Ocrelizumab transiently alters microbiota and modulates immune response depending on treatment outcome
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
41358150
PubMed Central
PMC12677075
DOI
10.1016/j.isci.2025.113872
PII: S2589-0042(25)02133-9
Knihovny.cz E-zdroje
- Klíčová slova
- immune response, microbiome, neuroscience,
- Publikační typ
- časopisecké články MeSH
Multiple sclerosis (MS) is an autoimmune disease characterized by central nervous system atrophy. Microbiota dysbiosis is implicated in MS pathogenesis and treatment outcomes. In our study, we observed microbiota changes already present in treatment-naïve individuals with clinically isolated syndrome, affecting both bacteria and viruses. Gut bacteria alterations were transient during the first 12 months of anti-CD20 therapy. After 12 months, responders showed increased gut microbiota alpha diversity approaching healthy control levels, while non-responders showed a significant decline. Key changes involved Parabacteroides spp., producers of short-chain fatty acids that support gut barrier function and have anti-inflammatory potential. We detected altered gut barrier biomarkers and antibodies against common commensals in MS patients, which were modulated by anti-CD20 treatment. Notably, lipopolysaccharide-binding protein and mannose-binding lectin decreased only in responders. These findings suggest that intestinal barrier damage contributes to immune responses linked to microbial translocation, MS pathogenesis, and treatment outcomes.
Zobrazit více v PubMed
Thompson A.J., Baranzini S.E., Geurts J., Hemmer B., Ciccarelli O. Multiple sclerosis. Lancet. 2018;391:1622–1636. doi: 10.1016/S0140-6736(18)30481-1. PubMed DOI
Cekanaviciute E., Yoo B.B., Runia T.F., Debelius J.W., Singh S., Nelson C.A., Kanner R., Bencosme Y., Lee Y.K., Hauser S.L., et al. Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proc. Natl. Acad. Sci. USA. 2017;114:10713–10718. doi: 10.1073/pnas.1711235114. PubMed DOI PMC
Tlaskalová-Hogenová H., Stěpánková R., Kozáková H., Hudcovic T., Vannucci L., Tučková L., Rossmann P., Hrnčíř T., Kverka M., Zákostelská Z., et al. The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases. Cell. Mol. Immunol. 2011;8:110–120. doi: 10.1038/cmi.2010.67. PubMed DOI PMC
Lee Y.K., Menezes J.S., Umesaki Y., Mazmanian S.K. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc. Natl. Acad. Sci. USA. 2011;108:4615–4622. doi: 10.1073/pnas.1000082107. PubMed DOI PMC
Berer K., Mues M., Koutrolos M., Rasbi Z.A., Boziki M., Johner C., Wekerle H., Krishnamoorthy G. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature. 2011;479:538–541. doi: 10.1038/nature10554. PubMed DOI
Ordonez-Rodriguez A., Roman P., Rueda-Ruzafa L., Campos-Rios A., Cardona D. Changes in Gut Microbiota and Multiple Sclerosis: A Systematic Review. Int. J. Environ. Res. Public Health. 2023;20 doi: 10.3390/ijerph20054624. PubMed DOI PMC
Ochoa-Reparaz J., Magori K., Kasper L.H. The chicken or the egg dilemma: intestinal dysbiosis in multiple sclerosis. Ann. Transl. Med. 2017;5:145. doi: 10.21037/atm.2017.01.18. PubMed DOI PMC
Bjornevik K., Cortese M., Healy B.C., Kuhle J., Mina M.J., Leng Y., Elledge S.J., Niebuhr D.W., Scher A.I., Munger K.L., Ascherio A. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science. 2022;375:296–301. doi: 10.1126/science.abj8222. PubMed DOI
Lanz T.V., Brewer R.C., Ho P.P., Moon J.-S., Jude K.M., Fernandez D., Fernandes R.A., Gomez A.M., Nadj G.-S., Bartley C.M., et al. Clonally expanded B cells in multiple sclerosis bind EBV EBNA1 and GlialCAM. Nature. 2022;603:321–327. doi: 10.1038/s41586-022-04432-7. PubMed DOI PMC
Pender M.P., Csurhes P.A., Smith C., Douglas N.L., Neller M.A., Matthews K.K., Beagley L., Rehan S., Crooks P., Hopkins T.J., et al. Epstein-Barr virus-specific T cell therapy for progressive multiple sclerosis. JCI Insight. 2020;5 doi: 10.1172/jci.insight.144624. PubMed DOI PMC
Hauser S.L., Bar-Or A., Comi G., Giovannoni G., Hartung H.P., Hemmer B., Lublin F., Montalban X., Rammohan K.W., Selmaj K., et al. Ocrelizumab versus Interferon Beta-1a in Relapsing Multiple Sclerosis. N. Engl. J. Med. 2017;376:221–234. doi: 10.1056/NEJMoa1601277. PubMed DOI
Ellwardt E., Rolfes L., Klein J., Pape K., Ruck T., Wiendl H., Schroeter M., Zipp F., Meuth S.G., Warnke C., Bittner S. Ocrelizumab initiation in patients with MS: A multicenter observational study. Neurol. Neuroimmunol. Neuroinflamm. 2020;7 doi: 10.1212/NXI.0000000000000719. PubMed DOI PMC
Montalban X., Hauser S.L., Kappos L., Arnold D.L., Bar-Or A., Comi G., de Seze J., Giovannoni G., Hartung H.P., Hemmer B., et al. Ocrelizumab versus Placebo in Primary Progressive Multiple Sclerosis. N. Engl. J. Med. 2017;376:209–220. doi: 10.1056/NEJMoa1606468. PubMed DOI
Katz Sand I., Zhu Y., Ntranos A., Clemente J.C., Cekanaviciute E., Brandstadter R., Crabtree-Hartman E., Singh S., Bencosme Y., Debelius J., et al. Disease-modifying therapies alter gut microbial composition in MS. Neurol. Neuroimmunol. Neuroinflamm. 2019;6 doi: 10.1212/NXI.0000000000000517. PubMed DOI PMC
Coufal S., Kverka M., Kreisinger J., Thon T., Rob F., Kolar M., Reiss Z., Schierova D., Kostovcikova K., Roubalova R., et al. Serum TGF-beta1 and CD14 Predicts Response to Anti-TNF-alpha Therapy in IBD. J. Immunol. Res. 2023;2023 doi: 10.1155/2023/1535484. PubMed DOI PMC
Bajer L., Kverka M., Kostovcik M., Macinga P., Dvorak J., Stehlikova Z., Brezina J., Wohl P., Spicak J., Drastich P. Distinct gut microbiota profiles in patients with primary sclerosing cholangitis and ulcerative colitis. World J. Gastroenterol. 2017;23:4548–4558. doi: 10.3748/wjg.v23.i25.4548. PubMed DOI PMC
Mochol M., Taubøll E., Aukrust P., Ueland T., Andreassen O.A., Svalheim S. Interleukin 18 (IL-18) and its binding protein (IL-18BP) are increased in patients with epilepsy suggesting low-grade systemic inflammation. Seizure. 2020;80:221–225. doi: 10.1016/j.seizure.2020.05.018. PubMed DOI
Preiningerova J.L., Jiraskova Zakostelska Z., Srinivasan A., Ticha V., Kovarova I., Kleinova P., Tlaskalova-Hogenova H., Kubala Havrdova E. Multiple Sclerosis and Microbiome. Biomolecules. 2022;12 doi: 10.3390/biom12030433. PubMed DOI PMC
iMSMS Consortium Electronic address sergio baranzini@ucsf edu. iMSMS Consortium Gut microbiome of multiple sclerosis patients and paired household healthy controls reveal associations with disease risk and course. Cell. 2022;185:3467–3486.e16. doi: 10.1016/j.cell.2022.08.021. PubMed DOI PMC
Cox L.M., Maghzi A.H., Liu S., Tankou S.K., Dhang F.H., Willocq V., Song A., Wasén C., Tauhid S., Chu R., et al. Gut Microbiome in Progressive Multiple Sclerosis. Ann. Neurol. 2021;89:1195–1211. doi: 10.1002/ana.26084. PubMed DOI PMC
Jangi S., Gandhi R., Cox L.M., Li N., von Glehn F., Yan R., Patel B., Mazzola M.A., Liu S., Glanz B.L., et al. Alterations of the human gut microbiome in multiple sclerosis. Nat. Commun. 2016;7 doi: 10.1038/ncomms12015. PubMed DOI PMC
Troci A., Zimmermann O., Esser D., Krampitz P., May S., Franke A., Berg D., Leypoldt F., Stürner K.H., Bang C. B-cell-depletion reverses dysbiosis of the microbiome in multiple sclerosis patients. Sci. Rep. 2022;12:3728. doi: 10.1038/s41598-022-07336-8. PubMed DOI PMC
Zeng Q., Junli G., Liu X., Chen C., Sun X., Li H., Zhou Y., Cui C., Wang Y., Yang Y., et al. Gut dysbiosis and lack of short chain fatty acids in a Chinese cohort of patients with multiple sclerosis. Neurochem. Int. 2019;129 doi: 10.1016/j.neuint.2019.104468. PubMed DOI
Notting F., Pirovano W., Sybesma W., Kort R. The butyrate-producing and spore-forming bacterial genus Coprococcus as a potential biomarker for neurological disorders. Gut Microbiome (Camb) 2023;4:e16. doi: 10.1017/gmb.2023.14. PubMed DOI PMC
Lv X., Zhan L., Ye T., Xie H., Chen Z., Lin Y., Cai X., Yang W., Liao X., Liu J., Sun J. Gut commensal Agathobacter rectalis alleviates microglia-mediated neuroinflammation against pathogenesis of Alzheimer disease. iScience. 2024;27 doi: 10.1016/j.isci.2024.111116. PubMed DOI PMC
Schumacher S.M., Doyle W.J., Hill K., Ochoa-Repáraz J. Gut microbiota in multiple sclerosis and animal models. FEBS J. 2025;292:1330–1356. doi: 10.1111/febs.17161. PubMed DOI PMC
Horton M.K., McCauley K., Fadrosh D., Fujimura K., Graves J., Ness J., Wheeler Y., Gorman M.P., Benson L.A., Weinstock-Guttman B., et al. Gut microbiome is associated with multiple sclerosis activity in children. Ann. Clin. Transl. Neurol. 2021;8:1867–1883. doi: 10.1002/acn3.51441. PubMed DOI PMC
Montgomery T.L., Wang Q., Mirza A., Dwyer D., Wu Q., Dowling C.A., Martens J.W.S., Yang J., Krementsov D.N., Mao-Draayer Y. Identification of commensal gut microbiota signatures as predictors of clinical severity and disease progression in multiple sclerosis. Sci. Rep. 2024;14 doi: 10.1038/s41598-024-64369-x. PubMed DOI PMC
Chen J., Chia N., Kalari K.R., Yao J.Z., Novotna M., Paz Soldan M.M., Luckey D.H., Marietta E.V., Jeraldo P.R., Chen X., et al. Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls. Sci. Rep. 2016;6 doi: 10.1038/srep28484. PubMed DOI PMC
Lin Q., Dorsett Y., Mirza A., Tremlett H., Piccio L., Longbrake E.E., Choileain S.N., Hafler D.A., Cox L.M., Weiner H.L., et al. Meta-analysis identifies common gut microbiota associated with multiple sclerosis. Genome Med. 2024;16:94. doi: 10.1186/s13073-024-01364-x. PubMed DOI PMC
Vacaras V., Muresanu D.F., Buzoianu A.-D., Nistor C., Vesa S.C., Paraschiv A.-C., Botos-Vacaras D., Vacaras C., Vithoulkas G. The role of multiple sclerosis therapies on the dynamic of human gut microbiota. J. Neuroimmunol. 2023;378 doi: 10.1016/j.jneuroim.2023.578087. PubMed DOI
Ling Z., Cheng Y., Yan X., Shao L., Liu X., Zhou D., Zhang L., Yu K., Zhao L. Alterations of the Fecal Microbiota in Chinese Patients With Multiple Sclerosis. Front. Immunol. 2020;11 doi: 10.3389/fimmu.2020.590783. PubMed DOI PMC
Miquel S., Martín R., Rossi O., Bermúdez-Humarán L.G., Chatel J.M., Sokol H., Thomas M., Wells J.M., Langella P. Faecalibacterium prausnitzii and human intestinal health. Curr. Opin. Microbiol. 2013;16:255–261. doi: 10.1016/j.mib.2013.06.003. PubMed DOI
Lopez-Siles M., Duncan S.H., Garcia-Gil L.J., Martinez-Medina M. Faecalibacterium prausnitzii: from microbiology to diagnostics and prognostics. ISME J. 2017;11:841–852. doi: 10.1038/ismej.2016.176. PubMed DOI PMC
Carlsson A.H., Yakymenko O., Olivier I., Håkansson F., Postma E., Keita A.V., Söderholm J.D. Faecalibacterium prausnitzii supernatant improves intestinal barrier function in mice DSS colitis. Scand. J. Gastroenterol. 2013;48:1136–1144. doi: 10.3109/00365521.2013.828773. PubMed DOI
Martin R., Miquel S., Chain F., Natividad J.M., Jury J., Lu J., Sokol H., Theodorou V., Bercik P., Verdu E.F., et al. Faecalibacterium prausnitzii prevents physiological damages in a chronic low-grade inflammation murine model. BMC Microbiol. 2015;15:67. doi: 10.1186/s12866-015-0400-1. PubMed DOI PMC
Weiss G.A., Chassard C., Hennet T. Selective proliferation of intestinal Barnesiella under fucosyllactose supplementation in mice. Br. J. Nutr. 2014;111:1602–1610. doi: 10.1017/S0007114513004200. PubMed DOI
Parker B.J., Wearsch P.A., Veloo A.C.M., Rodriguez-Palacios A. The Genus Alistipes: Gut Bacteria With Emerging Implications to Inflammation, Cancer, and Mental Health. Front. Immunol. 2020;11:906. doi: 10.3389/fimmu.2020.00906. PubMed DOI PMC
Wu F., Guo X., Zhang J., Zhang M., Ou Z., Peng Y. Phascolarctobacterium faecium abundant colonization in human gastrointestinal tract. Exp. Ther. Med. 2017;14:3122–3126. doi: 10.3892/etm.2017.4878. PubMed DOI PMC
Kim C.H. Complex regulatory effects of gut microbial short-chain fatty acids on immune tolerance and autoimmunity. Cell. Mol. Immunol. 2023;20:341–350. doi: 10.1038/s41423-023-00987-1. PubMed DOI PMC
Silva A.S., Guimarães J., Sousa C., Mendonça L., Soares-dos-Reis R., Mendonça T., Abreu P., Sequeira L., Sá M.J. Metabolic syndrome parameters and multiple sclerosis disease outcomes: A Portuguese cross-sectional study. Mult. Scler. Relat. Disord. 2023;69 doi: 10.1016/j.msard.2022.104370. PubMed DOI
Gupta V.K., Janda G.S., Pump H.K., Lele N., Cruz I., Cohen I., Ruff W.E., Hafler D.A., Sung J., Longbrake E.E. Alterations in Gut Microbiome-Host Relationships After Immune Perturbation in Patients With Multiple Sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2025;12 doi: 10.1212/NXI.0000000000200355. PubMed DOI PMC
Tremlett H., Zhu F., Arnold D., Bar-Or A., Bernstein C.N., Bonner C., Forbes J.D., Graham M., Hart J., Knox N.C., et al. The gut microbiota in pediatric multiple sclerosis and demyelinating syndromes. Ann. Clin. Transl. Neurol. 2021;8:2252–2269. doi: 10.1002/acn3.51476. PubMed DOI PMC
Schaus S.R., Vasconcelos Periera G., Luis A.S., Madlambayan E., Terrapon N., Ostrowski M.P., Jin C., Hansson G.C., Martens E.C. Ruminococcus torques is a keystone degrader of intestinal mucin glycoprotein, releasing oligosaccharides used by Bacteroides thetaiotaomicron. bioRxiv. 2024 doi: 10.1101/2024.01.15.575725. Preprint at. PubMed DOI PMC
Nishiwaki H., Hamaguchi T., Ito M., Ishida T., Maeda T., Kashihara K., Tsuboi Y., Ueyama J., Shimamura T., Mori H., et al. Short-Chain Fatty Acid-Producing Gut Microbiota Is Decreased in Parkinson's Disease but Not in Rapid-Eye-Movement Sleep Behavior Disorder. mSystems. 2020;5 doi: 10.1128/mSystems.00797-20. PubMed DOI PMC
Bai D., Zhao J., Wang R., Du J., Zhou C., Gu C., Wang Y., Zhang L., Zhao Y., Lu N. Eubacterium coprostanoligenes alleviates chemotherapy-induced intestinal mucositis by enhancing intestinal mucus barrier. Acta Pharm. Sin. B. 2024;14:1677–1692. doi: 10.1016/j.apsb.2023.12.015. PubMed DOI PMC
Kang X., Liu C., Ding Y., Ni Y., Ji F., Lau H.C.H., Jiang L., Sung J.J., Wong S.H., Yu J. Roseburia intestinalis generated butyrate boosts anti-PD-1 efficacy in colorectal cancer by activating cytotoxic CD8(+) T cells. Gut. 2023;72:2112–2122. doi: 10.1136/gutjnl-2023-330291. PubMed DOI PMC
Nie K., Ma K., Luo W., Shen Z., Yang Z., Xiao M., Tong T., Yang Y., Wang X. Roseburia intestinalis: A Beneficial Gut Organism From the Discoveries in Genus and Species. Front. Cell. Infect. Microbiol. 2021;11 doi: 10.3389/fcimb.2021.757718. PubMed DOI PMC
Song L., Sun Q., Zheng H., Zhang Y., Wang Y., Liu S., Duan L. Roseburia hominis Alleviates Neuroinflammation via Short-Chain Fatty Acids through Histone Deacetylase Inhibition. Mol. Nutr. Food Res. 2022;66 doi: 10.1002/mnfr.202200164. PubMed DOI PMC
Jiraskova Zakostelska Z., Kraus M., Coufal S., Prochazkova P., Slavickova Z., Thon T., Hrncir T., Kreisinger J., Kostovcikova K., Kleinova P., et al. Lysate of Parabacteroides distasonis prevents severe forms of experimental autoimmune encephalomyelitis by modulating the priming of T cell response. Front. Immunol. 2024;15 doi: 10.3389/fimmu.2024.1475126. PubMed DOI PMC
Duscha A., Gisevius B., Hirschberg S., Yissachar N., Stangl G.I., Dawin E., Bader V., Haase S., Kaisler J., David C., et al. Propionic Acid Shapes the Multiple Sclerosis Disease Course by an Immunomodulatory Mechanism. Cell. 2020;180:1067–1080.e16. doi: 10.1016/j.cell.2020.02.035. PubMed DOI
Belarbi K., Cuvelier E., Bonte M.-A., Desplanque M., Gressier B., Devos D., Chartier-Harlin M.-C. Glycosphingolipids and neuroinflammation in Parkinson’s disease. Mol. Neurodegener. 2020;15:59. doi: 10.1186/s13024-020-00408-1. PubMed DOI PMC
Albuquerque L.d.S., Damasceno N.R.T., Maia F.N., Carvalho B.M.d., Maia C.S.C., D'Almeida J.A.C., Melo M.L.P.d. Cardiovascular risk estimated in individuals with multiple sclerosis: A case-control study. Mult. Scler. Relat. Disord. 2021;54 doi: 10.1016/j.msard.2021.103133. PubMed DOI
Yang F., Hu T., He K., Ying J., Cui H. Multiple Sclerosis and the Risk of Cardiovascular Diseases: A Mendelian Randomization Study. Front. Immunol. 2022;13 doi: 10.3389/fimmu.2022.861885. PubMed DOI PMC
Bastioli G., Piccirillo S., Graciotti L., Carone M., Sprega G., Taoussi O., Preziuso A., Castaldo P. Calcium Deregulation in Neurodegeneration and Neuroinflammation in Parkinson’s Disease: Role of Calcium-Storing Organelles and Sodium–Calcium Exchanger. Cells. 2024;13:1301. PubMed PMC
Enders M., Heider T., Ludwig A., Kuerten S. Strategies for Neuroprotection in Multiple Sclerosis and the Role of Calcium. Int. J. Mol. Sci. 2020;21 doi: 10.3390/ijms21051663. PubMed DOI PMC
Hundehege P., Epping L., Meuth S. Calcium Homeostasis in Multiple Sclerosis. Neurology International Open. 2017;01:E127–E135. doi: 10.1055/s-0043-109031. DOI
Boscia F., de Rosa V., Cammarota M., Secondo A., Pannaccione A., Annunziato L. The Na+/Ca2+ exchangers in demyelinating diseases. Cell Calcium. 2020;85 doi: 10.1016/j.ceca.2019.102130. PubMed DOI
Martino G., Grohovaz F., Brambilla E., Codazzi F., Consiglio A., Clementi E., Filippi M., Comi G., Grimaldi L.M. Proinflammatory cytokines regulate antigen-independent T-cell Activation by two separate calcium-signaling pathways in multiple sclerosis patients. Ann. Neurol. 1998;43:340–349. doi: 10.1002/ana.410430312. PubMed DOI
Asadikaram G., Meimand H.A.E., Noroozi S., Sanjari M., Zainodini N., Arababadi M.K. The effect of IFN-β 1a on expression of MDA5 and RIG-1 in multiple sclerosis patients. Biotechnol. Appl. Biochem. 2021;68:267–271. doi: 10.1002/bab.1920. PubMed DOI
Fischer J.C., Bscheider M., Eisenkolb G., Lin C.C., Wintges A., Otten V., Lindemans C.A., Heidegger S., Rudelius M., Monette S., et al. RIG-I/MAVS and STING signaling promote gut integrity during irradiation- and immune-mediated tissue injury. Sci. Transl. Med. 2017;9 doi: 10.1126/scitranslmed.aag2513. PubMed DOI PMC
Thirion F., Sellebjerg F., Fan Y., Lyu L., Hansen T.H., Pons N., Levenez F., Quinquis B., Stankevic E., Søndergaard H.B., et al. The gut microbiota in multiple sclerosis varies with disease activity. Genome Med. 2023;15:1. doi: 10.1186/s13073-022-01148-1. PubMed DOI PMC
Sasa N., Kojima S., Koide R., Hasegawa T., Namkoong H., Hirota T., Watanabe R., Nakamura Y., Oguro-Igashira E., Ogawa K., et al. Blood DNA virome associates with autoimmune diseases and COVID-19. Nat. Genet. 2025;57:65–79. doi: 10.1038/s41588-024-02022-z. PubMed DOI PMC
Thijssen M., Devos T., Meyfroidt G., Van Ranst M., Pourkarim M.R. Exploring the relationship between anellovirus load and clinical variables in hospitalized COVID-19 patients: Implications for immune activation and inflammation. IJID Reg. 2023;9:49–54. doi: 10.1016/j.ijregi.2023.09.005. PubMed DOI PMC
Alseth E.O., Custodio R., Sundius S.A., Kuske R.A., Brown S.P., Westra E.R. The impact of phage and phage resistance on microbial community dynamics. PLoS Biol. 2024;22 doi: 10.1371/journal.pbio.3002346. PubMed DOI PMC
Godsil M., Ritz N.L., Venkatesh S., Meeske A.J. Gut phages and their interactions with bacterial and mammalian hosts. J. Bacteriol. 2025;207 doi: 10.1128/jb.00428-24. PubMed DOI PMC
Babcock G.J., Hochberg D., Thorley-Lawson A.D. The expression pattern of Epstein-Barr virus latent genes in vivo is dependent upon the differentiation stage of the infected B cell. Immunity. 2000;13:497–506. doi: 10.1016/s1074-7613(00)00049-2. PubMed DOI
Beckers L., Baeten P., Popescu V., Swinnen D., Cardilli A., Hamad I., Van Wijmeersch B., Tavernier S.J., Kleinewietfeld M., Broux B., et al. Alterations in the innate and adaptive immune system in a real-world cohort of multiple sclerosis patients treated with ocrelizumab. Clin. Immunol. 2024;259 doi: 10.1016/j.clim.2024.109894. PubMed DOI
Sterling K.G., Dodd G.K., Alhamdi S., Asimenios P.G., Dagda R.K., De Meirleir K.L., Hudig D., Lombardi V.C. Mucosal Immunity and the Gut-Microbiota-Brain-Axis in Neuroimmune Disease. Int. J. Mol. Sci. 2022;23 PubMed PMC
Quesada-Simó A., Garrido-Marín A., Nos P., Gil-Perotín S. Impact of Anti-CD20 therapies on the immune homeostasis of gastrointestinal mucosa and their relationship with de novo intestinal bowel disease in multiple sclerosis: a review. Front. Pharmacol. 2023;14 doi: 10.3389/fphar.2023.1186016. PubMed DOI PMC
Le Gallou S., Zhou Z., Thai L.H., Fritzen R., de Los Aires A.V., Mégret J., Yu P., Kitamura D., Bille E., Tros F., et al. A splenic IgM memory subset with antibacterial specificities is sustained from persistent mucosal responses. J. Exp. Med. 2018;215:2035–2053. doi: 10.1084/jem.20180977. PubMed DOI PMC
Sabatino J.J., Jr., Zamvil S.S., Hauser S.L. B-Cell Therapies in Multiple Sclerosis. Cold Spring Harb. Perspect. Med. 2019;9 doi: 10.1101/cshperspect.a032037. PubMed DOI PMC
Capasso N., Palladino R., Cerbone V., Spiezia A.L., Covelli B., Fiore A., Lanzillo R., Carotenuto A., Petracca M., Stanziola L., et al. Ocrelizumab effect on humoral and cellular immunity in multiple sclerosis and its clinical correlates: a 3-year observational study. J. Neurol. 2023;270:272–282. doi: 10.1007/s00415-022-11350-1. PubMed DOI PMC
Saidha S., Bell J., Harold S., Belisario J.M., Hawe E., Shao Q., Wyse K., Maiese E.M. Systematic literature review of immunoglobulin trends for anti-CD20 monoclonal antibodies in multiple sclerosis. Neurol. Sci. 2023;44:1515–1532. doi: 10.1007/s10072-022-06582-y. PubMed DOI PMC
Muñoz U., Sebal C., Escudero E., Esiri M., Tzartos J., Sloan C., Sadaba M.C. Main role of antibodies in demyelination and axonal damage in multiple sclerosis. Cell. Mol. Neurobiol. 2022;42:1809–1827. PubMed PMC
Baker D., Jacobs B.M., Gnanapavan S., Schmierer K., Giovannoni G. Plasma cell and B cell-targeted treatments for use in advanced multiple sclerosis. Mult. Scler. Relat. Disord. 2019;35:19–25. PubMed
Sokol H., Pigneur B., Watterlot L., Lakhdari O., Bermúdez-Humarán L.G., Gratadoux J.-J., Blugeon S., Bridonneau C., Furet J.-P., Corthier G. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl. Acad. Sci. USA. 2008;105:16731–16736. doi: 10.1073/pnas.0804812105. PubMed DOI PMC
Quevrain E., Maubert M.A., Michon C., Chain F., Marquant R., Tailhades J., Miquel S., Carlier L., Bermudez-Humaran L.G., Pigneur B., et al. Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn's disease. Gut. 2016;65:415–425. doi: 10.1136/gutjnl-2014-307649. PubMed DOI PMC
Rossi O., Khan M.T., Schwarzer M., Hudcovic T., Srutkova D., Duncan S.H., Stolte E.H., Kozakova H., Flint H.J., Samsom J.N., et al. Faecalibacterium prausnitzii strain HTF-F and its extracellular polymeric matrix attenuate clinical parameters in DSS-induced colitis. PLoS One. 2015;10 PubMed PMC
Teixeira B., Bittencourt V.C.B., Ferreira T.B., Kasahara T.M., Barros P.O., Alvarenga R., Hygino J., Andrade R.M., Andrade A.F., Bento C.A.M. Low sensitivity to glucocorticoid inhibition of in vitro Th17-related cytokine production in multiple sclerosis patients is related to elevated plasma lipopolysaccharide levels. Clin. Immunol. 2013;148:209–218. doi: 10.1016/j.clim.2013.05.012. PubMed DOI
Escribano B.M., Medina-Fernández F.J., Aguilar-Luque M., Agüera E., Feijoo M., Garcia-Maceira F.I., Lillo R., Vieyra-Reyes P., Giraldo A.I., Luque E., et al. Lipopolysaccharide Binding Protein and Oxidative Stress in a Multiple Sclerosis Model. Neurotherapeutics. 2017;14:199–211. doi: 10.1007/s13311-016-0480-0. PubMed DOI PMC
Lutterotti A., Kuenz B., Gredler V., Khalil M., Ehling R., Gneiss C., Egg R., Deisenhammer F., Berger T., Reindl M. Increased serum levels of soluble CD14 indicate stable multiple sclerosis. J. Neuroimmunol. 2006;181:145–149. doi: 10.1016/j.jneuroim.2006.09.002. PubMed DOI
Banks W.A., Gray A.M., Erickson M.A., Salameh T.S., Damodarasamy M., Sheibani N., Meabon J.S., Wing E.E., Morofuji Y., Cook D.G., Reed M.J. Lipopolysaccharide-induced blood-brain barrier disruption: roles of cyclooxygenase, oxidative stress, neuroinflammation, and elements of the neurovascular unit. Neuroinflammation. 2015;12:223. doi: 10.1186/s12974-015-0434-1. PubMed DOI PMC
Lehikoinen J., Strandin T., Parantainen J., Nurmi K., Eklund K.K., Rivera F.J., Vaheri A., Tienari P.J. Fibrinolysis associated proteins and lipopolysaccharide bioactivity in plasma and cerebrospinal fluid in multiple sclerosis. J. Neuroimmunol. 2024;395 doi: 10.1016/j.jneuroim.2024.578432. PubMed DOI
Havrdova E., Arnold D.L., Bar-Or A., Comi G., Hartung H.P., Kappos L., Lublin F., Selmaj K., Traboulsee A., Belachew S., et al. No evidence of disease activity (NEDA) analysis by epochs in patients with relapsing multiple sclerosis treated with ocrelizumab vs interferon beta-1a. Mult. Scler. J. Exp. Transl. Clin. 2018;4 doi: 10.1177/2055217318760642. PubMed DOI PMC
Thompson A.J., Banwell B.L., Barkhof F., Carroll W.M., Coetzee T., Comi G., Correale J., Fazekas F., Filippi M., Freedman M.S., et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17:162–173. doi: 10.1016/S1474-4422(17)30470-2. PubMed DOI
Schierova D., Roubalova R., Kolar M., Stehlikova Z., Rob F., Jackova Z., Coufal S., Thon T., Mihula M., Modrak M., et al. Fecal Microbiome Changes and Specific Anti-Bacterial Response in Patients with IBD during Anti-TNF Therapy. Cells. 2021;10 doi: 10.3390/cells10113188. PubMed DOI PMC
Coufal S., Galanova N., Bajer L., Gajdarova Z., Schierova D., Jiraskova Zakostelska Z., Kostovcikova K., Jackova Z., Stehlikova Z., Drastich P., et al. Inflammatory Bowel Disease Types Differ in Markers of Inflammation, Gut Barrier and in Specific Anti-Bacterial Response. Cells. 2019;8 doi: 10.3390/cells8070719. PubMed DOI PMC
Kadleckova D., Salakova M., Erban T., Tachezy R. Discovery and characterization of novel DNA viruses in Apis mellifera: expanding the honey bee virome through metagenomic analysis. mSystems. 2024;9 doi: 10.1128/msystems.00088-24. PubMed DOI PMC
Kadleckova D., Tachezy R., Erban T., Deboutte W., Nunvar J., Salakova M., Matthijnssens J. The Virome of Healthy Honey Bee Colonies: Ubiquitous Occurrence of Known and New Viruses in Bee Populations. mSystems. 2022;7 doi: 10.1128/msystems.00072-22. PubMed DOI PMC
Jiang H., Lei R., Ding S.W., Zhu S. Skewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end reads. BMC Bioinf. 2014;15:182. doi: 10.1186/1471-2105-15-182. PubMed DOI PMC
Callahan B.J., McMurdie P.J., Rosen M.J., Han A.W., Johnson A.J.A., Holmes S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Methods. 2016;13:581–583. doi: 10.1038/nmeth.3869. PubMed DOI PMC
Edgar R.C., Haas B.J., Clemente J.C., Quince C., Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011;27:2194–2200. doi: 10.1093/bioinformatics/btr381. PubMed DOI PMC
Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., Peplies J., Glöckner F.O. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–D596. doi: 10.1093/nar/gks1219. PubMed DOI PMC
McMurdie P.J., Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8 doi: 10.1371/journal.pone.0061217. PubMed DOI PMC
Jaccard P. Distribution de la Flore Alpine dans le Bassin des Dranses et dans quelques régions voisines. Bull. Soc. Vaud. Sci. Nat. 1901;37:241–272. doi: 10.5169/seals-266440. DOI
Bray J.R., Curtis J.T. An Ordination of the Upland Forest Communities of Southern Wisconsin. Ecol. Monogr. 1957;27:325–349.
Oksanen J., Blanchet F.G., Kindt R., Legendre P., Minchin P., O'Hara B., Simpson G., Solymos P., Stevens H., Wagner H. Vegan: Community Ecology Package. R Package Version 2.2-1. 2015;2:1–2.
Barnett D., Arts I., Penders J. microViz: an R package for microbiome data visualization and statistics. J. Open Source Softw. 2021;6:3201. doi: 10.21105/joss.03201. DOI
Mallick H., Rahnavard A., McIver L.J., Ma S., Zhang Y., Nguyen L.H., Tickle T.L., Weingart G., Ren B., Schwager E.H., et al. Multivariable association discovery in population-scale meta-omics studies. PLoS Comput. Biol. 2021;17 doi: 10.1371/journal.pcbi.1009442. PubMed DOI PMC
Douglas G.M., Maffei V.J., Zaneveld J.R., Yurgel S.N., Brown J.R., Taylor C.M., Huttenhower C., Langille M.G.I. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 2020;38:685–688. doi: 10.1038/s41587-020-0548-6. PubMed DOI PMC
Yang C., Mai J., Cao X., Burberry A., Cominelli F., Zhang L. ggpicrust2: an R package for PICRUSt2 predicted functional profile analysis and visualization. Bioinformatics. 2023;39 doi: 10.1093/bioinformatics/btad470. PubMed DOI PMC
Wickham H. Springer International Publishing; 2016. ggplot2: Elegant Graphics for Data Analysis.
Bolger A.M., Lohse M., Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Nurk S., Meleshko D., Korobeynikov A., Pevzner P.A. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017;27:824–834. doi: 10.1101/gr.213959.116. PubMed DOI PMC
Buchfink B., Xie C., Huson D.H. Fast and sensitive protein alignment using DIAMOND. Methods. 2015;12:59–60. doi: 10.1038/nmeth.3176. PubMed DOI
Ondov B.D., Bergman N.H., Phillippy A.M. Interactive metagenomic visualization in a Web browser. BMC Bioinf. 2011;12:385. doi: 10.1186/1471-2105-12-385. PubMed DOI PMC
Vasimuddin M.,M.S., Li H., Aluru S. 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS) 2019. Efficient Architecture-Aware Acceleration of BWA-MEM for Multicore Systems; pp. 314–324. DOI
Lahti L., Shetty S. microbiome R package. Bioconductor. DOI
Kolde R. pheatmap: Pretty Heatmaps. https://github.com/raivokolde/pheatmap R package version.
Kassambara A. ggpubr: ‘ggplot2’ Based Publication Ready Plots. https://cran.r-project.org/web/packages/ggpubr/index.html
Szklarczyk D., Kirsch R., Koutrouli M., Nastou K., Mehryary F., Hachilif R., Gable A.L., Fang T., Doncheva N.T., Pyysalo S., et al. The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023;51:D638–D646. doi: 10.1093/nar/gkac1000. PubMed DOI PMC
R Core Team . R Foundation for Statistical Computing; Vienna, Austria: 2020. R: A Language and Environment for Statistical Computing.http://www.r-project.org/index.html