Genome sequence of Halovibrio sp. HP20-59 as a promising polyhydroxybutyrate producer

. 2026 Jan 10 ; 110 (1) : 6. [epub] 20260110

Jazyk angličtina Země Německo Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41520089

Grantová podpora
VVGS-PF-2023-2545 Pavol Jozef Safarik University in Kosice
LM2023050 MEYS CR
VEGA-1/0779/21 Ministry of education, research, development and youth of the Slovak republic

Odkazy

PubMed 41520089
PubMed Central PMC12791064
DOI 10.1007/s00253-025-13647-3
PII: 10.1007/s00253-025-13647-3
Knihovny.cz E-zdroje

Since plastics pose the greatest threat to humanity, it is essential to find an economic and sustainable solution to combat environmental pollution. In this study, the ability of polyhydroxyalkanoates (PHA) production by the halophilic bacterium Halovirbrio sp. HP20-59 in the presence of different carbon sources was examined. The strain showed a selective substrate preference, with the highest PHA production (reaching up to 73% of cell dry weight) in the presence of galactose, while fructose, arabinose, glycerol and xylose resulted in lower accumulation. Phylogenetic analysis based on the 16S rRNA gene sequence and whole-genome sequencing confirmed the HP20-59 strain as a novel species within the Oceanospirillales order. Draft genome showed a size of 4,165,370 bp with a GC content of 55.1% and a complete set of pha genes. The comparative analysis of the phaC gene identified a 638 amino acid-long class I poly(R)-hydroxyalkanoic acid synthase, showing 91% similarity to Halovibrio variabilis and 89% similarity to species within the Vreelandella genus, suggesting a possible horizontal gene transfer of the pha gene cluster. These findings highlight the unique genetic and metabolic characteristics of Halovibrio sp. HP20-59, making it a promising candidate for industrial PHA production and a valuable resource for research on sustainable biopolymers. KEY POINTS: The first study of PHB production by the halophilic Halovibrio spp. The highest level of PHB production observed using glucose, galactose, and sucrose. phaCAB operon possibly acquired by horizontal gene transfer from Vreelandella sp.

Zobrazit více v PubMed

Abdallah MB, Saadaoui I, Al-Ghouti MA, Zouari N, Hahladakis JN, Chamkha M, Sayadi S (2025) Advances in polyhydroxyalkanoate (PHA) production from renewable waste materials using halophilic microorganisms: a comprehensive review. Sci Total Environ 963:178452. 10.1016/j.scitotenv.2025.178452 PubMed DOI

Adeleye AT, Odoh CK, Enudi OC, Banjoko OO, Osiboye OO, Odediran ET, Louis H (2020) Sustainable synthesis and applications of polyhydroxyalkanoates (PHAs) from biomass. Process Biochem 96:174–193. 10.1016/j.procbio.2020.05.032 DOI

Ali SS, Elsamahy T, Abdelkarim EA, Al-Tohamy R, Kornaros M, Ruiz HA, Zhao T, Li F, Sun J (2022) Biowastes for biodegradable bioplastics production and end-of-life scenarios in circular bioeconomy and biorefinery concept. Bioresour Technol 363:127869. 10.1016/j.biortech.2022.127869 PubMed DOI

Angra V, Sehgal R, Gupta R (2023) Trends in PHA production by microbially diverse and functionally distinct communities. Microb Ecol 85:572–585. 10.1007/s00248-022-01995-w PubMed DOI

Bera A, Dubey S, Bhayani K, Mondal D, Mishra S, Ghosh PK (2015) Microbial synthesis of polyhydroxyalkanoate using seaweed-derived crude levulinic acid as co-nutrient. Int J Biol Macromol 72:487–494. 10.1016/j.ijbiomac.2014.08.037 PubMed DOI

Berlanga M, Miñana-Galbis D, Domènech O, Guerrero R (2012) Enhanced polyhydroxyalkanoates accumulation by PubMed DOI

Biswas A, Patra A, Paul A (2009) Production of poly-3-hydroxyalkanoic acids by a moderately halophilic bacterium, PubMed DOI

Brestovicova S, Kisková J, Nosáľová L, Piknová M, Kolesárová M, Pristaš P (2024) Comparative genomic analysis of two putative novel PubMed DOI PMC

Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S, Olsen GJ, Olson R, Overbeek R, Parrello B, Pusch GD, Shukla M (2015) RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 5:8365. 10.1038/srep08365 PubMed DOI PMC

Cai L, Tan D, Aibaidula G, Dong XR, Chen JC, Tian WD, Chen GQ (2011) Comparative genomics study of polyhydroxyalkanoates (PHA) and ectoine relevant genes from PubMed DOI PMC

Canovas V, Garcia-Chumillas S, Monzó F, Simó-Cabrera L, Fernández-Ayuso C, Pire C, Martínez-Espinosa RM (2021) Analysis of polyhydroxyalkanoates granules in PubMed DOI PMC

Catone MV, Ruiz JA, Castellanos M, Segura D, Espin G, López NI (2014) High polyhydroxybutyrate production in PubMed DOI PMC

Chouchene K, da Costa JP, Chamkha M, Ksibi M, Sayadi S (2023) Effects of microplastics’ physical and chemical properties on aquatic organisms: state-of-the-art and future research trends. Trends Anal Chem 166:117192. 10.1016/j.trac.2023.117192 DOI

Christensen M, Jablonski P, Altermark B, Irgum K, Hansen H (2021) High natural PHA production from acetate in PubMed DOI PMC

Ciobota V, Burkhardt EM, Schumacher W, Rösch P, Küsel K, Popp J (2010) The influence of intracellular storage material on bacterial identification by means of Raman spectroscopy. Anal Bioanal Chem 397:2929–2937. 10.1007/s00216-010-3895-1 PubMed DOI

De Gelder J, Willemse-Erix D, Scholtes MJ, Sanchez JI, Maquelin K, Vandenabeele P, De Boever P, Puppels GJ, Moens L, De Vos P (2008) Monitoring poly(3-hydroxybutyrate) production in PubMed DOI

de la Haba RR, Arahal DR, Sánchez-Porro C, Chuvochina M, Wittouck S, Hugenholtz P, Ventosa A (2023) A long-awaited taxogenomic investigation of the family Halomonadaceae. Front Microbiol 14:1293707. 10.3389/fmicb.2023.1293707 PubMed DOI PMC

Dobson SJ, Franzmann PD (1996) Unification of the genera DOI

Dobson SJ, McMeekin TA, Franzmann PD (1993) Phylogenetic relationships between some members of the genera PubMed DOI

Donkor ES, Dayie NT, Adiku TK (2014) Bioinformatics with basic local alignment search tool (BLAST) and fast alignment (FASTA). J Bioinform Seq Anal 6:1–6. 10.5897/IJBC2013.0086 DOI

Dubey S, Mishra S (2022) Natural sea salt based polyhydroxyalkanoate production by wild DOI

Fendrich C (1988) DOI

Franzmann PD, Wehmeyer U, Stackebrandt E (1988) Halomonadaceae fam. nov., a new family of the class Proteo-bacteria to accommodate the genera DOI

García-Torreiroa M, Lú-Chau TA, Steinbüchelb A, Lemaa JM (2016) Waste to bioplastic conversion by the moderate halophilic bacterium DOI

Golosova O, Henderson R, Vaskin Y, Gabrielian A, Grekhov G, Nagarajan V, Oler AJ, Quinones M, Hurt D, Fursov M, Huyen Y (2014) Unipro UGENE NGS pipelines and components for variant calling, RNA-seq and ChIP-seq data analyses. PeerJ 2:e644. 10.7717/peerj.644 PubMed DOI PMC

Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91. 10.1099/ijs.0.64483-0 PubMed DOI

Grant JR, Enns E, Marinier E, Mandal A, Herman EK, Chen CY, Graham M, Van Domselaar G, Stothard P (2023) Proksee: in-depth characterization and visualization of bacterial genomes. Nucleic Acids Res 51:W484–W492. 10.1093/nar/gkad326 PubMed DOI PMC

Guleria S, Singh H, Sharma V, Bhardwaj N, Arya SK, Puri S, Khatri M (2022) Polyhydroxyalkanoates production from domestic waste feedstock: a sustainable approach towards bio-economy. J Clean Prod 340:130661 DOI

Guo X, Wang Y, Guan X, Chen Y, Zhang C, Xiao D (2015) Improved lactose utilization by overexpression β-galactosidase and lactose permease in

Hall T (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

Jiang XR, Yao ZH, Chen GQ (2017) Controlling cell volume for efficient PHB production by PubMed DOI

Jost V, Schwarz M, Langowski HC (2017) Investigation of the 3-hydroxyvalerate content and degree of crystallinity of P3HB-co-3HV cast films using Raman spectroscopy. Polymer 133:160–170. 10.1016/j.polymer.2017.11.026 DOI

Jung HJ, Kim SH, Cho DH, Kim BC, Bhatia SK, Lee J, Jeon JM, Yoon JJ, Yang YH (2022) Finding of novel galactose utilizing Halomonas sp. YK44 for polyhydroxybutyrate (PHB) production. Polymers 14:5407 PubMed DOI PMC

Kanekar PP, Kanekar SP (2022) Halophilic and halotolerant microorganisms. In: Arora NK (ed) Diversity and biotechnology of extremophilic microorganisms from India. Microorganisms for Sustainability, vol. 41. Springer, Singapore. pp 13–69. 10.1007/978-981-19-1573-4_2

Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120. 10.1007/bf01731581 PubMed DOI

Kiskova J, Juhás A, Galušková S, Maliničová L, Kolesárová M, Piknová M, Pristaš P (2023) Antibiotic resistance and genetic variability of PubMed DOI PMC

Kitamura S, Doi Y (1994) Staining method of poly (3-hydroxyalkanoic acids) producing bacteria by Nile blue. Biotechnol Tech 8:345–350. 10.1007/BF02428979 DOI

Koller M (2015) Poly (hydroxyalkanoate)(PHA) biopolyesters: production, performance and processing aspects. Chem Biochem Eng Q 29:0–0

Koller M, Rodríguez-Contreras A (2015) Techniques for tracing PHA-producing organisms and for qualitative and quantitative analysis of intra-and extracellular PHA. Eng Life Sci 6:558–581. 10.1002/elsc.201400228 DOI

Kong Y, Koh HG, Cha HG, Lee BW, Yu K, Park SH, Park K (2024) Isolation and characterization of two halophilic bacteria producing polyhydroxybutyrate from high-salt environment. Biotechnol Bioprocess Eng 29:1003–1013. 10.1007/s12257-024-00140-3 DOI

Kovac M, Márton E, Oszczypko N, Vojtko R, Hók J, Králiková S, Plašienka D, Klučiar T, Hudáčková N, Oszczypko-Clowes M (2017) Neogene palaeogeography and basin evolution of the Western Carpathians, Northern Pannonian domain and adjoining areas. Glob Planet Chang 155:133–154. 10.1016/j.gloplacha.2017.07.004 DOI

Kucera D, Pernicová I, Kovalcik A, Koller M, Mullerova L, Sedlacek P, Mravec F, Nebesarova J, Kalina M, Marova I, Krzyzanek V (2018) Characterization of the promising poly (3-hydroxybutyrate) producing halophilic bacterium PubMed DOI

Kulkarni SO, Kanekar PP, Nilegaonkar SS, Sarnaik SS, Jog JP (2010) Production and characterization of a biodegradable poly (hydroxybutyrate-co-hydroxyvalerate) (PHB-co-PHV) copolymer by moderately haloalkalitolerant PubMed DOI

Kumar V, Thakur V, Ambika Kumar S, Singh D (2018) Bioplastic reservoir of diverse bacterial communities revealed along altitude gradient of Pangi-Chamba Trans-Himalayan Region. FEMS Microbiol Lett 365:fny 144.10.1093/femsle/fny144 PubMed

Lemos PC, Viana C, Salgueiro EN, Ramos AM, Crespo JPSG, Reiszcorr MAM (1998) Effect of carbon source on the formation of polyhydroxyalkanoates (PHA) by a phosphate-accumulating mixed culture. Enzyme Microb Technol 22:662–671. 10.1016/S0141-0229(97)00243-3 DOI

Meier-Kolthoff JP, Göker M (2019) TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 10:2182. 10.1038/s41467-019-10210-3 PubMed DOI PMC

Mesquita DP, Amaral AL, Leal C, Oehmen A, Reis MA, Ferreira EC (2015) Polyhydroxyalkanoate granules quantification in mixed microbial cultures using image analysis: Sudan black B versus Nile blue A staining. Anal Chim Acta 865:8–15. 10.1016/j.aca.2015.01.018 PubMed DOI

Mitra R, Xu T, Xiang H, Han J (2020) Current developments on polyhydroxyalkanoates synthesis by using halophiles as a promising cell factory. Microb Cell Fact 19:1–30. 10.1186/s12934-020-01342-z PubMed DOI PMC

Mukherjee A, Koller M (2023) Microbial poly-hydroxyalkanoate (PHA) biopolymers-intrinsically natural. Bioeng 10:855. 10.3390/bioengineering10070855 PubMed DOI PMC

Najar IN, Sharma P, Das R, Mondal K, Singh AK, Tamang S, Hazra P, Thakur N, Bhanwaria R, Gandhi S, Kumar V (2024) In search of Poly-3-Hydroxybutyrate (PHB): a comprehensive review unveiling applications and progress in fostering a sustainable bio-circular economy. Food Bioprod Process 148:11–30. 10.1016/j.fbp.2024.08.011 DOI

Naseem A, Rasul I, Raza ZA, Muneer F, ur Rehman A, Nadeem H (2024) Bacterial production of polyhydroxyalkanoates (PHAs) using various waste carbon sources. PeerJ 12:e17936. 10.7717/peerj.17936 PubMed DOI PMC

Nosalova L, Piknova M, Bonova K, Pristas P (2022) Deep subsurface hypersaline environment as a source of novel species of halophilic sulfur-oxidizing bacteria. Microorganisms 10:995. 10.3390/microorganisms10050995 PubMed DOI PMC

Obruca S, Petrik S, Benesova P, Svoboda Z, Eremka L, Marova I (2014) Utilization of oil extracted from spent coffee grounds for sustainable production of polyhydroxyalkanoates. Appl Microbiol Biotechnol 98:5883–5890. 10.1007/s00253-014-5653-3 PubMed DOI

Okonechnikov K, Golosova O, Fursov M, Ugene Team (2012) Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 28:1166–1167. 10.1093/bioinformatics/bts091 PubMed

Oren A (2010) Industrial and environmental applications of halophilic microorganisms. Environ Technol 31:825–834. 10.1080/09593330903370026 PubMed DOI

Ostle AG, Holt JG (1982) Nile blue A as a fluorescent stain for poly-beta-hydroxybutyrate. Appl Environ Microbiol 44:238–241. 10.1128/aem.44.1.238-241.1982 PubMed DOI PMC

Quillaguaman J, Hashim S, Bento F, Mattiasson B, Hatti-Kaul R (2005) Poly (β-hydroxybutyrate) production by a moderate halophile, PubMed DOI

Quillaguaman J, Delgado O, Mattiasson B, Hatti-Kaul R (2006) Poly (β-hydroxybutyrate) production by a moderate halophile, PubMed DOI

Quillaguaman J, Guzman H, Van-Thuoc D, Hatti-Kaul R (2010) Synthesis and production of polyhydroxyalkanoates by halophiles: current potential and future prospects. Appl Microbiol Biotechnol 85:1687–1696. 10.1007/s00253-009-2397-6 PubMed DOI

Reddy CSK, Ghai R, Rashmi KVC (2003) Polyhydroxyalkanoates: an overview. Bioresour Technol 87:137–146. 10.1016/S0960-8524(02)00212-2 PubMed DOI

Rekhi P, Goswami M, Ramakrishna S, Debnath M (2022) Polyhydroxyalkanoates biopolymers toward decarbonizing economy and sustainable future. Crit Rev Biotechnol 42:668–692. 10.1080/07388551.2021.1960265 PubMed DOI

Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J (2016) JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 32:929–931. 10.1093/bioinformatics/btv681 PubMed DOI PMC

Samek O, Obruča S, Šiler M, Sedláček P, Benešová P, Kučera D, Márova I, Ježek J, Bernatová S, Zemánek P (2016) Quantitative Raman spectroscopy analysis of polyhydroxyalkanoates produced by PubMed DOI PMC

Saravanan K, Umesh M, Kathirvel P (2022) Microbial polyhydroxyalkanoates (PHAs): a review on biosynthesis, properties, fermentation strategies and its prospective applications for sustainable future. J Polym Environ 30:4903–4935. 10.1007/s10924-022-02562-7 DOI

Sawant SS, Salunke BK, Kim BS (2015) Degradation of corn stover by fungal cellulase cocktail for production of polyhydroxyalkanoates by moderate halophile PubMed DOI

Shen R, Ning ZY, Lan YX, Chen JC, Chen GQ (2019) Manipulation of polyhydroxyalkanoate granular sizes in PubMed DOI

Shenoy S, Mascarenhas J, Aruna K (2012) Optimization of polyhydroxalkanoate accumulation by

Smith JL (1908) On the simultaneous staining of neutral fat and fatty acid by oxazine dyes. J Pathol Bacteriol 12:1–4 DOI

Sorokin DY, Tindall BJ (2006) The status of the genus name PubMed DOI

Stanley A, Punil Kumar HN, Mutturi S, Vijayendra SVN (2018) Fed-batch strategies for production of PHA using a native isolate of PubMed DOI

Tamura K, Stecher G, Kumar S (2021) MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol 38:3022–3027. 10.1093/molbev/msab120 PubMed DOI PMC

Tan D, Xue YS, Aibaidula G, Chen GQ (2011) Unsterile and continuous production of polyhydroxybutyrate by PubMed DOI

Thomas T, Sudesh K, Bazire A, Elain A, Tan HT, Lim H, Bruzaud S (2020) PHA Production and PHA synthases of the halophilic bacterium Halomonas sp. SF2003. Bioengineering (Basel) 7(1):29. 10.3390/bioengineering7010029 PubMed PMC

Wei YH, Chen WC, Huang CK, Wu HS, Sun YM, Lo CW, Janarthanan OM (2011) Screening and evaluation of polyhydroxybutyrate-producing strains from indigenous isolate PubMed DOI PMC

Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703. 10.1128/jb.173.2.697-703.1991 PubMed DOI PMC

Yoo Y, Kwon DY, Jeon M, Lee J, Kwon H, Lee D, Khim JS, Choi YE, Kim JJ (2024) Enhancing poly (3-hydroxybutyrate) production in halophilic bacteria through improved salt tolerance. Bioresour Technol 394:130175. 10.1016/j.biortech.2023.130175 PubMed DOI

Yue H, Ling C, Yang T, Chen X, Chen Y, Deng H, Wu Q, Chen J, Chen GQ (2014) A seawater-based open and continuous process for polyhydroxyalkanoates production by recombinant DOI

Zher Neoh S, Fey Chek M, Tiang Tan H, Linares-Pastén JA, Nandakumar A, Hakoshima T, Sudesh K (2022) Polyhydroxyalkanoate synthase (PhaC): the key enzyme for biopolyester synthesis. Curr Res Biotechnol 4:87–101. 10.1016/j.crbiot.2022.01.002 DOI

Zhou W, Bergsma S, Colpa DI, Euverink GJW, Krooneman J (2023) Polyhydroxyalkanoates (PHAs) synthesis and degradation by microbes and applications towards a circular economy. J Environ Manage 341:118033. 10.1016/j.jenvman.2023.118033 PubMed DOI

Zribi-Maaloul E, Trabelsi I, Elleuch L, Chouayekh H, Salah RB (2013) Purification and characterization of two polyhydroxyalkanoates from PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...