De novo and inherited dominant variants in U4 and U6 snRNA genes cause retinitis pigmentosa
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
U01 EY030580
NEI NIH HHS - United States
R01 EY012910
NEI NIH HHS - United States
Wellcome Trust - United Kingdom
P30 EY014104
NEI NIH HHS - United States
R01 EY031663
NEI NIH HHS - United States
UG1 EY033292
NEI NIH HHS - United States
P30 EY002162
NEI NIH HHS - United States
R01 EY030499
NEI NIH HHS - United States
R01 EY018213
NEI NIH HHS - United States
UG1 EY033293
NEI NIH HHS - United States
R01 EY035717
NEI NIH HHS - United States
P30 EY022589
NEI NIH HHS - United States
T32 EY026590
NEI NIH HHS - United States
UG1 EY033286
NEI NIH HHS - United States
R01 EY033770
NEI NIH HHS - United States
R01 EY024698
NEI NIH HHS - United States
P30 EY019007
NEI NIH HHS - United States
R24 EY027285
NEI NIH HHS - United States
K99 EY036930
NEI NIH HHS - United States
R01 EY030591
NEI NIH HHS - United States
R24 EY028758
NEI NIH HHS - United States
PubMed
41513982
PubMed Central
PMC12807869
DOI
10.1038/s41588-025-02451-4
PII: 10.1038/s41588-025-02451-4
Knihovny.cz E-zdroje
- MeSH
- dominantní geny * MeSH
- lidé MeSH
- malý jaderný ribonukleoprotein U4-U6 * genetika MeSH
- mutace MeSH
- retinopathia pigmentosa * genetika MeSH
- ribonukleoproteiny malé jaderné genetika MeSH
- RNA malá jaderná * genetika MeSH
- rodokmen MeSH
- spliceozomy genetika MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- malý jaderný ribonukleoprotein U4-U6 * MeSH
- ribonukleoproteiny malé jaderné MeSH
- RNA malá jaderná * MeSH
- U4 small nuclear RNA MeSH Prohlížeč
- U6 small nuclear RNA MeSH Prohlížeč
Small nuclear RNAs (snRNAs) combine with specific proteins to generate small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome. U4 snRNA forms a duplex with U6 and, together with U5, contributes to the tri-snRNP spliceosomal complex. Variants in RNU4-2, which encodes U4, have recently been implicated in neurodevelopmental disorders. Here we show that heterozygous inherited and de novo variants in RNU4-2 and in four RNU6 paralogs (RNU6-1, RNU6-2, RNU6-8 and RNU6-9), which encode U6, recur in individuals with nonsyndromic retinitis pigmentosa (RP), a genetic disorder causing progressive blindness. These variants cluster within the three-way junction of the U4/U6 duplex, a site that interacts with tri-snRNP splicing factors also known to cause RP (PRPF3, PRPF8, PRPF31), and seem to affect snRNP biogenesis. Based on our cohort, deleterious variants in RNU4-2 and RNU6 paralogs may explain up to ~1.4% of otherwise undiagnosed RP cases. This study highlights the contribution of noncoding RNA genes to Mendelian disease and reveals pleiotropy in RNU4-2, where distinct variants underlie neurodevelopmental disorder and retinal degeneration.
Bonei Olam Center for Rare Jewish Genetic Diseases Brooklyn NY USA
Center for Biomedical Network Research on Rare Diseases Instituto de Salud Carlos 3 Madrid Spain
Center for Medical Genetics Ghent University Hospital Ghent Belgium
Center for Rare Disease University of Tübingen Tübingen Germany
Centre for Gene Therapy and Regenerative Medicine King's College London London UK
Clinical Translation Group Institute of Molecular and Clinical Ophthalmology Basel Basel Switzerland
College of Medical and Dental Sciences University of Birmingham Birmingham UK
Department of Biochemistry Faculty of Medicine UNAM Mexico City Mexico
Department of Biomolecular Medicine Ghent University Ghent Belgium
Department of Child Neurology and Psychiatry IRCCS Mondino Foundation Pavia Italy
Department of Clinical Genetics Erasmus MC University Medical Center Rotterdam the Netherlands
Department of Clinical Genetics Institute of Clinical Medicine University of Tartu Tartu Estonia
Department of Clinical Pharmacology Medical University of Vienna Vienna Austria
Department of Genetics Genomics and Cancer Sciences University of Leicester Leicester UK
Department of Genetics Institute of Ophthalmology Conde de Valenciana Mexico City Mexico
Department of Head and Skin Ghent University Ghent Belgium
Department of Histology and Embryology Medical University of Warsaw Warsaw Poland
Department of Human Genetics Radboud University Medical Center Nijmegen the Netherlands
Department of Internal Medicine Radboud University Medical Center Nijmegen the Netherlands
Department of Medical Genetics Saint Etienne University Hospital Saint Etienne France
Department of Medical Genetics ULS Santa Maria Lisboa Portugal
Department of Medical Retina Singapore National Eye Centre Singapore Singapore
Department of Medicine and Surgery Medical Genetics University of Parma Parma Italy
Department of Molecular Medicine University of Pavia Pavia Italy
Department of Neuroscience Biodonostia Health Research Institute Donostia San Sebastián Spain
Department of Ophthalmology Amsterdam University Medical Center Amsterdam the Netherlands
Department of Ophthalmology and Human Genetics University of Michigan Ann Arbor MI USA
Department of Ophthalmology Columbia University Irving Medical Center New York NY USA
Department of Ophthalmology Erasmus MC University Medical Center Rotterdam the Netherlands
Department of Ophthalmology Federal University of São Paulo UNIFESP São Paulo Brazil
Department of Ophthalmology Fundación Jiménez Díaz University Hospital Madrid Spain
Department of Ophthalmology Ghent University Hospital Ghent Belgium
Department of Ophthalmology HUB Erasme Hospital Brussels Belgium
Department of Ophthalmology Leiden University Medical Center Leiden the Netherlands
Department of Ophthalmology Medical University of Warsaw Warsaw Poland
Department of Ophthalmology Nagoya University Graduate School of Medicine Nagoya Japan
Department of Ophthalmology NYU Grossman School of Medicine New York NY USA
Department of Ophthalmology Oslo University Hospital Oslo Norway
Department of Ophthalmology Radboud University Medical Center Nijmegen the Netherlands
Department of Ophthalmology Rambam Health Care Campus Haifa Israel
Department of Ophthalmology Rothschild Foundation Hospital Paris France
Department of Ophthalmology School of Medicine University of Crete Heraklion Crete Greece
Department of Ophthalmology School of Medicine University of Ioannina Ioannina Greece
Department of Ophthalmology Semmelweis University Budapest Hungary
Department of Ophthalmology Shiley Eye Institute University of California San Diego La Jolla CA USA
Department of Ophthalmology The Jikei University School of Medicine Minato ku Japan
Department of Ophthalmology University Hospital of Lund Lund Sweden
Department of Ophthalmology University of Basel Basel Switzerland
Department of Ophthalmology University of the Basque Country San Sebastián Spain
Department of Optometry and Vision Sciences The University of Melbourne Melbourne Victoria Australia
Department of Physiology Development and Neuroscience University of Cambridge Cambridge UK
eCODE genetics Amgen Inc Reykjavik Iceland
European Vision Institute Basel Switzerland
Eye Clinic Tartu University Hospital Tartu Estonia
Eye Disease Clinic Children's University Hospital Riga Riga Latvia
Faculty of Medicine School of Health Sciences University of Iceland Reykjavik Iceland
FutureNeuro Research Ireland Centre RCSI University of Medicine and Health Sciences Dublin Ireland
GCS Auragen Plan France Medecine Genomique Lyon France
Genetics and Personalized Medicine Clinic Tartu University Hospital Tartu Estonia
Genomic Medicine Telethon Institute of Genetics and Medicine Pozzuoli Italy
Genomics England Ltd London UK
Genomics for Health in Africa Ghana South Africa
Institute for Neurosciences of Montpellier Montpellier University INSERM Montpellier France
Instituto de Investigación Sanitaria La Fe and CIBERER Valencia Spain
JC Self Research Institute Greenwood Genetic Center Greenwood SC USA
Laboratoire de Biologie Médicale SeqOIA Site Broussais Paris France
Laboratory of Basic Immunology Faculdade de Medicina Universidade de Lisboa Lisboa Portugal
Medical Genetics and Prenatal Diagnostics Clinic Children's Clinical University Hospital Riga Latvia
Molecular Biology Research Unit St John Eye Hospital Group Jerusalem Palestine
Molecular Genetics Laboratory Montpellier University CHU Montpellier Montpellier France
National Institute of Health Research Biomedical Research Centre Moorfields Eye Hospital London UK
Neurogenetics Research Center IRCCS Mondino Foundation Pavia Italy
Ocular Genomics Institute Massachusetts Eye and Ear Harvard Medical School Boston MA USA
Ophthalmic Genetics Group Institute of Molecular and Clinical Ophthalmology Basel Basel Switzerland
Oxford Eye Hospital Oxford University Hospitals NHS Foundation Trust Oxford UK
Pallas Kliniken AG Pallas Klinik Zürich Zürich Switzerland
Physicians Dialysis Miami FL USA
Rappaport Faculty of Medicine Technion Israel Institute of Technology Haifa Israel
Retina Foundation of the Southwest Dallas TX USA
Section of Ophthalmology King's College London St Thomas' Hospital Campus London UK
Serviço de Oftalmologia Instituto de Oftalmologia Dr Gama Pinto Lisboa Portugal
Singapore Eye Research Institute Singapore Singapore
SPKSO Ophthalmic University Hospital in Warsaw Warsaw Poland
The Rotterdam Eye Hospital Rotterdam Ophthalmic Institute Rotterdam the Netherlands
UCL Institute of Ophthalmology University College London London UK
UMRS1138 Centre de Recherche des Cordeliers Université Paris Cité INSERM Paris France
Université de Lille INSERM U1172 LilNCog Lille Neuroscience and Cognition Lille France
University Eye Hospital Centre for Ophthalmology University Hospital Tübingen Tübingen Germany
Vista Vision Eye Clinic Brescia Italy
Vitreous Retina Macula Consultants of New York New York NY USA
Zobrazit více v PubMed
Verbakel, S. K. et al. Non-syndromic retinitis pigmentosa. PubMed DOI
Peter, V. G. et al. The first genetic landscape of inherited retinal dystrophies in Portuguese patients identifies recurrent homozygous mutations as a frequent cause of pathogenesis. PubMed DOI PMC
Perea-Romero, I. et al. Genetic landscape of 6089 inherited retinal dystrophies affected cases in Spain and their therapeutic and extended epidemiological implications. PubMed DOI PMC
Conti, G. M. et al. Genetics of retinitis pigmentosa and other hereditary retinal disorders in western Switzerland. PubMed
Rivolta, C. et al. RetiGene, a comprehensive gene atlas for inherited retinal diseases. PubMed DOI PMC
Hanany, M., Rivolta, C. & Sharon, D. Worldwide carrier frequency and genetic prevalence of autosomal recessive inherited retinal diseases. PubMed DOI PMC
Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. PubMed DOI PMC
Rogalska, M. E. et al. Transcriptome-wide splicing network reveals specialized regulatory functions of the core spliceosome. PubMed DOI
Chen, Y. et al. De novo variants in the PubMed DOI PMC
Greene, D. et al. Mutations in the U4 snRNA gene PubMed DOI PMC
Nava, C. et al. Dominant variants in major spliceosome U4 and U5 small nuclear RNA genes cause neurodevelopmental disorders through splicing disruption. PubMed DOI PMC
Jackson, A. et al. Analysis of R-loop forming regions identifies PubMed DOI PMC
Greene, D. et al. Mutations in the small nuclear RNA gene PubMed DOI PMC
McKie, A. B. et al. Mutations in the pre-mRNA splicing factor gene PubMed DOI
Weisschuh, N. et al. Genetic architecture of inherited retinal degeneration in Germany: a large cohort study from a single diagnostic center over a 9-year period. PubMed DOI
Mozaffari-Jovin, S. et al. The Prp8 RNase H-like domain inhibits Brr2-mediated U4/U6 snRNA unwinding by blocking Brr2 loading onto the U4 snRNA. PubMed DOI PMC
Liu, S. et al. Binding of the human Prp31 Nop domain to a composite RNA-protein platform in U4 snRNP. PubMed DOI
Chen, S. et al. A genomic mutational constraint map using variation in 76,156 human genomes. PubMed DOI PMC
Jaganathan, K. et al. Predicting splicing from primary sequence with deep learning. PubMed DOI
Pollard, K. S., Hubisz, M. J., Rosenbloom, K. R. & Siepel, A. Detection of nonneutral substitution rates on mammalian phylogenies. PubMed DOI PMC
Davydov, E. V. et al. Identifying a high fraction of the human genome to be under selective constraint using GERP++. PubMed DOI PMC
Denny, J. C. et al. The “All of Us” Research Program. PubMed DOI PMC
Panneman, D. M. et al. Cost-effective sequence analysis of 113 genes in 1,192 probands with retinitis pigmentosa and Leber congenital amaurosis. PubMed DOI PMC
Caulfield, M. et al. National Genomic Research Library.
Daiger, S. P., Bowne, S. J. & Sullivan, L. S. Genes and mutations causing autosomal dominant retinitis pigmentosa. PubMed DOI PMC
Sullivan, L. S. et al. Prevalence of disease-causing mutations in families with autosomal dominant retinitis pigmentosa: a screen of known genes in 200 families. PubMed DOI PMC
Charenton, C., Wilkinson, M. E. & Nagai, K. Mechanism of 5′ splice site transfer for human spliceosome activation. PubMed DOI PMC
Hardin, J. W., Warnasooriya, C., Kondo, Y., Nagai, K. & Rueda, D. Assembly and dynamics of the U4/U6 di-snRNP by single-molecule FRET. PubMed DOI PMC
Landrum, M. J. et al. ClinVar: public archive of relationships among sequence variation and human phenotype. PubMed DOI PMC
Zhong, Z. et al. Two novel mutations in PubMed DOI PMC
Denison, R. A., Van Arsdell, S. W., Bernstein, L. B. & Weiner, A. M. Abundant pseudogenes for small nuclear RNAs are dispersed in the human genome. PubMed DOI PMC
Tanackovic, G. et al. PubMed DOI PMC
D’Haene, E. et al. Comparative 3D genome analysis between neural retina and retinal pigment epithelium reveals differential PubMed DOI PMC
Prasetyo, N. K. & Gardner, P. P. Assessing the robustness of human ncRNA notation at HGNC. Preprint at
Skogholt, A. H. et al. Gene expression differences between PAXgene and Tempus blood RNA tubes are highly reproducible between independent samples and biobanks. PubMed DOI PMC
Hamel, C. Retinitis pigmentosa. PubMed DOI PMC
Grover, S. et al. Visual acuity impairment in patients with retinitis pigmentosa at age 45 years or older. PubMed DOI
Bodenbender, J. P. et al. Clinical and genetic findings in a cohort of patients with PRPF31-associated retinal dystrophy. PubMed DOI
Waseem, N. H. et al. Mutations in the gene coding for the pre-mRNA splicing factor, PRPF31, in patients with autosomal dominant retinitis pigmentosa. PubMed DOI
Maubaret, C. G. et al. Autosomal dominant retinitis pigmentosa with intrafamilial variability and incomplete penetrance in two families carrying mutations in PRPF8. PubMed DOI
Yusuf, I. H. et al. Clinical characterization of retinitis pigmentosa associated with variants in PubMed DOI PMC
Berson, E. L. Retinitis pigmentosa. The Friedenwald Lecture. PubMed
De Jonghe, J. et al. Saturation genome editing of RNU4-2 reveals distinct dominant and recessive neurodevelopmental disorders. Preprint at
Veltman, J. A. & Brunner, H. G. De novo mutations in human genetic disease. PubMed DOI
Petersen-Jones, S. M. et al. Patients and animal models of CNGβ1-deficient retinitis pigmentosa support gene augmentation approach. PubMed DOI PMC
Robson, A. G. et al. ISCEV Standard for full-field clinical electroretinography (2022 update). PubMed DOI PMC
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. PubMed DOI PMC
DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. PubMed DOI PMC
Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. PubMed DOI PMC
Yeo, G. & Burge, C. B. Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. PubMed DOI
Freeman, P. J., Hart, R. K., Gretton, L. J., Brookes, A. J. & Dalgleish, R. VariantValidator: accurate validation, mapping, and formatting of sequence variation descriptions. PubMed DOI PMC
Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. PubMed DOI PMC
Ellard, S. et al.
Biesecker, L. G. et al. ClinGen guidance for use of the PP1/BS4 co-segregation and PP4 phenotype specificity criteria for sequence variant pathogenicity classification. PubMed DOI PMC
Gruber, A. R., Lorenz, R., Bernhart, S. H., Neuböck, R. & Hofacker, I. L. The Vienna RNA websuite. PubMed DOI PMC
Johnson, P. Z. & Simon, A. E. RNAcanvas: interactive drawing and exploration of nucleic acid structures. PubMed DOI PMC
McHarg, S. et al. Mast cell infiltration of the choroid and protease release are early events in age-related macular degeneration associated with genetic risk at both chromosomes 1q32 and 10q26. PubMed DOI PMC
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. PubMed DOI PMC
Li, H. et al. The Sequence Alignment/Map format and SAMtools. PubMed DOI PMC
Wang, J. et al. ATAC-Seq analysis reveals a widespread decrease of chromatin accessibility in age-related macular degeneration. PubMed DOI PMC
Cherry, T. J. et al. Mapping the PubMed DOI PMC
Van de Sompele, S. et al. Multi-omics approach dissects PubMed DOI PMC
Jiang, H., Lei, R., Ding, S. W. & Zhu, S. Skewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end reads. PubMed DOI PMC
Shen, S. et al. rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-seq data. PubMed DOI PMC
Roithová, A. et al. The Sm-core mediates the retention of partially-assembled spliceosomal snRNPs in Cajal bodies until their full maturation. PubMed DOI PMC