Serum steroid metabolome pattern is associated with the response to prednisolone therapy of male patients with IgA nephropathy
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
41486683
PubMed Central
PMC12777798
DOI
10.1080/0886022x.2025.2609353
Knihovny.cz E-zdroje
- Klíčová slova
- IgA nephropathy, biomarker, corticosteroid therapy, steroid metabolome,
- MeSH
- biologické markery krev MeSH
- dospělí MeSH
- glukokortikoidy * terapeutické užití MeSH
- IgA nefropatie * farmakoterapie krev MeSH
- lidé středního věku MeSH
- lidé MeSH
- metabolom * MeSH
- mladý dospělý MeSH
- prednisolon * terapeutické užití MeSH
- prospektivní studie MeSH
- proteinurie farmakoterapie MeSH
- steroidy * krev MeSH
- výsledek terapie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biologické markery MeSH
- glukokortikoidy * MeSH
- prednisolon * MeSH
- steroidy * MeSH
IgA nephropathy (IgAN) is characterized by the deposition of galactose-deficient IgA1 (Gd-IgA1)-containing immune complexes into kidney mesangium leading to glomerular inflammation and injury. In patients with active IgAN non-responding to renin-angiotensin system blocking drugs (RASBs), corticosteroids (CSs) are recommended. Although CSs reduce significantly serum levels of Gd-IgA1, IgA-containing immune complexes, and proteinuria, their clinical effect in IgAN is variable. Because IgAN patients exhibit abnormal serum concentration of several endogenous steroid metabolites, some of which exhibit immuno-protective/regulating functions, we analyzed serum metabolites which could predict clinical response to CS therapy. This prospective study was performed in 18 male IgAN patients to identify potential biomarkers for personalized CS therapy. Using LC-MS set of 85 steroid metabolites was tested in the sera of IgAN patients before CS therapy initiation to identify those with statistically different level in patients clinically responding and not-responding to CS therapy. Responders were those subjects whose proteinuria decrease below 1 g/day after 6-12 months of CS therapy. Statistical analysis revealed significant and clinically relevant differences in the steroid profile between responders and non-responders. The key and consistent finding across the entire analysis is that non-responder status is associated with globally higher level of almost all analyzed steroids. The response of IgAN patients to CS therapy could be predicted by measuring the serum levels of selected steroid metabolites to receive steroid profile. Observation needs to be confirmed in large cohorts of various ethnic origin to be applicable for routine clinical protocols.
In patients with active IgAN non-responding to ACE/ARBs, corticosteroids (CSs) should be offered according to current KDIGO recommendations.Selected steroid metabolites are significantly associated with clinical response to CS therapy with proteinuria level below 1 g/day one year after CS therapy initiation.Identification of biomarkers predicting output of CS therapy in IgAN represents a promising progress in stratification of IgAN patients.
Department of Internal Medicine University Hospital Ostrava Ostrava Czech Republic
Department of Microbiology University of Alabama at Birmingham Birmingham Alabama USA
Department of Steroids and Proteofactors Institute of Endocrinology Prague Czech Republic
Department of Transfusion Medicine University Hospital Olomouc Olomouc Czech Republic
Zobrazit více v PubMed
Mestecky J, Raska M, Julian BA, et al. IgA nephropathy: molecular mechanisms of the disease. Annu Rev Pathol. 2013;8(1):217–240. doi: 10.1146/annurev-pathol-011110-130216. PubMed DOI
Mestecky J, Novak J, Moldoveanu Z, et al. IgA nephropathy enigma. Clin Immunol. 2016;172:72–77. doi: 10.1016/j.clim.2016.07.011. PubMed DOI PMC
KDIGO . KDIGO 2021 clinical practice guideline for the management of glomerular diseases. Kidney Int. 2021;100(4S):S1–S276. PubMed
Kosztyu P, Hill M, Jemelkova J, et al. Glucocorticoids reduce aberrant O-glycosylation of IgA1 in IgA nephropathy patients. Kidney Blood Press Res. 2018;43(2):350–359. doi: 10.1159/000487903. PubMed DOI
Lv J, Wong MG, Hladunewich MA, et al. Effect of oral methylprednisolone on decline in kidney function or kidney failure in patients with IgA nephropathy: the TESTING randomized clinical trial. JAMA. 2022;327(19):1888–1898. doi: 10.1001/jama.2022.5368. PubMed DOI PMC
Šterzl I, Hill M, Stárka L, et al. Patients with IgA nephropathy have altered levels of immunomodulatory C19 steroids. Glucocorticoid therapy with addition of adrenal androgens may be the choice. Physiol Res. 2017;66(Suppl 3):S433–S442. doi: 10.33549/physiolres.933732. PubMed DOI
Auci DL, Reading CL, Frincke JM.. 7-Hydroxy androstene steroids and a novel synthetic analogue with reduced side effects as a potential agent to treat autoimmune diseases. Autoimmun Rev. 2009;8(5):369–372. doi: 10.1016/j.autrev.2008.11.011. PubMed DOI
Ahlem CN, Page TM, Auci DL, et al. Novel components of the human metabolome: the identification, characterization and anti-inflammatory activity of two 5-androstene tetrols. Steroids. 2011;76(1–2):145–155. doi: 10.1016/j.steroids.2010.10.005. PubMed DOI
Pettersson H, Lundqvist J, Norlin M.. Effects of CYP7B1-mediated catalysis on estrogen receptor activation. Biochim Biophys Acta. 2010;1801(9):1090–1097. doi: 10.1016/j.bbalip.2010.05.011. PubMed DOI
Reading CL, Frincke JM, White SK.. Molecular targets for 17α-Ethynyl-5-androstene-3β,7β,17β-triol, an anti-inflammatory agent derived from the human metabolome. PLoS One. 2012;7(2):e32147. doi: 10.1371/journal.pone.0032147. PubMed DOI PMC
Moldoveanu Z, Wyatt RJ, Lee JY, et al. Patients with IgA nephropathy have increased serum galactose-deficient IgA1 levels. Kidney Int. 2007;71(11):1148–1154. doi: 10.1038/sj.ki.5002185. PubMed DOI
Zachova K, Kosztyu P, Zadrazil J, et al. Role of epstein-barr virus in pathogenesis and racial distribution of IgA nephropathy. Front Immunol. 2020;11:267. doi: 10.3389/fimmu.2020.00267. PubMed DOI PMC
Wold AE, Motas C, Svanborg C, et al. Characterization of IgA1, IgA2 and secretory IgA carbohydrate chains using plant lectins. Adv Exp Med Biol. 1995;371A:585–589. doi: 10.1007/978-1-4615-1941-6_123. PubMed DOI
Hill M, Hána V, Velíková M, et al. A method for determination of one hundred endogenous steroids in human serum by gas chromatography-tandem mass spectrometry. Physiol Res. 2019;68(2):179–207. doi: 10.33549/physiolres.934124. PubMed DOI
Brochu M, Bélanger A.. Comparative-study of plasma steroid and steroid glucuronide levels in normal men and in men with benign prostatic hyperplasia. Prostate. 1987;11(1):33–40. doi: 10.1002/pros.2990110105. PubMed DOI
Sánchez-Guijo A, Oji V, Hartmann MF, et al. Simultaneous quantification of cholesterol sulfate, androgen sulfates, and progestagen sulfates in human serum by LC-MS/MS. J Lipid Res. 2015;56(9):1843–1851. doi: 10.1194/jlr.D061499. PubMed DOI PMC
Labrie F, Bélanger A, Cusan L, et al. Marked decline in serum concentrations of adrenal C19 sex steroid precursors and conjugated androgen metabolites during aging. J Clin Endocrinol Metab. 1997;82(8):2396–2402. doi: 10.1210/jcem.82.8.4160. PubMed DOI
Tokushige K, Hashimoto E, Kodama K, et al. Serum metabolomic profile and potential biomarkers for severity of fibrosis in nonalcoholic fatty liver disease. J Gastroenterol. 2013;48(12):1392–1400. doi: 10.1007/s00535-013-0766-5. PubMed DOI PMC
Meng LJ, Reyes H, Axelson M, et al. Progesterone metabolites and bile acids in serum of patients with intrahepatic cholestasis of pregnancy: effect of ursodeoxycholic acid therapy. Hepatology. 1997;26(6):1573–1579. doi: 10.1002/hep.510260627. PubMed DOI
Abu-Hayyeh S, Papacleovoulou G, Lövgren-Sandblom A, et al. Intrahepatic cholestasis of pregnancy levels of sulfated progesterone metabolites inhibit farnesoid X receptor resulting in a cholestatic phenotype. Hepatology. 2013;57(2):716–726. doi: 10.1002/hep.26055. PubMed DOI PMC
Coppo R, Lofaro D, Camilla RR, et al. Risk factors for progression in children and young adults with IgA nephropathy: an analysis of 261 cases from the VALIGA European cohort. Pediatr Nephrol. 2017;32(1):139–150. doi: 10.1007/s00467-016-3469-3. PubMed DOI
Barbour SJ, Espino-Hernandez G, Reich HN, et al. The MEST score provides earlier risk prediction in lgA nephropathy. Kidney Int. 2016;89(1):167–175. doi: 10.1038/ki.2015.322. PubMed DOI
Rauen T, Eitner F, Fitzner C, et al. Intensive supportive care plus immunosuppression in IgA nephropathy. N Engl J Med. 2015;373(23):2225–2236. doi: 10.1056/NEJMoa1415463. PubMed DOI
Zachova K, Jemelkova J, Kosztyu P, et al. Galactose-deficient IgA1 B cells in the circulation of IgA nephropathy patients carry preferentially lambda light chains and mucosal homing receptors. J Am Soc Nephrol. 2022;33(5):908–917. doi: 10.1681/ASN.2021081086. PubMed DOI PMC
Fellström BC, Barratt J, Cook H, et al. Targeted-release budesonide versus placebo in patients with IgA nephropathy (NEFIGAN): a double-blind, randomised, placebo-controlled phase 2b trial. Lancet. 2017;389(10084):2117–2127. doi: 10.1016/S0140-6736(17)30550-0. PubMed DOI
Haas M, Verhave JC, Liu ZH, et al. A multicenter study of the predictive value of crescents in IgA nephropathy. J Am Soc Nephrol. 2017;28(2):691–701. doi: 10.1681/ASN.2016040433. PubMed DOI PMC
Coppo R, Troyanov S, Bellur S, et al. Validation of the Oxford classification of IgA nephropathy in cohorts with different presentations and treatments. Kidney Int. 2014;86(4):828–836. doi: 10.1038/ki.2014.63. PubMed DOI PMC
Inker LA, Mondal H, Greene T, et al. Early change in urine protein as a surrogate end point in studies of IgA nephropathy: an individual-patient meta-analysis. Am J Kidney Dis. 2016;68(3):392–401. doi: 10.1053/j.ajkd.2016.02.042. PubMed DOI
Sarcina C, Tinelli C, Ferrario F, et al. Changes in proteinuria and side effects of corticosteroids alone or in combination with azathioprine at different stages of IgA nephropathy. Clin J Am Soc Nephrol. 2016;11(6):973–981. doi: 10.2215/CJN.02300215. PubMed DOI PMC
Hu J, Zhang Z, Shen WJ, et al. Cellular cholesterol delivery, intracellular processing and utilization for biosynthesis of steroid hormones. Nutr Metab (Lond). 2010;7(1):47. doi: 10.1186/1743-7075-7-47. PubMed DOI PMC
Han TS, Walker BR, Arlt W, et al. Treatment and health outcomes in adults with congenital adrenal hyperplasia. Nat Rev Endocrinol. 2014;10(2):115–124. doi: 10.1038/nrendo.2013.239. PubMed DOI
El Hajj Y, Shahin T, Dieng MM, et al. Pregnenolone sulfate induces transcriptional and immunoregulatory effects on T cells. Sci Rep. 2024;14(1):6782. doi: 10.1038/s41598-024-57327-0. PubMed DOI PMC
Murugan S, Jakka P, Namani S, et al. The neurosteroid pregnenolone promotes degradation of key proteins in the innate immune signaling to suppress inflammation. J Biol Chem. 2019;294(12):4596–4607. doi: 10.1074/jbc.RA118.005543. PubMed DOI PMC
Mahata B, Zhang X, Kolodziejczyk AA, et al. Single-cell RNA sequencing reveals T helper cells synthesizing steroids de novo to contribute to immune homeostasis. Cell Rep. 2014;7(4):1130–1142. doi: 10.1016/j.celrep.2014.04.011. PubMed DOI PMC
Balan I, Aurelian L, Schleicher R, et al. Neurosteroid allopregnanolone (3alpha,5alpha-THP) inhibits inflammatory signals induced by activated MyD88-dependent toll-like receptors. Transl Psychiatry. 2021;11(1):145. doi: 10.1038/s41398-021-01266-1. PubMed DOI PMC
Balan I, Beattie MC, O’Buckley TK, et al. Endogenous neurosteroid (3alpha,5alpha)3-hydroxypregnan-20-one inhibits toll-like-4 receptor activation and pro-inflammatory signaling in macrophages and brain. Sci Rep. 2019;9(1):1220. PubMed PMC
Slominski RM, Tuckey RC, Manna PR, et al. Extra-adrenal glucocorticoid biosynthesis: implications for autoimmune and inflammatory disorders. Genes Immun. 2020;21(3):150–168. doi: 10.1038/s41435-020-0096-6. PubMed DOI PMC
Kamin HS, Kertes DA.. Cortisol and DHEA in development and psychopathology. Horm Behav. 2017;89:69–85. doi: 10.1016/j.yhbeh.2016.11.018. PubMed DOI
Trombetta AC, Meroni M, Cutolo M.. Steroids and autoimmunity. Front Horm Res. 2017;48:121–132. doi: 10.1159/000452911. PubMed DOI
Hildebrandt H, Stachowiak R, Heber I, et al. Relation between cognitive fatigue and circadian or stress related cortisol levels in MS patients. Mult Scler Relat Disord. 2020;45:102440. doi: 10.1016/j.msard.2020.102440. PubMed DOI
Rižner TL, Penning TM.. Role of aldo-keto reductase family 1 (AKR1) enzymes in human steroid metabolism. Steroids. 2014;79:49–63. doi: 10.1016/j.steroids.2013.10.012. PubMed DOI PMC
Tan XD, Dou YC, Shi CW, et al. Administration of dehydroepiandrosterone ameliorates experimental autoimmune neuritis in Lewis rats. J Neuroimmunol. 2009;207(1-2):39–44. doi: 10.1016/j.jneuroim.2008.11.011. PubMed DOI
Choi IS, Cui Y, Koh YA, et al. Effects of dehydroepiandrosterone on Th2 cytokine production in peripheral blood mononuclear cells from asthmatics. Korean J Intern Med. 2008;23(4):176–181. doi: 10.3904/kjim.2008.23.4.176. PubMed DOI PMC
Sterzl I, Hampl R, Sterzl J, et al. 7Beta-OH-DHEA counteracts dexamethasone induced suppression of primary immune response in murine spleenocytes. J Steroid Biochem Mol Biol. 1999;71(3-4):133–137. doi: 10.1016/s0960-0760(99)00134-x. PubMed DOI
Pratschke S, von Dossow-Hanfstingl V, Dietz J, et al. Dehydroepiandrosterone modulates T-cell response after major abdominal surgery. J Surg Res. 2014;189(1):117–125. doi: 10.1016/j.jss.2014.02.002. PubMed DOI
Le Mée S, Hennebert O, Ferrec C, et al. 7beta-Hydroxy-epiandrosterone-mediated regulation of the prostaglandin synthesis pathway in human peripheral blood monocytes. Steroids. 2008;73(11):1148–1159. doi: 10.1016/j.steroids.2008.05.001. PubMed DOI
Tang W, Eggertsen G, Chiang JY, et al. Estrogen-mediated regulation of CYP7B1: a possible role for controlling DHEA levels in human tissues. J Steroid Biochem Mol Biol. 2006;100(1–3):42–51. doi: 10.1016/j.jsbmb.2006.02.005. PubMed DOI
Li J, Lv J, Wong MG, et al. Correlation of urinary soluble CD163 levels with disease activity and treatment response in IgA nephropathy. Kidney Int Rep. 2024;9(10):3016–3026. doi: 10.1016/j.ekir.2024.07.031. PubMed DOI PMC