Claudin 1-mediated positioning of DC1 to mTECs is essential for maintenance of central tolerance

. 2026 Mar 02 ; 223 (3) : . [epub] 20260102

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41481333

Grantová podpora
22-30879S Grant Agency of the Czech Republic
206222 Wellcome Trust - United Kingdom
No. PRIMUS/21/MED/003 Charles University Grant Agency
LM2023050 Czech-BioImaging
ID:90254 e-INFRA CZ project
LM2023055 Czech Ministry of Education, Youth and Sports
CZ.02.1.01/0.0/0.0/16_019/0000785 Czech Ministry of Education, Youth and Sports
LM2023036 Czech Ministry of Education, Youth and Sports
LM2023050 Czech Ministry of Education, Youth and Sports
LL2315 Czech Ministry of Education, Youth and Sports
MR/T029765/1 Medical Research Council - United Kingdom
LX22NPO5103 National Institute of Virology and Bacteriology
No. 21-22435M Czech Science Foundation
CZ.02.01.01/00/22_008/0004597 One Health Framework

Central tolerance, which relies on the presentation of self-antigens by mTECs and DCs, prevents autoimmunity by eliminating self-reactive T cells. While mTECs produce self-antigens autonomously, DCs acquire them from mTECs via cooperative antigen transfer (CAT). We previously showed that mTEC and DC subsets exhibit preferential pairing in CAT, providing a rationale for the existence of molecular determinants underpinning this pairing and its outcome. Here, we compared the transcriptomes of CAT-experienced and CAT-inexperienced DCs and identified Claudin 1 as a molecule involved in CAT and type 1 DC (DC1) maturation. DC1-specific ablation of Claudin 1 resulted in decreased CAT to late mature DC1s and dramatically diminished DC1 maturation. These phenotypes correlated with the displacement of DC1s from mTECs and their decreased expression of MHCII pathway genes. This translated into impaired Treg selection and clonal deletion, ultimately manifesting in symptoms of multiorgan autoimmunity and shortened lifespan. Collectively, our results identify thymic DC1-derived Claudin 1 as a regulator of immune tolerance.

Zobrazit více v PubMed

Abramson, J., and Husebye E.S.. 2016. Autoimmune regulator and self-tolerance - molecular and clinical aspects. Immunol. Rev. 271:127–140. 10.1111/imr.12419 PubMed DOI

Adolph, T.E., Tomczak M.F., Niederreiter L., Ko H.-J., Böck J., Martinez-Naves E., Glickman J.N., Tschurtschenthaler M., Hartwig J., Hosomi S., et al. 2013. Paneth cells as a site of origin for intestinal inflammation. Nature. 503:272–276. 10.1038/nature12599 PubMed DOI PMC

Akiyama, T., Shimo Y., Yanai H., Qin J., Ohshima D., Maruyama Y., Asaumi Y., Kitazawa J., Takayanagi H., Penninger J.M., et al. 2008. The tumor necrosis factor family receptors RANK and CD40 cooperatively establish the thymic medullary microenvironment and self-tolerance. Immunity. 29:423–437. 10.1016/j.immuni.2008.06.015 PubMed DOI

Alawam, A.S., Cosway E.J., James K.D., Lucas B., Bacon A., Parnell S.M., White A.J., Jenkinson W.E., and Anderson G.. 2022. Failures in thymus medulla regeneration during immune recovery cause tolerance loss and prime recipients for auto-GVHD. J. Exp. Med. 219:e20211239. 10.1084/jem.20211239 PubMed DOI PMC

Anderson, M.S., and Su M.A.. 2016. AIRE expands: New roles in immune tolerance and beyond. Nat. Rev. Immunol. 16:247–258. 10.1038/nri.2016.9 PubMed DOI PMC

Ardouin, L., Luche H., Chelbi R., Carpentier S., Shawket A., Montanana Sanchis F., Santa Maria C., Grenot P., Alexandre Y., Grégoire C., et al. 2016. Broad and largely concordant molecular changes characterize tolerogenic and immunogenic dendritic cell maturation in thymus and periphery. Immunity. 45:305–318. 10.1016/j.immuni.2016.07.019 PubMed DOI

Arnold, D., Keilholz W., Schild H., Dumrese T., Stevanović S., and Rammensee H.G.. 1997. Evolutionary conserved cathepsin E substrate specificity as defined by N-terminal and C-terminal sequencing of peptide pools. Biol. Chem. 378:883–891. 10.1515/bchm.1997.378.8.883 PubMed DOI

Ashby, K.M., Vobořil M., Salgado O.C., Lee S.T., Martinez R.J., Connor C.H.O., Breed E.R., Xuan S., Roll C.R., Bachigari S., et al. 2024. Sterile production of interferons in the thymus affects T cell repertoire selection. Sci. Immunol. 9:1–15. 10.1126/sciimmunol.adp1139 PubMed DOI PMC

Barnden, M.J., Allison J., Heath W.R., and Carbone F.R.. 1998. Defective TCR expression in transgenic mice constructed using cDNA-based α- and β-chain genes under the control of heterologous regulatory elements. Immunol. Cell Biol. 76:34–40. 10.1046/J.1440-1711.1998.00709.X PubMed DOI

Bautista, J.L., Lio C.W.J., Lathrop S.K., Forbush K., Liang Y., Luo J., Rudensky A.Y., and Hsieh C.S.. 2009. Intraclonal competition limits the fate determination of regulatory T cells in the thymus. Nat. Immunol. 10:610–617. 10.1038/ni.1739 PubMed DOI PMC

Bennett, K., Levine T., Ellis J.S., Peanasky R.J., Samloff M.I., Kay J., and Chain B.M.. 1992. Antigen processing for presentation by class II major histocompatibility complex requires cleavage by cathepsin E. Eur. J. Immunol. 22:1519–1524. 10.1002/eji.1830220626 PubMed DOI

Bosteels, V., and Janssens S.. 2025. Striking a balance: New perspectives on homeostatic dendritic cell maturation. Nat. Rev. Immunol. 25:125–140. 10.1038/s41577-024-01079-5 PubMed DOI

Bosteels, V., Maréchal S., De Nolf C., Rennen S., Maelfait J., Tavernier S.J., Vetters J., Van De Velde E., Fayazpour F., Deswarte K., et al. 2023. LXR signaling controls homeostatic dendritic cell maturation. Sci. Immunol. 8:eadd3955. 10.1126/sciimmunol.add3955 PubMed DOI

Brabec, T., Schwarzer M., Kováčová K., Dobešová M., Schierová D., Březina J., Pacáková I., Šrůtková D., Ben-Nun O., Goldfarb Y., et al. 2024. Segmented filamentous bacteria-induced epithelial MHCII regulates cognate CD4+ IELs and epithelial turnover. J. Exp. Med. 221:e20230194. 10.1084/jem.20230194 PubMed DOI PMC

Brabec, T., Vobořil M., Schierová D., Valter E., Šplíchalová I., Dobeš J., Březina J., Dobešová M., Aidarova A., Jakubec M., et al. 2023. IL-17-driven induction of Paneth cell antimicrobial functions protects the host from microbiota dysbiosis and inflammation in the ileum. Mucosal Immunol. 16:373–385. 10.1016/j.mucimm.2023.01.005 PubMed DOI

Breed, E.R., Vobořil M., Ashby K.M., Martinez R.J., Qian L., Wang H., Salgado O.C., O’Connor C.H., and Hogquist K.A.. 2022. Type 2 cytokines in the thymus activate Sirpα+ dendritic cells to promote clonal deletion. Nat. Immunol. 23:1042–1051. 10.1038/s41590-022-01218-x PubMed DOI PMC

Březina, J., Vobořil M., and Filipp D.. 2022. Mechanisms of direct and indirect presentation of self-antigens in the thymus. Front. Immunol. 13:1–13. 10.3389/fimmu.2022.926625 PubMed DOI PMC

Caton, M.L., Smith-Raska M.R., and Reizis B.. 2007. Notch-RBP-J signaling controls the homeostasis of CD8- dendritic cells in the spleen. J. Exp. Med. 204:1653–1664. 10.1084/jem.20062648 PubMed DOI PMC

Concordet, J.P., and Haeussler M.. 2018. CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res. 46:W242–W245. 10.1093/nar/gky354 PubMed DOI PMC

Cosway, E.J., Ohigashi I., Schauble K., Parnell S.M., Jenkinson W.E., Luther S., Takahama Y., and Anderson G.. 2018. Formation of the intrathymic dendritic cell pool requires CCL21-mediated recruitment of CCR7+ progenitors to the thymus. J. Immunol. 201:516–523. 10.4049/jimmunol.1800348 PubMed DOI PMC

Cummings, R.J., Barbet G., Bongers G., Hartmann B.M., Gettler K., Muniz L., Furtado G.C., Cho J., Lira S.A., and Blander J.M.. 2016. Different tissue phagocytes sample apoptotic cells to direct distinct homeostasis programs. Nature. 539:565–569. 10.1038/nature20138 PubMed DOI PMC

Danan-Gotthold, M., Guyon C., Giraud M., Levanon E.Y., and Abramson J.. 2016. Extensive RNA editing and splicing increase immune self-representation diversity in medullary thymic epithelial cells. Genome Biol. 17:219. 10.1186/s13059-016-1079-9 PubMed DOI PMC

Daugherty, B.L., Ward C., Smith T., Ritzenthaler J.D., and Koval M.. 2007. Regulation of heterotypic claudin compatibility. J. Biol. Chem. 282:30005–30013. 10.1074/jbc.M703547200 PubMed DOI

Dobeš, J., Neuwirth A., Dobešová M., Vobořil M., Balounová J., Ballek O., Lebl J., Meloni A., Krohn K., Kluger N., et al. 2015. Gastrointestinal autoimmunity associated with loss of central tolerance to enteric α-defensins. Gastroenterology. 149:139–150. 10.1053/j.gastro.2015.05.009 PubMed DOI

Farache, J., Koren I., Milo I., Gurevich I., Kim K.W., Zigmond E., Furtado G.C., Lira S.A., and Shakhar G.. 2013. Luminal bacteria recruit CD103+ dendritic cells into the intestinal epithelium to sample bacterial antigens for presentation. Immunity. 38:581–595. 10.1016/j.immuni.2013.01.009 PubMed DOI PMC

Furuse, M., Fujita K., Hiiragi T., Fujimoto K., and Tsukita S.. 1998. Claudin-1 and -2: Novel integral membrane proteins localizing at tight junctions with No sequence similarity to occludin. J. Cell Biol. 141:1539–1550. 10.1083/JCB.141.7.1539 PubMed DOI PMC

Furuse, M., Hata M., Furuse K., Yoshida Y., Haratake A., Sugitani Y., Noda T., Kubo A., and Tsukita S.. 2002. Claudin-based tight junctions are crucial for the mammalian epidermal barrier: A lesson from claudin-1-deficient mice. J. Cell Biol. 156:1099–1111. 10.1083/jcb.200110122 PubMed DOI PMC

Furuse, M., Sasaki H., and Tsukita S.. 1999. Manner of interaction of heterogeneous claudin species within and between tight junction strands. J. Cell Biol. 147:891–903. 10.1083/jcb.147.4.891 PubMed DOI PMC

Gallegos, A.M., and Bevan M.J.. 2004. Central tolerance to tissue-specific antigens mediated by direct and indirect antigen presentation. J. Exp. Med. 200:1039–1049. 10.1084/jem.20041457 PubMed DOI PMC

Gardner, J.M., Devoss J.J., Friedman R.S., Wong D.J., Tan Y.X., Zhou X., Johannes K.P., Su M.A., Chang H.Y., Krummel M.F., and Anderson M.S.. 2008. Deletional tolerance mediated by extrathymic Aire-expressing cells. Science. 321:843–847. 10.1126/science.1159407 PubMed DOI PMC

Givony, T., Leshkowitz D., Del Castillo D., Nevo S., Kadouri N., Dassa B., Gruper Y., Khalaila R., Ben-Nun O., Gome T., et al. 2023. Thymic mimetic cells function beyond self-tolerance. Nature. 622:164–172. 10.1038/s41586-023-06512-8 PubMed DOI

Gordon, J., Xiao S., Iii B.H., Su D., Navarre S.P., Condie B.G., and Manley N.R.. 2007. Specific expression of lacZ and cre recombinase in fetal thymic epithelial cells by multiplex gene targeting at the Foxn1 locus. BMC Dev. Biol. 7:69. 10.1186/1471-213X-7-69 PubMed DOI PMC

Guo, F., Li P., French J.B., Mao Z., Zhao H., Li S., Nama N., Fick J.R., Benkovic S.J., and Huang T.J.. 2015. Controlling cell-cell interactions using surface acoustic waves. Proc. Natl. Acad. Sci. USA. 112:43–48. 10.1073/pnas.1422068112 PubMed DOI PMC

Hamazaki, Y., Fujita H., Kobayashi T., Choi Y., Scott H.S., Matsumoto M., and Minato N.. 2007. Medullary thymic epithelial cells expressing Aire represent a unique lineage derived from cells expressing claudin. Nat. Immunol. 8:304–311. 10.1038/ni1438 PubMed DOI

Harris, H.J., Farquhar M.J., Mee C.J., Davis C., Reynolds G.M., Jennings A., Hu K., Yuan F., Deng H., Hubscher S.G., et al. 2008. CD81 and claudin 1 coreceptor association: Role in hepatitis C virus entry. J. Virol. 82:5007–5020. 10.1128/jvi.02286-07 PubMed DOI PMC

Hashimoto, K., Joshi S.K., and Koni P.A.. 2002. A conditional null allele of the major histocompatibility IA-beta chain gene. Genesis. 32:152–153. 10.1002/gene.10056 PubMed DOI

Herbin, O., Bonito A.J., Jeong S., Weinstein E.G., Rahman A.H., Xiong H., Merad M., and Alexandropoulos K.. 2016. Medullary thymic epithelial cells and CD8α+dendritic cells coordinately regulate central tolerance but CD8α+cells are dispensable for thymic regulatory T cell production. J. Autoimmun. 75:141–149. 10.1016/j.jaut.2016.08.002 PubMed DOI PMC

Hikosaka, Y., Nitta T., Ohigashi I., Yano K., Ishimaru N., Hayashi Y., Matsumoto M., Matsuo K., Penninger J.M., Takayanagi H., et al. 2008. The cytokine RANKL produced by positively selected thymocytes fosters medullary thymic epithelial cells that express autoimmune regulator. Immunity. 29:438–450. 10.1016/j.immuni.2008.06.018 PubMed DOI

Hu, Z., Lancaster J.N., Sasiponganan C., and Ehrlich L.I.R.. 2015. CCR4 promotes medullary entry and thymocyte-Dendritic cell interactions required for central tolerance. J. Exp. Med. 212:1947–1965. 10.1084/jem.20150178 PubMed DOI PMC

Ichimiya, S., and Kojima T.. 2006. Cellular networks of human thymic medullary stromas coordinated by p53-related transcription factors. J. Histochem. Cytochem. 54:1277–1289. 10.1369/jhc.6A7028.2006 PubMed DOI

Idoyaga, J., Cheong C., Suda K., Suda N., Kim J.Y., Lee H., Park C.G., and Steinman R.M.. 2008. Cutting Edge: Langerin/CD207 receptor on dendritic cells mediates efficient antigen presentation on MHC I and II products In Vivo. J. Immunol. 180:3647–3650. 10.4049/jimmunol.180.6.3647 PubMed DOI

Jaitin, D.A., Kenigsberg E., Keren-Shaul H., Elefant N., Paul F., Zaretsky I., Mildner A., Cohen N., Jung S., Tanay A., and Amit I.. 2014. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science. 343:776–779. 10.1126/science.1247651 PubMed DOI PMC

Janowska-Wieczorek, A., Majka M., Kijowski J., Baj-Krzyworzeka M., Reca R., Turner A.R., Ratajczak J., Emerson S.G., Kowalska M.A., and Ratajczak M.Z.. 2001. Platelet-derived microparticles bind to hematopoietic stem/progenitor cells and enhance their engraftment. Blood. 98:3143–3149. 10.1182/blood.V98.10.3143 PubMed DOI

Jiang, W., Anderson M.S., Bronson R., Mathis D., and Benoist C.. 2005. Modifier loci condition autoimmunity provoked by Aire deficiency. J. Exp. Med. 202:805–815. 10.1084/jem.20050693 PubMed DOI PMC

Jolicoeur, C., Hanahan D., and Smith K.M.. 1994. T-cell tolerance toward a transgenic beta-cell antigen and transcription of endogenous pancreatic genes in thymus. Proc. Natl. Acad. Sci. USA. 91:6707–6711. 10.1073/pnas.91.14.6707 PubMed DOI PMC

Kadouri, N., Nevo S., Goldfarb Y., and Abramson J.. 2020. Thymic epithelial cell heterogeneity: TEC by TEC. Nat. Rev. Immunol. 20:239–253. 10.1038/s41577-019-0238-0 PubMed DOI

Kasparek, P., Krausova M., Haneckova R., Kriz V., Zbodakova O., Korinek V., and Sedlacek R.. 2014. Efficient gene targeting of the Rosa26 locus in mouse zygotes using TALE nucleases. FEBS Lett. 588:3982–3988. 10.1016/J.FEBSLET.2014.09.014 PubMed DOI

Klein, L., and Petrozziello E.. 2025. Antigen presentation for central tolerance induction. Nat. Rev. Immunol. 25:57–72. 10.1038/s41577-024-01076-8 PubMed DOI

Klein, L., Robey E.A., and Hsieh C.-S.. 2019. Central CD4+ T cell tolerance: Deletion versus regulatory T cell differentiation. Nat. Rev. Immunol. 19:7–18. 10.1038/s41577-018-0083-6 PubMed DOI

Koble, C., and Kyewski B.. 2009. The thymic medulla: A unique microenvironment for intercellular self-antigen transfer. J. Exp. Med. 206:1505–1513. 10.1084/jem.20082449 PubMed DOI PMC

Kohen, R., Barlev J., Hornung G., Stelzer G., Feldmesser E., Kogan K., Safran M., and Leshkowitz D.. 2019. UTAP: User-Friendly transcriptome analysis pipeline. BMC Bioinformatics. 20:154–157. 10.1186/s12859-019-2728-2 PubMed DOI PMC

Kroger, C.J., Spidale N.A., Wang B., and Tisch R.. 2017. Thymic dendritic cell subsets display distinct efficiencies and mechanisms of intercellular MHC transfer. J. Immunol. 198:249–256. 10.4049/jimmunol.1601516 PubMed DOI PMC

Kubo, A., Nagao K., Yokouchi M., Sasaki H., and Amagai M.. 2009. External antigen uptake by Langerhans cells with reorganization of epidermal tight junction barriers. J. Exp. Med. 206:2937–2946. 10.1084/jem.20091527 PubMed DOI PMC

Lancaster, J.N., Thyagarajan H.M., Srinivasan J., Li Y., Hu Z., and Ehrlich L.I.R.. 2019. Live-cell imaging reveals the relative contributions of antigen-presenting cell subsets to thymic central tolerance. Nat. Commun. 10:2220. 10.1038/s41467-019-09727-4 PubMed DOI PMC

Leventhal, D.S., Gilmore D.C., Berger J.M., Nishi S., Lee V., Malchow S., Kline D.E., Kline J., Vander Griend D.J., Huang H., et al. 2016. Dendritic cells coordinate the development and homeostasis of organ-specific regulatory T cells. Immunity. 44:847–859. 10.1016/j.immuni.2016.01.025 PubMed DOI PMC

Liarski, V.M., Kaverina N., Chang A., Brandt D., Yanez D., Talasnik L., Carlesso G., Herbst R., Utset T.O., Labno C., et al. 2014. Cell distance mapping identifies functional T follicular helper cells in inflamed human renal tissue. Sci. Transl. Med. 6:230ra46. 10.1126/scitranslmed.3008146 PubMed DOI PMC

Madisen, L., Zwingman T.A., Sunkin S.M., Oh S.W., Zariwala H.A., Gu H., Ng L.L., Palmiter R.D., Hawrylycz M.J., Jones A.R., et al. 2010. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13:133–140. 10.1038/nn.2467 PubMed DOI PMC

Maier, B., Leader A.M., Chen S.T., Tung N., Chang C., LeBerichel J., Chudnovskiy A., Maskey S., Walker L., Finnigan J.P., et al. 2020. A conserved dendritic-cell regulatory program limits antitumour immunity. Nature. 580:257–262. 10.1038/s41586-020-2134-y PubMed DOI PMC

Malchow, S., Leventhal D.S., Lee V., Nishi S., Socci N.D., and Savage P.A.. 2016. Aire enforces immune tolerance by directing autoreactive T cells into the regulatory T cell lineage. Immunity. 44:1102–1113. 10.1016/j.immuni.2016.02.009 PubMed DOI PMC

Mandel, I., Paperna T., Glass-Marmor L., Volkowich A., Badarny S., Schwartz I., Vardi P., Koren I., and Miller A.. 2012. Tight junction proteins expression and modulation in immune cells and multiple sclerosis. J. Cell. Mol. Med. 16:765–775. 10.1111/j.1582-4934.2011.01380.x PubMed DOI PMC

Michelson, D.A., Hase K., Kaisho T., Benoist C., and Mathis D.. 2022. Thymic epithelial cells co-opt lineage-defining transcription factors to eliminate autoreactive T cells. Cell. 185:2542–2558.e18. 10.1016/j.cell.2022.05.018 PubMed DOI PMC

Millet, V., Naquet P., and Guinamard R.R.. 2008. Intercellular MHC transfer between thymic epithelial and dendritic cells. Eur. J. Immunol. 38:1257–1263. 10.1002/eji.200737982 PubMed DOI

Mombaerts, P., Johnson R.S., Herrup K., Tonegawa S., and Papaioannouo V.E.. 1992. RAG-l-Deficient mice have No mature B and T lymphocytes. Cell. 68:869–877. 10.1016/0092-8674(92)90030-G PubMed DOI

Morimoto, J., Matsumoto M., Miyazawa R., Yoshida H., Tsuneyama K., and Matsumoto M.. 2022. Aire suppresses CTLA-4 expression from the thymic stroma to control autoimmunity. Cell Rep. 38:110384. 10.1016/J.CELREP.2022.110384 PubMed DOI

Morimoto, J., Matsumoto M., Oya T., Tsuneyama K., and Matsumoto M.. 2023. Cooperative but distinct role of medullary thymic epithelial cells and dendritic cells in the production of regulatory T cells in the thymus. J. Immunol. 210:1653–1666. 10.4049/jimmunol.2200780 PubMed DOI

Oh, J., Wu N., Barczak A.J., Barbeau R., Erle D.J., and Shin J.-S.. 2018. CD40 mediates maturation of thymic dendritic cells driven by self-reactive CD4 + thymocytes and supports development of natural regulatory T cells. J. Immunol. 200:1399–1412. 10.4049/jimmunol.1700768 PubMed DOI PMC

Owen, D.L., Mahmud S.A., Sjaastad L.E., Williams J.B., Spanier J.A., Simeonov D.R., Ruscher R., Huang W., Proekt I., Miller C.N., et al. 2019. Thymic regulatory T cells arise via two distinct developmental programs. Nat. Immunol. 20:195–205. 10.1038/s41590-018-0289-6 PubMed DOI PMC

Pačes, J., Grobárová V., Zadražil Z., Knížková K., Malinská N., Tušková L., Boes M., and Černý J.. 2023. MHC II–EGFP knock-in mouse model. Curr. Protoc. 3:1–40. 10.1002/cpz1.925 PubMed DOI

Pačes, J., Knížková K., Tušková L., Grobárová V., Zadražil Z., Boes M., and Černý J.. 2022. MHC II – EGFP knock-in mouse model is a suitable tool for systems and quantitative immunology. Immunol. Lett. 251–252:75–85. 10.1016/j.imlet.2022.10.007 PubMed DOI

Palor, M., Stejskal L., Mandal P., Lenman A., Alberione M.P., Kirui J., Moeller R., Ebner S., Meissner F., Gerold G., et al. 2020. Cholesterol sensing by CD81 is important for hepatitis C virus entry. J. Biol. Chem. 295:16931–16948. 10.1074/jbc.RA120.014761 PubMed DOI PMC

Park, J.E., Botting R.A., Conde C.D., Popescu D.M., Lavaert M., Kunz D.J., Goh I., Stephenson E., Ragazzini R., Tuck E., et al. 2020. A cell atlas of human thymic development defines T cell repertoire formation. Science. 367. 10.1126/science.aay3224 PubMed DOI PMC

Perry, J.S.A., and Hsieh C.S.. 2016. Development of T-cell tolerance utilizes both cell-autonomous and cooperative presentation of self-antigen. Immunol. Rev. 271:141–155. 10.1111/imr.12403 PubMed DOI PMC

Perry, J.S.A., Lio C.W.J., Kau A.L., Nutsch K., Yang Z., Gordon J.I., Murphy K.M., and Hsieh C.S.. 2014. Distinct contributions of Aire and antigen-presenting-cell subsets to the generation of self-tolerance in the thymus. Immunity. 41:414–426. 10.1016/j.immuni.2014.08.007 PubMed DOI PMC

Perry, J.S.A., Russler-Germain E.V., Zhou Y.W., Purtha W., Cooper M.L., Choi J., Schroeder M.A., Salazar V., Egawa T., Lee B.C., et al. 2018. Transfer of cell-surface antigens by scavenger receptor CD36 promotes thymic regulatory T cell receptor repertoire development and allotolerance. Immunity. 48:923–936.e4. 10.1016/j.immuni.2018.04.007 PubMed DOI PMC

Qiu, C.-H., Miyake Y., Kaise H., Kitamura H., Ohara O., and Tanaka M.. 2009. Novel subset of CD8{alpha}+ dendritic cells localized in the marginal zone is responsible for tolerance to cell-associated antigens. J. Immunol. 182:4127–4136. 10.4049/jimmunol.0803364 PubMed DOI

Ramsey, C., Winqvist O., Puhakka L., Halonen M., Moro A., Kämpe O., Eskelin P., Pelto-Huikko M., and Peltonen L.. 2002. Aire deficient mice develop multiple features of APECED phenotype and show altered immune response. Hum. Mol. Genet. 11:397–409. 10.1093/hmg/11.4.397 PubMed DOI

Rescigno, M., Urbano M., Valzasina B., Francolini M., Rotta G., Bonasio R., Granucci F., Kraehenbuhl J.P., and Ricciardi-Castagnoli P.. 2001. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat. Immunol. 2:361–367. 10.1038/86373 PubMed DOI

del Rio, M.-L., Bernhardt G., Rodriguez-Barbosa J.I., and Förster R.. 2010. Development and functional specialization of CD103+ dendritic cells. Immunol. Rev. 234:268–281. 10.1111/J.0105-2896.2009.00874.X PubMed DOI

Sanos, S.L., Nowak J., Fallet M., and Bajenoff M.. 2011. Stromal cell networks regulate thymocyte migration and dendritic cell behavior in the thymus. J. Immunol. 186:2835–2841. 10.4049/jimmunol.1003563 PubMed DOI

Sansom, S.N., Shikama-Dorn N., Zhanybekova S., Nusspaumer G., Macaulay I.C., Deadman M.E., Heger A., Ponting C.P., and Holländer G.A.. 2014. Population and single-cell genomics reveal the Aire dependency, relief from Polycomb silencing, and distribution of self-antigen expression in thymic epithelia. Genome Res. 24:1918–1931. 10.1101/gr.171645.113 PubMed DOI PMC

Sapone, A., de Magistris L., Pietzak M., Clemente M.G., Tripathi A., Cucca F., Lampis R., Kryszak D., Cartenì M., Generoso M., et al. 2006. Zonulin upregulation is associated with increased gut permeability in subjects with type 1 diabetes and their relatives. Diabetes. 55:1443–1449. 10.2337/db05-1593 PubMed DOI

Schriek, P., and Villadangos J.A.. 2023. Trogocytosis and cross-dressing in antigen presentation. Curr. Opin. Immunol. 83:102331. 10.1016/j.coi.2023.102331 PubMed DOI

Sharpe, A.H., and Pauken K.E.. 2018. The diverse functions of the PD1 inhibitory pathway. Nat. Rev. Immunol. 18:153–167. 10.1038/nri.2017.108 PubMed DOI

Silva-Sanchez, A., Meza-Perez S., Liu M., Stone S.L., Flores-Romo L., Ubil E., Lund F.E., Rosenberg A.F., and Randall T.D.. 2023. Activation of regulatory dendritic cells by Mertk coincides with a temporal wave of apoptosis in neonatal lungs. Sci. Immunol. 8:eadc9081. 10.1126/sciimmunol.adc9081 PubMed DOI PMC

Sisirak, V., Sally B., D’Agati V., Martinez-Ortiz W., Özçakar Z.B., David J., Rashidfarrokhi A., Yeste A., Panea C., Chida A.S., et al. 2016. Digestion of chromatin in apoptotic cell microparticles prevents autoimmunity. Cell. 166:88–101. 10.1016/j.cell.2016.05.034 PubMed DOI PMC

Smigiel, K.S., Richards E., Srivastava S., Thomas K.R., Dudda J.C., Klonowski K.D., and Campbell D.J.. 2014. CCR7 provides localized access to IL-2 and defines homeostatically distinct regulatory T cell subsets. J. Exp. Med. 211:121–136. 10.1084/jem.20131142 PubMed DOI PMC

Sung, S.-S.J., Fu S.M., Rose C.E., Gaskin F., Ju S.-T., and Beaty S.R.. 2006. A major lung CD103 (alphaE)-beta7 integrin-positive epithelial dendritic cell population expressing Langerin and tight junction proteins. J. Immunol. 176:2161–2172. 10.4049/JIMMUNOL.176.4.2161 PubMed DOI

Susaki, E.A., Tainaka K., Perrin D., Yukinaga H., Kuno A., and Ueda H.R.. 2015. Advanced CUBIC protocols for whole-brain and whole-body clearing and imaging. Nat. Protoc. 10:1709–1727. 10.1038/nprot.2015.085 PubMed DOI

Tajik, N., Frech M., Schulz O., Schälter F., Lucas S., Azizov V., Dürholz K., Steffen F., Omata Y., Rings A., et al. 2020. Targeting zonulin and intestinal epithelial barrier function to prevent onset of arthritis. Nat. Commun. 11:1995. 10.1038/s41467-020-15831-7 PubMed DOI PMC

Tokumasu, R., Yamaga K., Yamazaki Y., Murota H., Suzuki K., Tamura A., Bando K., Furuta Y., Katayama I., and Tsukita S.. 2016. Dose-dependent role of claudin-1 in vivo in orchestrating features of atopic dermatitis. Proc. Natl. Acad. Sci. USA. 113:E4061–E4068. 10.1073/pnas.1525474113 PubMed DOI PMC

Tsukuba, T., Okamoto K., Okamoto Y., Yanagawa M., Kohmura K., Yasuda Y., Uchi H., Nakahara T., Furue M., Nakayama K., et al. 2003. Association of cathepsin E deficiency with development of atopic dermatitis. J. Biochem. 134:893–902. 10.1093/jb/mvg216 PubMed DOI

Van Itallie, C.M., and Anderson J.M.. 2013. Claudin interactions in and out of the tight junction. Tissue Barriers. 1:e25247. 10.4161/tisb.25247 PubMed DOI PMC

Vobořil, M., Brabec T., Dobeš J., Šplíchalová I., Březina J., Čepková A., Dobešová M., Aidarova A., Kubovčiak J., Tsyklauri O., et al. 2020. Toll-like receptor signaling in thymic epithelium controls monocyte-derived dendritic cell recruitment and Treg generation. Nat. Commun. 11:2361. 10.1038/s41467-020-16081-3 PubMed DOI PMC

Vobořil, M., Březina J., Brabec T., Dobeš J., Ballek O., Dobešová M., Manning J., Blumberg R.S., and Filipp D.. 2022. A model of preferential pairing between epithelial and dendritic cells in thymic antigen transfer. Elife. 11:e71578. 10.7554/eLife.71578 PubMed DOI PMC

Weber, C.R., Nalle S.C., Tretiakova M., Rubin D.T., and Turner J.R.. 2008. Claudin-1 and claudin-2 expression is elevated in inflammatory bowel disease and may contribute to early neoplastic transformation. Lab. Invest. 88:1110–1120. 10.1038/labinvest.2008.78 PubMed DOI PMC

Wohn, C., Le Guen V., Voluzan O., Fiore F., Henri S., and Malissen B.. 2020. Absence of MHC class II on cDC1 dendritic cells triggers fatal autoimmunity to a cross-presented self-antigen. Sci. Immunol. 5:eaba1896. 10.1126/sciimmunol.aba1896 PubMed DOI

Yao, X., Wang X., Hu X., Liu Z., Liu J., Zhou H., Shen X., Wei Y., Huang Z., Ying W., et al. 2017. Homology-mediated end joining-based targeted integration using CRISPR/Cas9. Cell Res. 27:801–814. 10.1038/cr.2017.76 PubMed DOI PMC

Yates, A.D., Achuthan P., Akanni W., Allen J., Allen J., Alvarez-Jarreta J., Amode M.R., Armean I.M., Azov A.G., Bennett R., et al. 2020. Ensembl 2020. Nucleic Acids Res. 48:D682–D688. 10.1093/nar/gkz966 PubMed DOI PMC

Zaidi, N., and Kalbacher H.. 2008. Cathepsin E: A mini review. Biochem. Biophys. Res. Commun. 367:517–522. 10.1016/j.bbrc.2007.12.163 PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...