Genome sequence of Halovibrio sp. HP20-59 as a promising polyhydroxybutyrate producer
Jazyk angličtina Země Německo Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
VVGS-PF-2023-2545
Pavol Jozef Safarik University in Kosice
LM2023050
MEYS CR
VEGA-1/0779/21
Ministry of education, research, development and youth of the Slovak republic
PubMed
41520089
PubMed Central
PMC12791064
DOI
10.1007/s00253-025-13647-3
PII: 10.1007/s00253-025-13647-3
Knihovny.cz E-zdroje
- Klíčová slova
- Halovibrio, Oceanospirillales order, Halophiles, PHA synthase (PhaC), Polyhydroxyalkanoates, Raman spectroscopy,
- MeSH
- acyltransferasy genetika MeSH
- DNA bakterií genetika MeSH
- fylogeneze MeSH
- genom bakteriální * MeSH
- hydroxybutyráty * metabolismus MeSH
- multigenová rodina MeSH
- Oceanospirillaceae * genetika metabolismus klasifikace MeSH
- polyhydroxyalkanoáty * biosyntéza metabolismus MeSH
- polyhydroxybutyráty MeSH
- RNA ribozomální 16S genetika MeSH
- sekvenční analýza DNA MeSH
- sekvenování celého genomu MeSH
- uhlík metabolismus MeSH
- zastoupení bazí MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- acyltransferasy MeSH
- DNA bakterií MeSH
- hydroxybutyráty * MeSH
- polyhydroxyalkanoáty * MeSH
- polyhydroxybutyrate MeSH Prohlížeč
- polyhydroxybutyráty MeSH
- RNA ribozomální 16S MeSH
- uhlík MeSH
Since plastics pose the greatest threat to humanity, it is essential to find an economic and sustainable solution to combat environmental pollution. In this study, the ability of polyhydroxyalkanoates (PHA) production by the halophilic bacterium Halovirbrio sp. HP20-59 in the presence of different carbon sources was examined. The strain showed a selective substrate preference, with the highest PHA production (reaching up to 73% of cell dry weight) in the presence of galactose, while fructose, arabinose, glycerol and xylose resulted in lower accumulation. Phylogenetic analysis based on the 16S rRNA gene sequence and whole-genome sequencing confirmed the HP20-59 strain as a novel species within the Oceanospirillales order. Draft genome showed a size of 4,165,370 bp with a GC content of 55.1% and a complete set of pha genes. The comparative analysis of the phaC gene identified a 638 amino acid-long class I poly(R)-hydroxyalkanoic acid synthase, showing 91% similarity to Halovibrio variabilis and 89% similarity to species within the Vreelandella genus, suggesting a possible horizontal gene transfer of the pha gene cluster. These findings highlight the unique genetic and metabolic characteristics of Halovibrio sp. HP20-59, making it a promising candidate for industrial PHA production and a valuable resource for research on sustainable biopolymers. KEY POINTS: The first study of PHB production by the halophilic Halovibrio spp. The highest level of PHB production observed using glucose, galactose, and sucrose. phaCAB operon possibly acquired by horizontal gene transfer from Vreelandella sp.
Zobrazit více v PubMed
Abdallah MB, Saadaoui I, Al-Ghouti MA, Zouari N, Hahladakis JN, Chamkha M, Sayadi S (2025) Advances in polyhydroxyalkanoate (PHA) production from renewable waste materials using halophilic microorganisms: a comprehensive review. Sci Total Environ 963:178452. 10.1016/j.scitotenv.2025.178452 PubMed DOI
Adeleye AT, Odoh CK, Enudi OC, Banjoko OO, Osiboye OO, Odediran ET, Louis H (2020) Sustainable synthesis and applications of polyhydroxyalkanoates (PHAs) from biomass. Process Biochem 96:174–193. 10.1016/j.procbio.2020.05.032 DOI
Ali SS, Elsamahy T, Abdelkarim EA, Al-Tohamy R, Kornaros M, Ruiz HA, Zhao T, Li F, Sun J (2022) Biowastes for biodegradable bioplastics production and end-of-life scenarios in circular bioeconomy and biorefinery concept. Bioresour Technol 363:127869. 10.1016/j.biortech.2022.127869 PubMed DOI
Angra V, Sehgal R, Gupta R (2023) Trends in PHA production by microbially diverse and functionally distinct communities. Microb Ecol 85:572–585. 10.1007/s00248-022-01995-w PubMed DOI
Bera A, Dubey S, Bhayani K, Mondal D, Mishra S, Ghosh PK (2015) Microbial synthesis of polyhydroxyalkanoate using seaweed-derived crude levulinic acid as co-nutrient. Int J Biol Macromol 72:487–494. 10.1016/j.ijbiomac.2014.08.037 PubMed DOI
Berlanga M, Miñana-Galbis D, Domènech O, Guerrero R (2012) Enhanced polyhydroxyalkanoates accumulation by PubMed DOI
Biswas A, Patra A, Paul A (2009) Production of poly-3-hydroxyalkanoic acids by a moderately halophilic bacterium, PubMed DOI
Brestovicova S, Kisková J, Nosáľová L, Piknová M, Kolesárová M, Pristaš P (2024) Comparative genomic analysis of two putative novel PubMed DOI PMC
Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S, Olsen GJ, Olson R, Overbeek R, Parrello B, Pusch GD, Shukla M (2015) RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 5:8365. 10.1038/srep08365 PubMed DOI PMC
Cai L, Tan D, Aibaidula G, Dong XR, Chen JC, Tian WD, Chen GQ (2011) Comparative genomics study of polyhydroxyalkanoates (PHA) and ectoine relevant genes from PubMed DOI PMC
Canovas V, Garcia-Chumillas S, Monzó F, Simó-Cabrera L, Fernández-Ayuso C, Pire C, Martínez-Espinosa RM (2021) Analysis of polyhydroxyalkanoates granules in PubMed DOI PMC
Catone MV, Ruiz JA, Castellanos M, Segura D, Espin G, López NI (2014) High polyhydroxybutyrate production in PubMed DOI PMC
Chouchene K, da Costa JP, Chamkha M, Ksibi M, Sayadi S (2023) Effects of microplastics’ physical and chemical properties on aquatic organisms: state-of-the-art and future research trends. Trends Anal Chem 166:117192. 10.1016/j.trac.2023.117192 DOI
Christensen M, Jablonski P, Altermark B, Irgum K, Hansen H (2021) High natural PHA production from acetate in PubMed DOI PMC
Ciobota V, Burkhardt EM, Schumacher W, Rösch P, Küsel K, Popp J (2010) The influence of intracellular storage material on bacterial identification by means of Raman spectroscopy. Anal Bioanal Chem 397:2929–2937. 10.1007/s00216-010-3895-1 PubMed DOI
De Gelder J, Willemse-Erix D, Scholtes MJ, Sanchez JI, Maquelin K, Vandenabeele P, De Boever P, Puppels GJ, Moens L, De Vos P (2008) Monitoring poly(3-hydroxybutyrate) production in PubMed DOI
de la Haba RR, Arahal DR, Sánchez-Porro C, Chuvochina M, Wittouck S, Hugenholtz P, Ventosa A (2023) A long-awaited taxogenomic investigation of the family Halomonadaceae. Front Microbiol 14:1293707. 10.3389/fmicb.2023.1293707 PubMed DOI PMC
Dobson SJ, Franzmann PD (1996) Unification of the genera DOI
Dobson SJ, McMeekin TA, Franzmann PD (1993) Phylogenetic relationships between some members of the genera PubMed DOI
Donkor ES, Dayie NT, Adiku TK (2014) Bioinformatics with basic local alignment search tool (BLAST) and fast alignment (FASTA). J Bioinform Seq Anal 6:1–6. 10.5897/IJBC2013.0086 DOI
Dubey S, Mishra S (2022) Natural sea salt based polyhydroxyalkanoate production by wild DOI
Fendrich C (1988) DOI
Franzmann PD, Wehmeyer U, Stackebrandt E (1988) Halomonadaceae fam. nov., a new family of the class Proteo-bacteria to accommodate the genera DOI
García-Torreiroa M, Lú-Chau TA, Steinbüchelb A, Lemaa JM (2016) Waste to bioplastic conversion by the moderate halophilic bacterium DOI
Golosova O, Henderson R, Vaskin Y, Gabrielian A, Grekhov G, Nagarajan V, Oler AJ, Quinones M, Hurt D, Fursov M, Huyen Y (2014) Unipro UGENE NGS pipelines and components for variant calling, RNA-seq and ChIP-seq data analyses. PeerJ 2:e644. 10.7717/peerj.644 PubMed DOI PMC
Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91. 10.1099/ijs.0.64483-0 PubMed DOI
Grant JR, Enns E, Marinier E, Mandal A, Herman EK, Chen CY, Graham M, Van Domselaar G, Stothard P (2023) Proksee: in-depth characterization and visualization of bacterial genomes. Nucleic Acids Res 51:W484–W492. 10.1093/nar/gkad326 PubMed DOI PMC
Guleria S, Singh H, Sharma V, Bhardwaj N, Arya SK, Puri S, Khatri M (2022) Polyhydroxyalkanoates production from domestic waste feedstock: a sustainable approach towards bio-economy. J Clean Prod 340:130661 DOI
Guo X, Wang Y, Guan X, Chen Y, Zhang C, Xiao D (2015) Improved lactose utilization by overexpression β-galactosidase and lactose permease in
Hall T (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98
Jiang XR, Yao ZH, Chen GQ (2017) Controlling cell volume for efficient PHB production by PubMed DOI
Jost V, Schwarz M, Langowski HC (2017) Investigation of the 3-hydroxyvalerate content and degree of crystallinity of P3HB-co-3HV cast films using Raman spectroscopy. Polymer 133:160–170. 10.1016/j.polymer.2017.11.026 DOI
Jung HJ, Kim SH, Cho DH, Kim BC, Bhatia SK, Lee J, Jeon JM, Yoon JJ, Yang YH (2022) Finding of novel galactose utilizing Halomonas sp. YK44 for polyhydroxybutyrate (PHB) production. Polymers 14:5407 PubMed DOI PMC
Kanekar PP, Kanekar SP (2022) Halophilic and halotolerant microorganisms. In: Arora NK (ed) Diversity and biotechnology of extremophilic microorganisms from India. Microorganisms for Sustainability, vol. 41. Springer, Singapore. pp 13–69. 10.1007/978-981-19-1573-4_2
Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120. 10.1007/bf01731581 PubMed DOI
Kiskova J, Juhás A, Galušková S, Maliničová L, Kolesárová M, Piknová M, Pristaš P (2023) Antibiotic resistance and genetic variability of PubMed DOI PMC
Kitamura S, Doi Y (1994) Staining method of poly (3-hydroxyalkanoic acids) producing bacteria by Nile blue. Biotechnol Tech 8:345–350. 10.1007/BF02428979 DOI
Koller M (2015) Poly (hydroxyalkanoate)(PHA) biopolyesters: production, performance and processing aspects. Chem Biochem Eng Q 29:0–0
Koller M, Rodríguez-Contreras A (2015) Techniques for tracing PHA-producing organisms and for qualitative and quantitative analysis of intra-and extracellular PHA. Eng Life Sci 6:558–581. 10.1002/elsc.201400228 DOI
Kong Y, Koh HG, Cha HG, Lee BW, Yu K, Park SH, Park K (2024) Isolation and characterization of two halophilic bacteria producing polyhydroxybutyrate from high-salt environment. Biotechnol Bioprocess Eng 29:1003–1013. 10.1007/s12257-024-00140-3 DOI
Kovac M, Márton E, Oszczypko N, Vojtko R, Hók J, Králiková S, Plašienka D, Klučiar T, Hudáčková N, Oszczypko-Clowes M (2017) Neogene palaeogeography and basin evolution of the Western Carpathians, Northern Pannonian domain and adjoining areas. Glob Planet Chang 155:133–154. 10.1016/j.gloplacha.2017.07.004 DOI
Kucera D, Pernicová I, Kovalcik A, Koller M, Mullerova L, Sedlacek P, Mravec F, Nebesarova J, Kalina M, Marova I, Krzyzanek V (2018) Characterization of the promising poly (3-hydroxybutyrate) producing halophilic bacterium PubMed DOI
Kulkarni SO, Kanekar PP, Nilegaonkar SS, Sarnaik SS, Jog JP (2010) Production and characterization of a biodegradable poly (hydroxybutyrate-co-hydroxyvalerate) (PHB-co-PHV) copolymer by moderately haloalkalitolerant PubMed DOI
Kumar V, Thakur V, Ambika Kumar S, Singh D (2018) Bioplastic reservoir of diverse bacterial communities revealed along altitude gradient of Pangi-Chamba Trans-Himalayan Region. FEMS Microbiol Lett 365:fny 144.10.1093/femsle/fny144 PubMed
Lemos PC, Viana C, Salgueiro EN, Ramos AM, Crespo JPSG, Reiszcorr MAM (1998) Effect of carbon source on the formation of polyhydroxyalkanoates (PHA) by a phosphate-accumulating mixed culture. Enzyme Microb Technol 22:662–671. 10.1016/S0141-0229(97)00243-3 DOI
Meier-Kolthoff JP, Göker M (2019) TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 10:2182. 10.1038/s41467-019-10210-3 PubMed DOI PMC
Mesquita DP, Amaral AL, Leal C, Oehmen A, Reis MA, Ferreira EC (2015) Polyhydroxyalkanoate granules quantification in mixed microbial cultures using image analysis: Sudan black B versus Nile blue A staining. Anal Chim Acta 865:8–15. 10.1016/j.aca.2015.01.018 PubMed DOI
Mitra R, Xu T, Xiang H, Han J (2020) Current developments on polyhydroxyalkanoates synthesis by using halophiles as a promising cell factory. Microb Cell Fact 19:1–30. 10.1186/s12934-020-01342-z PubMed DOI PMC
Mukherjee A, Koller M (2023) Microbial poly-hydroxyalkanoate (PHA) biopolymers-intrinsically natural. Bioeng 10:855. 10.3390/bioengineering10070855 PubMed DOI PMC
Najar IN, Sharma P, Das R, Mondal K, Singh AK, Tamang S, Hazra P, Thakur N, Bhanwaria R, Gandhi S, Kumar V (2024) In search of Poly-3-Hydroxybutyrate (PHB): a comprehensive review unveiling applications and progress in fostering a sustainable bio-circular economy. Food Bioprod Process 148:11–30. 10.1016/j.fbp.2024.08.011 DOI
Naseem A, Rasul I, Raza ZA, Muneer F, ur Rehman A, Nadeem H (2024) Bacterial production of polyhydroxyalkanoates (PHAs) using various waste carbon sources. PeerJ 12:e17936. 10.7717/peerj.17936 PubMed DOI PMC
Nosalova L, Piknova M, Bonova K, Pristas P (2022) Deep subsurface hypersaline environment as a source of novel species of halophilic sulfur-oxidizing bacteria. Microorganisms 10:995. 10.3390/microorganisms10050995 PubMed DOI PMC
Obruca S, Petrik S, Benesova P, Svoboda Z, Eremka L, Marova I (2014) Utilization of oil extracted from spent coffee grounds for sustainable production of polyhydroxyalkanoates. Appl Microbiol Biotechnol 98:5883–5890. 10.1007/s00253-014-5653-3 PubMed DOI
Okonechnikov K, Golosova O, Fursov M, Ugene Team (2012) Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 28:1166–1167. 10.1093/bioinformatics/bts091 PubMed
Oren A (2010) Industrial and environmental applications of halophilic microorganisms. Environ Technol 31:825–834. 10.1080/09593330903370026 PubMed DOI
Ostle AG, Holt JG (1982) Nile blue A as a fluorescent stain for poly-beta-hydroxybutyrate. Appl Environ Microbiol 44:238–241. 10.1128/aem.44.1.238-241.1982 PubMed DOI PMC
Quillaguaman J, Hashim S, Bento F, Mattiasson B, Hatti-Kaul R (2005) Poly (β-hydroxybutyrate) production by a moderate halophile, PubMed DOI
Quillaguaman J, Delgado O, Mattiasson B, Hatti-Kaul R (2006) Poly (β-hydroxybutyrate) production by a moderate halophile, PubMed DOI
Quillaguaman J, Guzman H, Van-Thuoc D, Hatti-Kaul R (2010) Synthesis and production of polyhydroxyalkanoates by halophiles: current potential and future prospects. Appl Microbiol Biotechnol 85:1687–1696. 10.1007/s00253-009-2397-6 PubMed DOI
Reddy CSK, Ghai R, Rashmi KVC (2003) Polyhydroxyalkanoates: an overview. Bioresour Technol 87:137–146. 10.1016/S0960-8524(02)00212-2 PubMed DOI
Rekhi P, Goswami M, Ramakrishna S, Debnath M (2022) Polyhydroxyalkanoates biopolymers toward decarbonizing economy and sustainable future. Crit Rev Biotechnol 42:668–692. 10.1080/07388551.2021.1960265 PubMed DOI
Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J (2016) JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 32:929–931. 10.1093/bioinformatics/btv681 PubMed DOI PMC
Samek O, Obruča S, Šiler M, Sedláček P, Benešová P, Kučera D, Márova I, Ježek J, Bernatová S, Zemánek P (2016) Quantitative Raman spectroscopy analysis of polyhydroxyalkanoates produced by PubMed DOI PMC
Saravanan K, Umesh M, Kathirvel P (2022) Microbial polyhydroxyalkanoates (PHAs): a review on biosynthesis, properties, fermentation strategies and its prospective applications for sustainable future. J Polym Environ 30:4903–4935. 10.1007/s10924-022-02562-7 DOI
Sawant SS, Salunke BK, Kim BS (2015) Degradation of corn stover by fungal cellulase cocktail for production of polyhydroxyalkanoates by moderate halophile PubMed DOI
Shen R, Ning ZY, Lan YX, Chen JC, Chen GQ (2019) Manipulation of polyhydroxyalkanoate granular sizes in PubMed DOI
Shenoy S, Mascarenhas J, Aruna K (2012) Optimization of polyhydroxalkanoate accumulation by
Smith JL (1908) On the simultaneous staining of neutral fat and fatty acid by oxazine dyes. J Pathol Bacteriol 12:1–4 DOI
Sorokin DY, Tindall BJ (2006) The status of the genus name PubMed DOI
Stanley A, Punil Kumar HN, Mutturi S, Vijayendra SVN (2018) Fed-batch strategies for production of PHA using a native isolate of PubMed DOI
Tamura K, Stecher G, Kumar S (2021) MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol 38:3022–3027. 10.1093/molbev/msab120 PubMed DOI PMC
Tan D, Xue YS, Aibaidula G, Chen GQ (2011) Unsterile and continuous production of polyhydroxybutyrate by PubMed DOI
Thomas T, Sudesh K, Bazire A, Elain A, Tan HT, Lim H, Bruzaud S (2020) PHA Production and PHA synthases of the halophilic bacterium Halomonas sp. SF2003. Bioengineering (Basel) 7(1):29. 10.3390/bioengineering7010029 PubMed PMC
Wei YH, Chen WC, Huang CK, Wu HS, Sun YM, Lo CW, Janarthanan OM (2011) Screening and evaluation of polyhydroxybutyrate-producing strains from indigenous isolate PubMed DOI PMC
Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703. 10.1128/jb.173.2.697-703.1991 PubMed DOI PMC
Yoo Y, Kwon DY, Jeon M, Lee J, Kwon H, Lee D, Khim JS, Choi YE, Kim JJ (2024) Enhancing poly (3-hydroxybutyrate) production in halophilic bacteria through improved salt tolerance. Bioresour Technol 394:130175. 10.1016/j.biortech.2023.130175 PubMed DOI
Yue H, Ling C, Yang T, Chen X, Chen Y, Deng H, Wu Q, Chen J, Chen GQ (2014) A seawater-based open and continuous process for polyhydroxyalkanoates production by recombinant DOI
Zher Neoh S, Fey Chek M, Tiang Tan H, Linares-Pastén JA, Nandakumar A, Hakoshima T, Sudesh K (2022) Polyhydroxyalkanoate synthase (PhaC): the key enzyme for biopolyester synthesis. Curr Res Biotechnol 4:87–101. 10.1016/j.crbiot.2022.01.002 DOI
Zhou W, Bergsma S, Colpa DI, Euverink GJW, Krooneman J (2023) Polyhydroxyalkanoates (PHAs) synthesis and degradation by microbes and applications towards a circular economy. J Environ Manage 341:118033. 10.1016/j.jenvman.2023.118033 PubMed DOI
Zribi-Maaloul E, Trabelsi I, Elleuch L, Chouayekh H, Salah RB (2013) Purification and characterization of two polyhydroxyalkanoates from PubMed DOI