is essential for maintenance of central tolerance
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
22-30879S
Grant Agency of the Czech Republic
206222
Wellcome Trust - United Kingdom
No. PRIMUS/21/MED/003
Charles University Grant Agency
LM2023050
Czech-BioImaging
ID:90254
e-INFRA CZ project
LM2023055
Czech Ministry of Education, Youth and Sports
CZ.02.1.01/0.0/0.0/16_019/0000785
Czech Ministry of Education, Youth and Sports
LM2023036
Czech Ministry of Education, Youth and Sports
LM2023050
Czech Ministry of Education, Youth and Sports
LL2315
Czech Ministry of Education, Youth and Sports
MR/T029765/1
Medical Research Council - United Kingdom
LX22NPO5103
National Institute of Virology and Bacteriology
No. 21-22435M
Czech Science Foundation
CZ.02.01.01/00/22_008/0004597
One Health Framework
PubMed
41481333
PubMed Central
PMC12782542
DOI
10.1084/jem.20250970
PII: 281348
Knihovny.cz E-zdroje
- MeSH
- autoantigeny imunologie MeSH
- autoimunita imunologie MeSH
- claudin-1 * metabolismus imunologie genetika MeSH
- dendritické buňky * imunologie MeSH
- imunologická tolerance * imunologie MeSH
- myši inbrední C57BL MeSH
- myši knockoutované MeSH
- myši MeSH
- prezentace antigenu imunologie MeSH
- regulační T-lymfocyty imunologie MeSH
- thymus * imunologie cytologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- autoantigeny MeSH
- claudin-1 * MeSH
- Cldn1 protein, mouse MeSH Prohlížeč
Central tolerance, which relies on the presentation of self-antigens by mTECs and DCs, prevents autoimmunity by eliminating self-reactive T cells. While mTECs produce self-antigens autonomously, DCs acquire them from mTECs via cooperative antigen transfer (CAT). We previously showed that mTEC and DC subsets exhibit preferential pairing in CAT, providing a rationale for the existence of molecular determinants underpinning this pairing and its outcome. Here, we compared the transcriptomes of CAT-experienced and CAT-inexperienced DCs and identified Claudin 1 as a molecule involved in CAT and type 1 DC (DC1) maturation. DC1-specific ablation of Claudin 1 resulted in decreased CAT to late mature DC1s and dramatically diminished DC1 maturation. These phenotypes correlated with the displacement of DC1s from mTECs and their decreased expression of MHCII pathway genes. This translated into impaired Treg selection and clonal deletion, ultimately manifesting in symptoms of multiorgan autoimmunity and shortened lifespan. Collectively, our results identify thymic DC1-derived Claudin 1 as a regulator of immune tolerance.
Advanced Comprehensive Research Organization Teikyo University Tokyo Japan
Centre d'Immunologie de Marseille Luminy Aix Marseille Universite´ Inserm CNRS Marseille France
Department of Cell Biology Faculty of Science Charles University Prague Czech Republic
Institute of Immunology and Immunotherapy University of Birmingham Birmingham UK
Zobrazit více v PubMed
Abramson, J., and Husebye E.S.. 2016. Autoimmune regulator and self-tolerance - molecular and clinical aspects. Immunol. Rev. 271:127–140. 10.1111/imr.12419 PubMed DOI
Adolph, T.E., Tomczak M.F., Niederreiter L., Ko H.-J., Böck J., Martinez-Naves E., Glickman J.N., Tschurtschenthaler M., Hartwig J., Hosomi S., et al. 2013. Paneth cells as a site of origin for intestinal inflammation. Nature. 503:272–276. 10.1038/nature12599 PubMed DOI PMC
Akiyama, T., Shimo Y., Yanai H., Qin J., Ohshima D., Maruyama Y., Asaumi Y., Kitazawa J., Takayanagi H., Penninger J.M., et al. 2008. The tumor necrosis factor family receptors RANK and CD40 cooperatively establish the thymic medullary microenvironment and self-tolerance. Immunity. 29:423–437. 10.1016/j.immuni.2008.06.015 PubMed DOI
Alawam, A.S., Cosway E.J., James K.D., Lucas B., Bacon A., Parnell S.M., White A.J., Jenkinson W.E., and Anderson G.. 2022. Failures in thymus medulla regeneration during immune recovery cause tolerance loss and prime recipients for auto-GVHD. J. Exp. Med. 219:e20211239. 10.1084/jem.20211239 PubMed DOI PMC
Anderson, M.S., and Su M.A.. 2016. AIRE expands: New roles in immune tolerance and beyond. Nat. Rev. Immunol. 16:247–258. 10.1038/nri.2016.9 PubMed DOI PMC
Ardouin, L., Luche H., Chelbi R., Carpentier S., Shawket A., Montanana Sanchis F., Santa Maria C., Grenot P., Alexandre Y., Grégoire C., et al. 2016. Broad and largely concordant molecular changes characterize tolerogenic and immunogenic dendritic cell maturation in thymus and periphery. Immunity. 45:305–318. 10.1016/j.immuni.2016.07.019 PubMed DOI
Arnold, D., Keilholz W., Schild H., Dumrese T., Stevanović S., and Rammensee H.G.. 1997. Evolutionary conserved cathepsin E substrate specificity as defined by N-terminal and C-terminal sequencing of peptide pools. Biol. Chem. 378:883–891. 10.1515/bchm.1997.378.8.883 PubMed DOI
Ashby, K.M., Vobořil M., Salgado O.C., Lee S.T., Martinez R.J., Connor C.H.O., Breed E.R., Xuan S., Roll C.R., Bachigari S., et al. 2024. Sterile production of interferons in the thymus affects T cell repertoire selection. Sci. Immunol. 9:1–15. 10.1126/sciimmunol.adp1139 PubMed DOI PMC
Barnden, M.J., Allison J., Heath W.R., and Carbone F.R.. 1998. Defective TCR expression in transgenic mice constructed using cDNA-based α- and β-chain genes under the control of heterologous regulatory elements. Immunol. Cell Biol. 76:34–40. 10.1046/J.1440-1711.1998.00709.X PubMed DOI
Bautista, J.L., Lio C.W.J., Lathrop S.K., Forbush K., Liang Y., Luo J., Rudensky A.Y., and Hsieh C.S.. 2009. Intraclonal competition limits the fate determination of regulatory T cells in the thymus. Nat. Immunol. 10:610–617. 10.1038/ni.1739 PubMed DOI PMC
Bennett, K., Levine T., Ellis J.S., Peanasky R.J., Samloff M.I., Kay J., and Chain B.M.. 1992. Antigen processing for presentation by class II major histocompatibility complex requires cleavage by cathepsin E. Eur. J. Immunol. 22:1519–1524. 10.1002/eji.1830220626 PubMed DOI
Bosteels, V., and Janssens S.. 2025. Striking a balance: New perspectives on homeostatic dendritic cell maturation. Nat. Rev. Immunol. 25:125–140. 10.1038/s41577-024-01079-5 PubMed DOI
Bosteels, V., Maréchal S., De Nolf C., Rennen S., Maelfait J., Tavernier S.J., Vetters J., Van De Velde E., Fayazpour F., Deswarte K., et al. 2023. LXR signaling controls homeostatic dendritic cell maturation. Sci. Immunol. 8:eadd3955. 10.1126/sciimmunol.add3955 PubMed DOI
Brabec, T., Schwarzer M., Kováčová K., Dobešová M., Schierová D., Březina J., Pacáková I., Šrůtková D., Ben-Nun O., Goldfarb Y., et al. 2024. Segmented filamentous bacteria-induced epithelial MHCII regulates cognate CD4+ IELs and epithelial turnover. J. Exp. Med. 221:e20230194. 10.1084/jem.20230194 PubMed DOI PMC
Brabec, T., Vobořil M., Schierová D., Valter E., Šplíchalová I., Dobeš J., Březina J., Dobešová M., Aidarova A., Jakubec M., et al. 2023. IL-17-driven induction of Paneth cell antimicrobial functions protects the host from microbiota dysbiosis and inflammation in the ileum. Mucosal Immunol. 16:373–385. 10.1016/j.mucimm.2023.01.005 PubMed DOI
Breed, E.R., Vobořil M., Ashby K.M., Martinez R.J., Qian L., Wang H., Salgado O.C., O’Connor C.H., and Hogquist K.A.. 2022. Type 2 cytokines in the thymus activate Sirpα+ dendritic cells to promote clonal deletion. Nat. Immunol. 23:1042–1051. 10.1038/s41590-022-01218-x PubMed DOI PMC
Březina, J., Vobořil M., and Filipp D.. 2022. Mechanisms of direct and indirect presentation of self-antigens in the thymus. Front. Immunol. 13:1–13. 10.3389/fimmu.2022.926625 PubMed DOI PMC
Caton, M.L., Smith-Raska M.R., and Reizis B.. 2007. Notch-RBP-J signaling controls the homeostasis of CD8- dendritic cells in the spleen. J. Exp. Med. 204:1653–1664. 10.1084/jem.20062648 PubMed DOI PMC
Concordet, J.P., and Haeussler M.. 2018. CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res. 46:W242–W245. 10.1093/nar/gky354 PubMed DOI PMC
Cosway, E.J., Ohigashi I., Schauble K., Parnell S.M., Jenkinson W.E., Luther S., Takahama Y., and Anderson G.. 2018. Formation of the intrathymic dendritic cell pool requires CCL21-mediated recruitment of CCR7+ progenitors to the thymus. J. Immunol. 201:516–523. 10.4049/jimmunol.1800348 PubMed DOI PMC
Cummings, R.J., Barbet G., Bongers G., Hartmann B.M., Gettler K., Muniz L., Furtado G.C., Cho J., Lira S.A., and Blander J.M.. 2016. Different tissue phagocytes sample apoptotic cells to direct distinct homeostasis programs. Nature. 539:565–569. 10.1038/nature20138 PubMed DOI PMC
Danan-Gotthold, M., Guyon C., Giraud M., Levanon E.Y., and Abramson J.. 2016. Extensive RNA editing and splicing increase immune self-representation diversity in medullary thymic epithelial cells. Genome Biol. 17:219. 10.1186/s13059-016-1079-9 PubMed DOI PMC
Daugherty, B.L., Ward C., Smith T., Ritzenthaler J.D., and Koval M.. 2007. Regulation of heterotypic claudin compatibility. J. Biol. Chem. 282:30005–30013. 10.1074/jbc.M703547200 PubMed DOI
Dobeš, J., Neuwirth A., Dobešová M., Vobořil M., Balounová J., Ballek O., Lebl J., Meloni A., Krohn K., Kluger N., et al. 2015. Gastrointestinal autoimmunity associated with loss of central tolerance to enteric α-defensins. Gastroenterology. 149:139–150. 10.1053/j.gastro.2015.05.009 PubMed DOI
Farache, J., Koren I., Milo I., Gurevich I., Kim K.W., Zigmond E., Furtado G.C., Lira S.A., and Shakhar G.. 2013. Luminal bacteria recruit CD103+ dendritic cells into the intestinal epithelium to sample bacterial antigens for presentation. Immunity. 38:581–595. 10.1016/j.immuni.2013.01.009 PubMed DOI PMC
Furuse, M., Fujita K., Hiiragi T., Fujimoto K., and Tsukita S.. 1998. Claudin-1 and -2: Novel integral membrane proteins localizing at tight junctions with No sequence similarity to occludin. J. Cell Biol. 141:1539–1550. 10.1083/JCB.141.7.1539 PubMed DOI PMC
Furuse, M., Hata M., Furuse K., Yoshida Y., Haratake A., Sugitani Y., Noda T., Kubo A., and Tsukita S.. 2002. Claudin-based tight junctions are crucial for the mammalian epidermal barrier: A lesson from claudin-1-deficient mice. J. Cell Biol. 156:1099–1111. 10.1083/jcb.200110122 PubMed DOI PMC
Furuse, M., Sasaki H., and Tsukita S.. 1999. Manner of interaction of heterogeneous claudin species within and between tight junction strands. J. Cell Biol. 147:891–903. 10.1083/jcb.147.4.891 PubMed DOI PMC
Gallegos, A.M., and Bevan M.J.. 2004. Central tolerance to tissue-specific antigens mediated by direct and indirect antigen presentation. J. Exp. Med. 200:1039–1049. 10.1084/jem.20041457 PubMed DOI PMC
Gardner, J.M., Devoss J.J., Friedman R.S., Wong D.J., Tan Y.X., Zhou X., Johannes K.P., Su M.A., Chang H.Y., Krummel M.F., and Anderson M.S.. 2008. Deletional tolerance mediated by extrathymic Aire-expressing cells. Science. 321:843–847. 10.1126/science.1159407 PubMed DOI PMC
Givony, T., Leshkowitz D., Del Castillo D., Nevo S., Kadouri N., Dassa B., Gruper Y., Khalaila R., Ben-Nun O., Gome T., et al. 2023. Thymic mimetic cells function beyond self-tolerance. Nature. 622:164–172. 10.1038/s41586-023-06512-8 PubMed DOI
Gordon, J., Xiao S., Iii B.H., Su D., Navarre S.P., Condie B.G., and Manley N.R.. 2007. Specific expression of lacZ and cre recombinase in fetal thymic epithelial cells by multiplex gene targeting at the Foxn1 locus. BMC Dev. Biol. 7:69. 10.1186/1471-213X-7-69 PubMed DOI PMC
Guo, F., Li P., French J.B., Mao Z., Zhao H., Li S., Nama N., Fick J.R., Benkovic S.J., and Huang T.J.. 2015. Controlling cell-cell interactions using surface acoustic waves. Proc. Natl. Acad. Sci. USA. 112:43–48. 10.1073/pnas.1422068112 PubMed DOI PMC
Hamazaki, Y., Fujita H., Kobayashi T., Choi Y., Scott H.S., Matsumoto M., and Minato N.. 2007. Medullary thymic epithelial cells expressing Aire represent a unique lineage derived from cells expressing claudin. Nat. Immunol. 8:304–311. 10.1038/ni1438 PubMed DOI
Harris, H.J., Farquhar M.J., Mee C.J., Davis C., Reynolds G.M., Jennings A., Hu K., Yuan F., Deng H., Hubscher S.G., et al. 2008. CD81 and claudin 1 coreceptor association: Role in hepatitis C virus entry. J. Virol. 82:5007–5020. 10.1128/jvi.02286-07 PubMed DOI PMC
Hashimoto, K., Joshi S.K., and Koni P.A.. 2002. A conditional null allele of the major histocompatibility IA-beta chain gene. Genesis. 32:152–153. 10.1002/gene.10056 PubMed DOI
Herbin, O., Bonito A.J., Jeong S., Weinstein E.G., Rahman A.H., Xiong H., Merad M., and Alexandropoulos K.. 2016. Medullary thymic epithelial cells and CD8α+dendritic cells coordinately regulate central tolerance but CD8α+cells are dispensable for thymic regulatory T cell production. J. Autoimmun. 75:141–149. 10.1016/j.jaut.2016.08.002 PubMed DOI PMC
Hikosaka, Y., Nitta T., Ohigashi I., Yano K., Ishimaru N., Hayashi Y., Matsumoto M., Matsuo K., Penninger J.M., Takayanagi H., et al. 2008. The cytokine RANKL produced by positively selected thymocytes fosters medullary thymic epithelial cells that express autoimmune regulator. Immunity. 29:438–450. 10.1016/j.immuni.2008.06.018 PubMed DOI
Hu, Z., Lancaster J.N., Sasiponganan C., and Ehrlich L.I.R.. 2015. CCR4 promotes medullary entry and thymocyte-Dendritic cell interactions required for central tolerance. J. Exp. Med. 212:1947–1965. 10.1084/jem.20150178 PubMed DOI PMC
Ichimiya, S., and Kojima T.. 2006. Cellular networks of human thymic medullary stromas coordinated by p53-related transcription factors. J. Histochem. Cytochem. 54:1277–1289. 10.1369/jhc.6A7028.2006 PubMed DOI
Idoyaga, J., Cheong C., Suda K., Suda N., Kim J.Y., Lee H., Park C.G., and Steinman R.M.. 2008. Cutting Edge: Langerin/CD207 receptor on dendritic cells mediates efficient antigen presentation on MHC I and II products In Vivo. J. Immunol. 180:3647–3650. 10.4049/jimmunol.180.6.3647 PubMed DOI
Jaitin, D.A., Kenigsberg E., Keren-Shaul H., Elefant N., Paul F., Zaretsky I., Mildner A., Cohen N., Jung S., Tanay A., and Amit I.. 2014. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science. 343:776–779. 10.1126/science.1247651 PubMed DOI PMC
Janowska-Wieczorek, A., Majka M., Kijowski J., Baj-Krzyworzeka M., Reca R., Turner A.R., Ratajczak J., Emerson S.G., Kowalska M.A., and Ratajczak M.Z.. 2001. Platelet-derived microparticles bind to hematopoietic stem/progenitor cells and enhance their engraftment. Blood. 98:3143–3149. 10.1182/blood.V98.10.3143 PubMed DOI
Jiang, W., Anderson M.S., Bronson R., Mathis D., and Benoist C.. 2005. Modifier loci condition autoimmunity provoked by Aire deficiency. J. Exp. Med. 202:805–815. 10.1084/jem.20050693 PubMed DOI PMC
Jolicoeur, C., Hanahan D., and Smith K.M.. 1994. T-cell tolerance toward a transgenic beta-cell antigen and transcription of endogenous pancreatic genes in thymus. Proc. Natl. Acad. Sci. USA. 91:6707–6711. 10.1073/pnas.91.14.6707 PubMed DOI PMC
Kadouri, N., Nevo S., Goldfarb Y., and Abramson J.. 2020. Thymic epithelial cell heterogeneity: TEC by TEC. Nat. Rev. Immunol. 20:239–253. 10.1038/s41577-019-0238-0 PubMed DOI
Kasparek, P., Krausova M., Haneckova R., Kriz V., Zbodakova O., Korinek V., and Sedlacek R.. 2014. Efficient gene targeting of the Rosa26 locus in mouse zygotes using TALE nucleases. FEBS Lett. 588:3982–3988. 10.1016/J.FEBSLET.2014.09.014 PubMed DOI
Klein, L., and Petrozziello E.. 2025. Antigen presentation for central tolerance induction. Nat. Rev. Immunol. 25:57–72. 10.1038/s41577-024-01076-8 PubMed DOI
Klein, L., Robey E.A., and Hsieh C.-S.. 2019. Central CD4+ T cell tolerance: Deletion versus regulatory T cell differentiation. Nat. Rev. Immunol. 19:7–18. 10.1038/s41577-018-0083-6 PubMed DOI
Koble, C., and Kyewski B.. 2009. The thymic medulla: A unique microenvironment for intercellular self-antigen transfer. J. Exp. Med. 206:1505–1513. 10.1084/jem.20082449 PubMed DOI PMC
Kohen, R., Barlev J., Hornung G., Stelzer G., Feldmesser E., Kogan K., Safran M., and Leshkowitz D.. 2019. UTAP: User-Friendly transcriptome analysis pipeline. BMC Bioinformatics. 20:154–157. 10.1186/s12859-019-2728-2 PubMed DOI PMC
Kroger, C.J., Spidale N.A., Wang B., and Tisch R.. 2017. Thymic dendritic cell subsets display distinct efficiencies and mechanisms of intercellular MHC transfer. J. Immunol. 198:249–256. 10.4049/jimmunol.1601516 PubMed DOI PMC
Kubo, A., Nagao K., Yokouchi M., Sasaki H., and Amagai M.. 2009. External antigen uptake by Langerhans cells with reorganization of epidermal tight junction barriers. J. Exp. Med. 206:2937–2946. 10.1084/jem.20091527 PubMed DOI PMC
Lancaster, J.N., Thyagarajan H.M., Srinivasan J., Li Y., Hu Z., and Ehrlich L.I.R.. 2019. Live-cell imaging reveals the relative contributions of antigen-presenting cell subsets to thymic central tolerance. Nat. Commun. 10:2220. 10.1038/s41467-019-09727-4 PubMed DOI PMC
Leventhal, D.S., Gilmore D.C., Berger J.M., Nishi S., Lee V., Malchow S., Kline D.E., Kline J., Vander Griend D.J., Huang H., et al. 2016. Dendritic cells coordinate the development and homeostasis of organ-specific regulatory T cells. Immunity. 44:847–859. 10.1016/j.immuni.2016.01.025 PubMed DOI PMC
Liarski, V.M., Kaverina N., Chang A., Brandt D., Yanez D., Talasnik L., Carlesso G., Herbst R., Utset T.O., Labno C., et al. 2014. Cell distance mapping identifies functional T follicular helper cells in inflamed human renal tissue. Sci. Transl. Med. 6:230ra46. 10.1126/scitranslmed.3008146 PubMed DOI PMC
Madisen, L., Zwingman T.A., Sunkin S.M., Oh S.W., Zariwala H.A., Gu H., Ng L.L., Palmiter R.D., Hawrylycz M.J., Jones A.R., et al. 2010. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13:133–140. 10.1038/nn.2467 PubMed DOI PMC
Maier, B., Leader A.M., Chen S.T., Tung N., Chang C., LeBerichel J., Chudnovskiy A., Maskey S., Walker L., Finnigan J.P., et al. 2020. A conserved dendritic-cell regulatory program limits antitumour immunity. Nature. 580:257–262. 10.1038/s41586-020-2134-y PubMed DOI PMC
Malchow, S., Leventhal D.S., Lee V., Nishi S., Socci N.D., and Savage P.A.. 2016. Aire enforces immune tolerance by directing autoreactive T cells into the regulatory T cell lineage. Immunity. 44:1102–1113. 10.1016/j.immuni.2016.02.009 PubMed DOI PMC
Mandel, I., Paperna T., Glass-Marmor L., Volkowich A., Badarny S., Schwartz I., Vardi P., Koren I., and Miller A.. 2012. Tight junction proteins expression and modulation in immune cells and multiple sclerosis. J. Cell. Mol. Med. 16:765–775. 10.1111/j.1582-4934.2011.01380.x PubMed DOI PMC
Michelson, D.A., Hase K., Kaisho T., Benoist C., and Mathis D.. 2022. Thymic epithelial cells co-opt lineage-defining transcription factors to eliminate autoreactive T cells. Cell. 185:2542–2558.e18. 10.1016/j.cell.2022.05.018 PubMed DOI PMC
Millet, V., Naquet P., and Guinamard R.R.. 2008. Intercellular MHC transfer between thymic epithelial and dendritic cells. Eur. J. Immunol. 38:1257–1263. 10.1002/eji.200737982 PubMed DOI
Mombaerts, P., Johnson R.S., Herrup K., Tonegawa S., and Papaioannouo V.E.. 1992. RAG-l-Deficient mice have No mature B and T lymphocytes. Cell. 68:869–877. 10.1016/0092-8674(92)90030-G PubMed DOI
Morimoto, J., Matsumoto M., Miyazawa R., Yoshida H., Tsuneyama K., and Matsumoto M.. 2022. Aire suppresses CTLA-4 expression from the thymic stroma to control autoimmunity. Cell Rep. 38:110384. 10.1016/J.CELREP.2022.110384 PubMed DOI
Morimoto, J., Matsumoto M., Oya T., Tsuneyama K., and Matsumoto M.. 2023. Cooperative but distinct role of medullary thymic epithelial cells and dendritic cells in the production of regulatory T cells in the thymus. J. Immunol. 210:1653–1666. 10.4049/jimmunol.2200780 PubMed DOI
Oh, J., Wu N., Barczak A.J., Barbeau R., Erle D.J., and Shin J.-S.. 2018. CD40 mediates maturation of thymic dendritic cells driven by self-reactive CD4 + thymocytes and supports development of natural regulatory T cells. J. Immunol. 200:1399–1412. 10.4049/jimmunol.1700768 PubMed DOI PMC
Owen, D.L., Mahmud S.A., Sjaastad L.E., Williams J.B., Spanier J.A., Simeonov D.R., Ruscher R., Huang W., Proekt I., Miller C.N., et al. 2019. Thymic regulatory T cells arise via two distinct developmental programs. Nat. Immunol. 20:195–205. 10.1038/s41590-018-0289-6 PubMed DOI PMC
Pačes, J., Grobárová V., Zadražil Z., Knížková K., Malinská N., Tušková L., Boes M., and Černý J.. 2023. MHC II–EGFP knock-in mouse model. Curr. Protoc. 3:1–40. 10.1002/cpz1.925 PubMed DOI
Pačes, J., Knížková K., Tušková L., Grobárová V., Zadražil Z., Boes M., and Černý J.. 2022. MHC II – EGFP knock-in mouse model is a suitable tool for systems and quantitative immunology. Immunol. Lett. 251–252:75–85. 10.1016/j.imlet.2022.10.007 PubMed DOI
Palor, M., Stejskal L., Mandal P., Lenman A., Alberione M.P., Kirui J., Moeller R., Ebner S., Meissner F., Gerold G., et al. 2020. Cholesterol sensing by CD81 is important for hepatitis C virus entry. J. Biol. Chem. 295:16931–16948. 10.1074/jbc.RA120.014761 PubMed DOI PMC
Park, J.E., Botting R.A., Conde C.D., Popescu D.M., Lavaert M., Kunz D.J., Goh I., Stephenson E., Ragazzini R., Tuck E., et al. 2020. A cell atlas of human thymic development defines T cell repertoire formation. Science. 367. 10.1126/science.aay3224 PubMed DOI PMC
Perry, J.S.A., and Hsieh C.S.. 2016. Development of T-cell tolerance utilizes both cell-autonomous and cooperative presentation of self-antigen. Immunol. Rev. 271:141–155. 10.1111/imr.12403 PubMed DOI PMC
Perry, J.S.A., Lio C.W.J., Kau A.L., Nutsch K., Yang Z., Gordon J.I., Murphy K.M., and Hsieh C.S.. 2014. Distinct contributions of Aire and antigen-presenting-cell subsets to the generation of self-tolerance in the thymus. Immunity. 41:414–426. 10.1016/j.immuni.2014.08.007 PubMed DOI PMC
Perry, J.S.A., Russler-Germain E.V., Zhou Y.W., Purtha W., Cooper M.L., Choi J., Schroeder M.A., Salazar V., Egawa T., Lee B.C., et al. 2018. Transfer of cell-surface antigens by scavenger receptor CD36 promotes thymic regulatory T cell receptor repertoire development and allotolerance. Immunity. 48:923–936.e4. 10.1016/j.immuni.2018.04.007 PubMed DOI PMC
Qiu, C.-H., Miyake Y., Kaise H., Kitamura H., Ohara O., and Tanaka M.. 2009. Novel subset of CD8{alpha}+ dendritic cells localized in the marginal zone is responsible for tolerance to cell-associated antigens. J. Immunol. 182:4127–4136. 10.4049/jimmunol.0803364 PubMed DOI
Ramsey, C., Winqvist O., Puhakka L., Halonen M., Moro A., Kämpe O., Eskelin P., Pelto-Huikko M., and Peltonen L.. 2002. Aire deficient mice develop multiple features of APECED phenotype and show altered immune response. Hum. Mol. Genet. 11:397–409. 10.1093/hmg/11.4.397 PubMed DOI
Rescigno, M., Urbano M., Valzasina B., Francolini M., Rotta G., Bonasio R., Granucci F., Kraehenbuhl J.P., and Ricciardi-Castagnoli P.. 2001. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat. Immunol. 2:361–367. 10.1038/86373 PubMed DOI
del Rio, M.-L., Bernhardt G., Rodriguez-Barbosa J.I., and Förster R.. 2010. Development and functional specialization of CD103+ dendritic cells. Immunol. Rev. 234:268–281. 10.1111/J.0105-2896.2009.00874.X PubMed DOI
Sanos, S.L., Nowak J., Fallet M., and Bajenoff M.. 2011. Stromal cell networks regulate thymocyte migration and dendritic cell behavior in the thymus. J. Immunol. 186:2835–2841. 10.4049/jimmunol.1003563 PubMed DOI
Sansom, S.N., Shikama-Dorn N., Zhanybekova S., Nusspaumer G., Macaulay I.C., Deadman M.E., Heger A., Ponting C.P., and Holländer G.A.. 2014. Population and single-cell genomics reveal the Aire dependency, relief from Polycomb silencing, and distribution of self-antigen expression in thymic epithelia. Genome Res. 24:1918–1931. 10.1101/gr.171645.113 PubMed DOI PMC
Sapone, A., de Magistris L., Pietzak M., Clemente M.G., Tripathi A., Cucca F., Lampis R., Kryszak D., Cartenì M., Generoso M., et al. 2006. Zonulin upregulation is associated with increased gut permeability in subjects with type 1 diabetes and their relatives. Diabetes. 55:1443–1449. 10.2337/db05-1593 PubMed DOI
Schriek, P., and Villadangos J.A.. 2023. Trogocytosis and cross-dressing in antigen presentation. Curr. Opin. Immunol. 83:102331. 10.1016/j.coi.2023.102331 PubMed DOI
Sharpe, A.H., and Pauken K.E.. 2018. The diverse functions of the PD1 inhibitory pathway. Nat. Rev. Immunol. 18:153–167. 10.1038/nri.2017.108 PubMed DOI
Silva-Sanchez, A., Meza-Perez S., Liu M., Stone S.L., Flores-Romo L., Ubil E., Lund F.E., Rosenberg A.F., and Randall T.D.. 2023. Activation of regulatory dendritic cells by Mertk coincides with a temporal wave of apoptosis in neonatal lungs. Sci. Immunol. 8:eadc9081. 10.1126/sciimmunol.adc9081 PubMed DOI PMC
Sisirak, V., Sally B., D’Agati V., Martinez-Ortiz W., Özçakar Z.B., David J., Rashidfarrokhi A., Yeste A., Panea C., Chida A.S., et al. 2016. Digestion of chromatin in apoptotic cell microparticles prevents autoimmunity. Cell. 166:88–101. 10.1016/j.cell.2016.05.034 PubMed DOI PMC
Smigiel, K.S., Richards E., Srivastava S., Thomas K.R., Dudda J.C., Klonowski K.D., and Campbell D.J.. 2014. CCR7 provides localized access to IL-2 and defines homeostatically distinct regulatory T cell subsets. J. Exp. Med. 211:121–136. 10.1084/jem.20131142 PubMed DOI PMC
Sung, S.-S.J., Fu S.M., Rose C.E., Gaskin F., Ju S.-T., and Beaty S.R.. 2006. A major lung CD103 (alphaE)-beta7 integrin-positive epithelial dendritic cell population expressing Langerin and tight junction proteins. J. Immunol. 176:2161–2172. 10.4049/JIMMUNOL.176.4.2161 PubMed DOI
Susaki, E.A., Tainaka K., Perrin D., Yukinaga H., Kuno A., and Ueda H.R.. 2015. Advanced CUBIC protocols for whole-brain and whole-body clearing and imaging. Nat. Protoc. 10:1709–1727. 10.1038/nprot.2015.085 PubMed DOI
Tajik, N., Frech M., Schulz O., Schälter F., Lucas S., Azizov V., Dürholz K., Steffen F., Omata Y., Rings A., et al. 2020. Targeting zonulin and intestinal epithelial barrier function to prevent onset of arthritis. Nat. Commun. 11:1995. 10.1038/s41467-020-15831-7 PubMed DOI PMC
Tokumasu, R., Yamaga K., Yamazaki Y., Murota H., Suzuki K., Tamura A., Bando K., Furuta Y., Katayama I., and Tsukita S.. 2016. Dose-dependent role of claudin-1 in vivo in orchestrating features of atopic dermatitis. Proc. Natl. Acad. Sci. USA. 113:E4061–E4068. 10.1073/pnas.1525474113 PubMed DOI PMC
Tsukuba, T., Okamoto K., Okamoto Y., Yanagawa M., Kohmura K., Yasuda Y., Uchi H., Nakahara T., Furue M., Nakayama K., et al. 2003. Association of cathepsin E deficiency with development of atopic dermatitis. J. Biochem. 134:893–902. 10.1093/jb/mvg216 PubMed DOI
Van Itallie, C.M., and Anderson J.M.. 2013. Claudin interactions in and out of the tight junction. Tissue Barriers. 1:e25247. 10.4161/tisb.25247 PubMed DOI PMC
Vobořil, M., Brabec T., Dobeš J., Šplíchalová I., Březina J., Čepková A., Dobešová M., Aidarova A., Kubovčiak J., Tsyklauri O., et al. 2020. Toll-like receptor signaling in thymic epithelium controls monocyte-derived dendritic cell recruitment and Treg generation. Nat. Commun. 11:2361. 10.1038/s41467-020-16081-3 PubMed DOI PMC
Vobořil, M., Březina J., Brabec T., Dobeš J., Ballek O., Dobešová M., Manning J., Blumberg R.S., and Filipp D.. 2022. A model of preferential pairing between epithelial and dendritic cells in thymic antigen transfer. Elife. 11:e71578. 10.7554/eLife.71578 PubMed DOI PMC
Weber, C.R., Nalle S.C., Tretiakova M., Rubin D.T., and Turner J.R.. 2008. Claudin-1 and claudin-2 expression is elevated in inflammatory bowel disease and may contribute to early neoplastic transformation. Lab. Invest. 88:1110–1120. 10.1038/labinvest.2008.78 PubMed DOI PMC
Wohn, C., Le Guen V., Voluzan O., Fiore F., Henri S., and Malissen B.. 2020. Absence of MHC class II on cDC1 dendritic cells triggers fatal autoimmunity to a cross-presented self-antigen. Sci. Immunol. 5:eaba1896. 10.1126/sciimmunol.aba1896 PubMed DOI
Yao, X., Wang X., Hu X., Liu Z., Liu J., Zhou H., Shen X., Wei Y., Huang Z., Ying W., et al. 2017. Homology-mediated end joining-based targeted integration using CRISPR/Cas9. Cell Res. 27:801–814. 10.1038/cr.2017.76 PubMed DOI PMC
Yates, A.D., Achuthan P., Akanni W., Allen J., Allen J., Alvarez-Jarreta J., Amode M.R., Armean I.M., Azov A.G., Bennett R., et al. 2020. Ensembl 2020. Nucleic Acids Res. 48:D682–D688. 10.1093/nar/gkz966 PubMed DOI PMC
Zaidi, N., and Kalbacher H.. 2008. Cathepsin E: A mini review. Biochem. Biophys. Res. Commun. 367:517–522. 10.1016/j.bbrc.2007.12.163 PubMed DOI