Microalgae as a sustainable alternative to palm oil: fatty acid profiles under photoautotrophic and heterotrophic growth

. 2026 Jan 12 ; 110 (1) : 17. [epub] 20260112

Jazyk angličtina Země Německo Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41526525

Grantová podpora
Bio2AgroFood No. ATCZ00171 Interreg Austria - Czech Republic
MULTI-STR3AM No. 887227 EU Horizon 2020 Research and Innovation Programme

Odkazy

PubMed 41526525
PubMed Central PMC12799715
DOI 10.1007/s00253-025-13682-0
PII: 10.1007/s00253-025-13682-0
Knihovny.cz E-zdroje

Palm oil is the world's most widely used vegetable oil, with a sizeable impact on the environment. As an alternative, microalgae are considered oil producers since they produce a variety of fatty acids (FA) depending on growth conditions. A collection of ten microalgae strains naturally producing oils similar in composition to palm oil was selected, and the effects of cultivation regime and varying light intensity on their growth and FA production and composition were analysed. To achieve high biomass density as well as total fatty acid (TFA) content, the optimum irradiance of 400 µmol photons m-2 s-1 in a photoautotrophic regime was determined for most of the strains. The growth rates of Scenedesmus and Desmodesmus strains in general were approximately twice as high as Chlamydomonas. The highest TFA content was found in S. obliquus CCALA 455 and D. subspicatus CCALA 467, grown photoautotrophically, reaching the values of about 66% and 58% of their dry weight, respectively. Moreover, the content of palmitic (PA), oleic (OA) and linoleic acid (LA) of about 39%, 30% and 14% of TFA, respectively, determined in D. subspicatus CCALA 467 was closest to that in palm oil (44% of PA, 39% of OA and 10% of LA). Eight of the ten microalgae strains were capable of heterotrophic growth, although their production under this regime has not been considered suitable in terms of TFA and individual FA content. KEY POINTS: • The optimum irradiance of 400 µmol photons m-2 s-1 was determined • CCALA 467 produces selected FAs in amounts close to those in palm oil • TFA content (% of dry weight) in CCALA 467 is 1.6-fold higher than in the palm.

Zobrazit více v PubMed

Absalome MA, Massara C-C, Alexandre AA, Gervais K, Chantal GG-A, Ferdinand D, Rhedoor AJ, Coulibaly I, George TG, Brigitte T, Marion M, Jean-Paul C (2020) Biochemical properties, nutritional values, health benefits and sustainability of palm oil. Biochimie 178:81–95. 10.1016/j.biochi.2020.09.019 PubMed DOI

Adi Sasongko N, Noguchi R (2015) Comprehensive evaluation of integrated energy plantation model of palm oil and microalgae based biofuel for sustainable energy production. Energy Procedia 68:226–235. 10.1016/j.egypro.2015.03.251 DOI

Afriyanti D, Kroeze C, Saad A (2016) Indonesia palm oil production without deforestation and peat conversion by 2050. Sci Total Environ 557–558:562–570. 10.1016/j.scitotenv.2016.03.032 PubMed DOI

Allen MM, Stanier RY (1968) Growth and division of some unicellular blue-green algae. J Gen Microbiol 51:199–202. 10.1099/00221287-51-2-199 PubMed DOI

Amini Khoeyi Z, Seyfabadi J, Ramezanpour Z (2012) Effect of light intensity and photoperiod on biomass and fatty acid composition of the microalgae DOI

Barros A, Pereira H, Campos J, Marques A, Varela J, Silva J (2019) Heterotrophy as a tool to overcome the long and costly autotrophic scale-up process for large scale production of microalgae. Sci Rep 9:13935. 10.1038/s41598-019-50206-z PubMed DOI PMC

Bellou S, Baeshen MN, Elazzazy AM, Aggeli D, Sayegh F, Aggelis G (2014) Microalgal lipids biochemistry and biotechnological perspectives. Biotechnol Adv 32:1476–1493. 10.1016/j.biotechadv.2014.10.003 PubMed DOI

Bialevich V, Zachleder V, Bišová K (2022) The effect of variable light source and light intensity on the growth of three algal species. Cells 11:1293. 10.3390/cells11081293 PubMed DOI PMC

Breuer G, Lamers PP, Martens DE, Draaisma RB, Wijffels RH (2013) Effect of light intensity, pH, and temperature on triacylglycerol (TAG) accumulation induced by nitrogen starvation in Scenedesmus obliquus. Bioresour Technol 143:1. 10.1016/j.biortech.2013.05.105 PubMed DOI

Bumbak F, Cook S, Zachleder V, Hauser S, Kovar K (2011) Best practices in heterotrophic high-cell-density microalgal processes: achievements, potential and possible limitations. Appl Microbiol Biotechnol 91:31–46. 10.1007/s00253-011-3311-6 PubMed DOI PMC

Carone M, Corato A, Daurvin T, Thanh T, Durante L, Joris B, Franck F, Remackle C (2019) Heterotrophic growth of microalgae. In: Hallman A, Rampelotto P (eds) Grand challenges in algae biotechnology. Springer, pp 71–109. 10.1007/978-3-030-25233-5_3

Chen H-HH, Jiang J-GG (2017) Lipid accumulation mechanisms in auto- and heterotrophic microalgae. J Agric Food Chem 65:8099–8110. 10.1021/acs.jafc.7b03495 PubMed DOI

Chen F, Johns MR (1996) Heterotrophic growth of DOI

Chiriacò MV, Galli N, Santini M, Rulli MC (2024) Deforestation and greenhouse gas emissions could arise when replacing palm oil with other vegetable oils. Sci Total Environ 914:169486. 10.1016/j.scitotenv.2023.169486 PubMed DOI

Correia N, Pereira H, Schulze PSC, Costa MM, Santo GE, Guerra I, Trovão M, Barros A, Cardoso H, Silva JL, Gouveia L, Varela J (2023) Heterotrophic and photoautotrophic media optimization using response surface methodology for the novel microalga DOI

Difusa A, Mohanty K, Goud VV (2015) Advancement and challenges in harvesting techniques for recovery of microalgae biomass. In: Environmental sustainability. Springer India, New Delhi, pp 159–169. 10.1007/978-81-322-2056-5_9

El-Sheekh MM (1993) Lipid and fatty acids composition of photoautotrophically and heterotrophically grown

Emily O (2022) Could microalgae oil replace palm oil? Researchers think so. https://plantbasednews.org/news/microalgae-oil-palm-oil/. Accessed 31 Mar 2025

Fettah N, Derakhshandeh M, Un UT, Mahmoudi L (2022) Effect of light on growth of green microalgae DOI

Gao Y, Li Y, Yang Y, Feng J, Ji L, Xie S (2023) Effects of trophic modes on the lipid accumulation of DOI

Hlavová M, Vítová M, Bišová K (2016) Synchronization of green algae by light and dark regimes for cell cycle and cell division studies. Methods and Protocols 1370:3–16. 10.1007/978-1-4939-3142-2_1 PubMed DOI

Hughes EO, Gorham PR, Zehnder A (1958) Toxicity of a unialgal culture of PubMed DOI

Izadpanah M, Gheshlaghi R, Mahdavi MA, Elkamel A (2018) Effect of light spectrum on isolation of microalgae from urban wastewater and growth characteristics of subsequent cultivation of the isolated species. Algal Res 29:154–158. 10.1016/j.algal.2017.11.029 DOI

Jiang L, Luo S, Fan X, Yang Z, Guo R (2011) Biomass and lipid production of marine microalgae using municipal wastewater and high concentration of CO DOI

Jin H, Zhang H, Zhou Z, Li K, Hou G, Xu Q, Chuai W, Zhang C, Han D, Hu Q (2020) Ultrahigh-cell-density heterotrophic cultivation of the unicellular green microalga PubMed DOI PMC

Lakatos G, Ranglová K, Bárcenas-Pérez D, Grivalský T, Manoel J, Mylenko M, Cheel J, Nyári J, Wirth R, L.Kovács K, Kopecký J, Nedbalová L, Masojídek J (2023) Cold-adapted culturing of the microalga

Lang I, Hodac L, Friedl T, Feussner I (2011) Fatty acid profiles and their distribution patterns in microalgae: a comprehensive analysis of more than 2000 strains from the SAG culture collection. BMC Plant Biol 11:124. 10.1186/1471-2229-11-124 PubMed DOI PMC

Liu J, Yuan C, Hu G, Li F (2012) Effects of light intensity on the growth and lipid accumulation of microalga PubMed DOI

Liu Y, Ren X, Fan C, Wu W, Zhang W, Wang Y (2022) Health benefits, food applications, and sustainability of microalgae-derived n-3 PUFA. Foods 11:1883. 10.3390/foods11131883 PubMed DOI PMC

Maltsev Y, Maltseva K, Kulikovskiy M, Maltseva S (2021) Influence of light conditions on microalgae growth and content of lipids, carotenoids, and fatty acid composition. Biology (Basel) 10:1060. 10.3390/biology10101060 PubMed DOI PMC

Mancini A, Imperlini E, Nigro E, Montagnese C, Daniele A, Orrù S, Buono P (2015) Biological and nutritional properties of palm oil and palmitic acid: effects on health. Molecules 20:17339–17361. 10.3390/molecules200917339 PubMed DOI PMC

Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14:217–232. 10.1016/j.rser.2009.07.020 DOI

Minhas AK, Barrow CJ, Hodgson P, Adholeya A (2020) Microalga DOI

Morales M, Aflalo C, Bernard O (2021) Microalgal lipids: a review of lipids potential and quantification for 95 phytoplankton species. Biomass Bioenergy 150:106108. 10.1016/j.biombioe.2021.106108 DOI

Morales-Sánchez D, Schulze PSC, Kiron V, Wijffels RH (2020) Production of carbohydrates, lipids and polyunsaturated fatty acids (PUFA) by the polar marine microalga DOI

Mulgund A (2022) Increasing lipid accumulation in microalgae through environmental manipulation, metabolic and genetic engineering: a review in the energy NEXUS framework. Energy Nexus 5:100054. 10.1016/j.nexus.2022.100054 DOI

O’Neill A (2025) Average prices for palm oil worldwide from 2014 to 2027.  https://www.statista.com/statistics/675813/average-prices-palm-oil-worldwide/?srsltid=AfmBOopClsySNFD5kpuY6n6JLYm5jIUtG2q6dcFu57hH43yII7CcRew.  Accessed 10 Apr 2025

Perez-Garcia O, Escalante FMEE, De-Bashan LE, Bashan Y (2011) Heterotrophic cultures of microalgae: metabolism and potential products. Water Res 45:11–36. 10.1016/j.watres.2010.08.037 PubMed DOI

Pröschold T, Darienko T (2023) The genus Chlamydomonas. In: Goodenough U (ed) The Chlamydomonas sourcebook, 3rd edn. Elsevier, pp 1–15. 10.1016/C2019-0-02739-2

Pugliese A, Biondi L, Bartocci P, Fantozzi F (2020) DOI

Rafa N, Ahmed SF, Badruddin IA, Mofijur M, Kamangar S (2021) Strategies to produce cost-effective third-generation biofuel from microalgae. Front Energy Res. 10.3389/fenrg.2021.749968 DOI

Raheem A, Prinsen P, Vuppaladadiyam AK, Zhao M, Luque R (2018) A review on sustainable microalgae based biofuel and bioenergy production: recent developments. J Clean Prod 181:42–59. 10.1016/j.jclepro.2018.01.125 DOI

Ranglová K, Lakatos GE, Manoel JAC, Grivalský T, Masojídek J (2019) Rapid screening test to estimate temperature optima for microalgae growth using photosynthesis activity measurements. Folia Microbiol (Praha) 64:615–625. 10.1007/s12223-019-00738-8 PubMed DOI

Ren H-Y, Liu B-F, Ma C, Zhao L, Ren N-Q (2013) A new lipid-rich microalga PubMed DOI PMC

Ronda SR, Bokka CS, Ketineni C, Rijal B, Allu PR (2012) Aeration effect on PubMed DOI PMC

Salama ES, Kim HC, Abou-Shanab RAI, Ji MK, Oh YK, Kim SH, Jeon BH (2013) Biomass, lipid content, and fatty acid composition of freshwater PubMed DOI

Sehgal S, Sharma V (2021) Palm/palm kernel (

Sforza E, Enzo M, Bertucco A (2014) Design of microalgal biomass production in a continuous photobioreactor: an integrated experimental and modeling approach. Chem Eng Res des 92:1153–1162. 10.1016/j.cherd.2013.08.017 DOI

Silkina A, Gayo-Peláez JI, Fernandes F, Fuentes-Grünewald C, Kapoore RV, Tang KW (2025) From waste to wealth: coupling different nutritional modes of DOI

Singh SP, Singh P (2015) Effect of temperature and light on the growth of algae species : a review. Renew Sustain Energy Rev 50:431–444. 10.1016/j.rser.2015.05.024

Stănescu S-G, Nicolescu CM, Bumbac M, Olteanu R-L, Gurgu IV (2024) Economic evaluation of microalgae production costs: a perspective on sustainable development. pp 215–234. 10.1007/978-3-031-59858-6_15

Sulaiman NS, Sintang MD, Mantihal S, Zaini HM, Munsu E, Mamat H, Kanagaratnam S, Jahurul MHA, Pindi W (2022) Balancing functional and health benefits of food products formulated with palm oil as oil sources. Heliyon 8:e11041. 10.1016/j.heliyon.2022.e11041 PubMed DOI PMC

Sutherland DL, Ralph PJ (2021) Differing growth responses in four related microalgal genera grown under autotrophic, mixotrophic and heterotrophic conditions. J Appl Phycol 33:3539–3553. 10.1007/s10811-021-02593-y DOI

Tripathi G, Dubey P, Shamim A, Farooqui A, Mishra V (2024) Bio-flocculation: a cost effective and energy efficient harvesting technique for algal biofuel production and wastewater treatment. Bioresour Technol Rep 28:101969. 10.1016/j.biteb.2024.101969 DOI

Udayan A, Pandey AK, Sirohi R, Sreekumar N, Sang B-I, Sim SJ, Kim SH, Pandey A (2022) Production of microalgae with high lipid content and their potential as sources of nutraceuticals. Phytochem Rev. 10.1007/s11101-021-09784-y PubMed DOI PMC

Valdovinos-García EM, Bravo-Sánchez MG, Olán-Acosta MdelosÁ, Barajas-Fernández J, Guzmán-López A, Petriz-Prieto MA (2022) Technoeconomic evaluation of microalgae oil production: effect of cell disruption method. Fermentation 8:301. 10.3390/fermentation8070301

Van Wagenen J, Miller TW, Hobbs S, Hook P, Crowe B, Huesemann M (2012) Effects of light and temperature on fatty acid production in DOI

Velu P, Jenita Peter M, Sannizasi E (2015) Effect of various carbon sources on biochemical production in marine microalgae

Vítová M, Bišová K, Umysová D, Hlavová M, Kawano S, Zachleder V, Čížková M (2011) Chlamydomonas reinhardtii: duration of its cell cycle and phases at growth rates affected by light intensity. Planta 233:75. 10.1007/s00425-010-1282-y PubMed DOI

Waghmare A, Patil S, LeBlanc JG, Sonawane S, Arya SS (2018) Comparative assessment of algal oil with other vegetable oils for deep frying. Algal Res 31:99–106. 10.1016/j.algal.2018.01.019 DOI

Zachleder V, Van Den Ende H (1992) Cell cycle events in the green alga DOI

Zachleder V, Bišová K, Vítová M (2016) The cell cycle of microalgae. In: The physiology of microalgae. Springer International Publishing, pp 3–46. 10.1007/978-3-319-24945-2_1

Zheng S, Zou S, Feng T, Sun S, Guo X, He M, Wang C, Chen H, Wang Q (2022) Low temperature combined with high inoculum density improves alpha-linolenic acid production and biochemical characteristics of PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...