Bacteria sense the antibiotic rifampicin through a widespread dual-promoter based alarm system
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
Grantová podpora
23-06295S
Czech Science Foundation
24-10700S
Czech Science Foundation
LX22NPO5103
National Institute of Virology and Bacteriology
European Union - Next Generation EU
GA UK No.164125
Charles University in Prague
CZ.02.01.01/00/22_008/0004575
Ministry of Education
LM2023055
ELIXIR CZ
LM2023053
ELIXIR CZ
Czech National Node to the European Infrastructure for Translational Medicine
Ministry of Education, Youth and Sports of the Czech Republic
LM2023042
MEYS CR infrastructure project
CZ.02.01.01/00/23_015/0008175
MEYS CR infrastructure project
PubMed
41533585
PubMed Central
PMC12802891
DOI
10.1093/nar/gkaf1407
PII: 8425345
Knihovny.cz E-zdroje
- MeSH
- antibakteriální látky * farmakologie MeSH
- Bacillus subtilis * genetika účinky léků metabolismus MeSH
- bakteriální léková rezistence genetika MeSH
- bakteriální proteiny * genetika metabolismus chemie MeSH
- DNA řízené RNA-polymerasy metabolismus chemie genetika MeSH
- genetická transkripce účinky léků MeSH
- promotorové oblasti (genetika) * MeSH
- regulace genové exprese u bakterií účinky léků MeSH
- rifampin * farmakologie MeSH
- transkripční faktory metabolismus genetika chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky * MeSH
- bakteriální proteiny * MeSH
- DNA řízené RNA-polymerasy MeSH
- rifampin * MeSH
- transkripční faktory MeSH
Most antibiotics are natural compounds or their derivatives, and bacteria have evolved defensive mechanisms to resist them. Many of these mechanisms are still poorly understood or unknown. This study reveals that in Bacillus subtilis, the transcription factor HelD increases resistance to rifampicin by protecting its target, RNA polymerase (RNAP). This protection is mediated by the HelD N-terminal domain that penetrates into RNAP to the close vicinity of the rifampicin binding pocket. Importantly, the bacterium detects low rifampicin levels using a unique regulatory system involving two convergent promoters with finely tuned kinetic properties. In the absence of rifampicin, the stronger antisense promoter inhibits transcription from the sense promoter. In the presence of subinhibitory rifampicin concentration, the antisense promoter is more likely to encounter rifampicin-bound RNAP. This relieves the repression from the sense promoter, increasing its transcription by almost two orders of magnitude, boosting helD expression. A similar two-promoter arrangement also controls the pps gene, which encodes a rifampicin-modifying enzyme. These findings define a widespread bacterial response system sensitive to rifampicin, as this dual-promoter architecture is conserved across many bacterial species and found upstream of genes potentially involved in rifampicin resistance, such as those for hydrolases, transporters, and transferases.
Zobrazit více v PubMed
Tamae C, Liu A, Kim K et al. Determination of antibiotic hypersensitivity among 4,000 single-gene-knockout mutants of Escherichia coli. J Bacteriol. 2008;190:5981–8. 10.1128/JB.01982-07. PubMed DOI PMC
Koval' T, Borah N, Sudzinová P et al. Mycobacterial HelD connects RNA polymerase recycling with transcription initiation. Nat Commun. 2024;15:1–20. PubMed PMC
Kouba T, Koval’ T, Sudzinová P et al. Mycobacterial HelD is a nucleic acids-clearing factor for RNA polymerase. Nat Commun. 2020;11:1–13. 10.1038/s41467-020-20158-4. PubMed DOI PMC
Newing TP, Oakley AJ, Miller M et al. Molecular basis for RNA polymerase-dependent transcription complex recycling by the helicase-like motor protein HelD. Nat Commun. 2020;11:1–11. 10.1038/s41467-020-20157-5. PubMed DOI PMC
Pei HH, Hilal T, Chen ZA et al. The δ subunit and NTPase HelD institute a two-pronged mechanism for RNA polymerase recycling. Nat Commun. 2020;11:1–14. 10.1038/s41467-020-20159-3. PubMed DOI PMC
Wiedermannová J, Sudzinová P, Koval T et al. Characterization of HelD, an interacting partner of RNA polymerase from Bacillus subtilis. Nucleic Acids Res. 2014;42:5151–63. 10.1093/nar/gku113. PubMed DOI PMC
Surette MD, Waglechner N, Koteva K et al. HelR is a helicase-like protein that protects RNA polymerase from rifamycin antibiotics. Mol Cell. 2022;82:3151–65. 10.1016/j.molcel.2022.06.019. PubMed DOI
Hurst-Hess KR, Saxena A, Rudra P et al. Mycobacterium abscessus HelR interacts with RNA polymerase to confer intrinsic rifamycin resistance. Mol Cell. 2022;82:3166–77. 10.1016/j.molcel.2022.06.034. PubMed DOI PMC
Campbell EA, Korzheva N, Mustaev A et al. Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell. 2001;104:901–12. 10.1016/S0092-8674(01)00286-0. PubMed DOI
Lin W, Mandal S, Degen D et al. Structural Basis of Mycobacterium tuberculosis Transcription and Transcription Inhibition. Mol Cell. 2017;66:169–79. 10.1016/j.molcel.2017.03.001e8. PubMed DOI PMC
Unger T, Jacobovitch Y, Dantes A et al. Applications of the Restriction Free (RF) cloning procedure for molecular manipulations and protein expression. J Struct Biol. 2010;172:34–44. 10.1016/j.jsb.2010.06.016. PubMed DOI
Ross W, Thompson JF, Newlands JT et al. E. coli Fis protein activates ribosomal RNA transcription in vitro and in vivo. EMBO J. 1990;9:3733–42. 10.1002/j.1460-2075.1990.tb07586.x. PubMed DOI PMC
Krásný L, Gourse RL. An alternative strategy for bacterial ribosome synthesis: bacillus subtilis rRNA transcription regulation. EMBO J. 2004;23:4473–83. PubMed PMC
Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983;166:557–80. 10.1016/S0022-2836(83)80284-8. PubMed DOI
Dubnau D, Davidoff-Abelson R. Fate of transforming DNA following uptake by competent Bacillus subtilis. I. Formation and properties of the donor-recipient complex. J Mol Biol. 1971;56:209–21. 10.1016/0022-2836(71)90460-8. PubMed DOI
Guérout-Fleury AM, Frandsen N, Stragier P. Plasmids for ectopic integration in Bacillus subtilis. Gene. 1996;180:57–61. 10.1016/S0378-1119(96)00404-0. PubMed DOI
Koo BM, Kritikos G, Farelli JD et al. Construction and analysis of two genome-scale deletion libraries for PubMed DOI PMC
Leehan JD, Nicholson WL. The spectrum of spontaneous rifampin resistance mutations in the DOI
Meijer WJJ, Miguel-Arribas A. Genetic engineering of PubMed
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54. 10.1016/0003-2697(76)90527-3. PubMed DOI
Perez-Riverol Y, Bandla C, Kundu DJ et al. The PRIDE database at 20 years: 2025 update. Nucleic Acids Res. 2025;53:D543–53. 10.1093/nar/gkae1011. PubMed DOI PMC
Pfaffl MW. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 2001;29:45e. 10.1093/nar/29.9.e45. DOI
Martini MC, Zhou Y, Sun H et al. Defining the transcriptional and post-transcriptional landscapes of mycobacterium smegmatisin aerobic growth and hypoxia. Front Microbiol. 2019;10:1–17. 10.3389/fmicb.2019.00591. PubMed DOI PMC
Qi Y, Hulett FM. PhoP∼P and RNA polymerase sigma(A) holoenzyme are sufficient for transcription of Pho regulon promoters in Bacillus subtilis: phoP∼P activator sites within the coding region stimulate transcription in vitro. Mol Microbiol. 1998;28:1187–97. 10.1046/j.1365-2958.1998.00882.x. PubMed DOI
Chang B-Y, Doi RH. Overproduction, purification, and characterization of PubMed DOI PMC
Koval T, Sudzinová P, Perháčová T et al. Domain structure of HelD, an interaction partner of Bacillus subtilis RNA polymerase. FEBS Lett. 2019;593:996–1005. PubMed
Rabatinová A, Šanderová H, Matějčková JJ et al. The δ subunit of RNA polymerase is required for rapid changes in gene expression and competitive fitness of the cell. J Bacteriol. 2013;195:2603–11. 10.1128/JB.00188-13. PubMed DOI PMC
Sojka L, Kouba T, Barvík I et al. Rapid changes in gene expression: DNA determinants of promoter regulation by the concentration of the transcription initiating NTP in Bacillus subtilis. Nucleic Acids Res. 2011;39:4598–611. 10.1093/nar/gkr032. PubMed DOI PMC
Rice P, Longden L, Bleasby A. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. 2000;16:276–7. 10.1016/S0168-9525(00)02024-2. PubMed DOI
O’Leary NA, Wright MW, Brister JR et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016;44:D733–45. PubMed PMC
O’Leary NA, Cox E, Holmes JB et al. Exploring and retrieving sequence and metadata for species across the tree of life with NCBI Datasets. Sci Data. 2024;11:1–10. PubMed PMC
Grant CE, Bailey TL, Noble WS. FIMO: scanning for occurrences of a given motif. Bioinformatics. 2011;27:1017–8. 10.1093/bioinformatics/btr064. PubMed DOI PMC
Bailey TL, Johnson J, Grant CE et al. The MEME Suite. Nucleic Acids Res. 2015;43:W39–49. 10.1093/nar/gkv416. PubMed DOI PMC
Schoch CL, Ciufo S, Domrachev M et al. NCBI Taxonomy: a comprehensive update on curation, resources and tools. Database. 2020;2020:baaa062. 10.1093/database/baaa062. PubMed DOI PMC
Huerta-Cepas J, Serra F, Bork P. ETE 3: reconstruction, analysis, and visualization of phylogenomic data. Mol Biol Evol. 2016;33:1635–8. 10.1093/molbev/msw046. PubMed DOI PMC
Letunic I, Bork P. Interactive Tree of Life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res. 2024;52:W78–82. 10.1093/nar/gkae268. PubMed DOI PMC
Steinegger M, Söding J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat Biotechnol. 2017;35:1026–8. 10.1038/nbt.3988. PubMed DOI
Consortium TGO, Aleksander SA, Balhoff J et al. The Gene Ontology knowledgebase in 2023. Genetics. 2023;224:iyad031. 10.1093/genetics/iyad031. PubMed DOI PMC
Klopfenstein DV, Zhang L, Pedersen BS et al. GOATOOLS: a Python library for Gene Ontology analyses. Sci Rep. 2018;8:1–17. 10.1038/s41598-018-28948-z. PubMed DOI PMC
McKinney W. Data Structures for Statistical Computing in Python. Scipy. 2010;56–61. 10.25080/Majora-92bf1922-00a. DOI
Hunter JD. Matplotlib: a 2D graphics environment. Comput Sci Eng. 2007;9:90–5. 10.1109/MCSE.2007.55. DOI
Stogios PJ, Cox G, Spanogiannopoulos P et al. Rifampin phosphotransferase is an unusual antibiotic resistance kinase. Nat Commun. 2016;7. 10.1038/ncomms11343. DOI
Qi X, Lin W, Ma M et al. Structural basis of rifampin inactivation by rifampin phosphotransferase. Proc Natl Acad Sci USA. 2016;113:3803–8. 10.1073/pnas.1523614113. PubMed DOI PMC
Dabbs ER, Yazawa K, Tanaka Y et al. Rifampicin Inactivation by Bacillus species. J Antibiot. 1995;48:815–9. 10.7164/antibiotics.48.815. DOI
Sudzinová P, Šanderová H, Koval’ T et al. What the Hel: recent advances in understanding rifampicin resistance in bacteria. FEMS Microbiol Rev. 2022;47:fuac051. 10.1093/femsre/fuac051. DOI
Forrest D, Warman EA, Erkelens AM et al. Xenogeneic silencing strategies in bacteria are dictated by RNA polymerase promiscuity. Nat Commun 2022 13:1. 2022;13:1–13.
Nicolas P, Mäder U, Dervyn E et al. Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis. Science (1979). 2012;335:1103–6.
Su M, Gao F, Yuan Q et al. Structural basis for conductance through TRIC cation channels. Nat Commun. 2017;8:15103. 10.1038/ncomms15103. PubMed DOI PMC
Barker MM, Gourse RL. Regulation of rRNA transcription correlates with nucleoside triphosphate sensing. J Bacteriol. 2001;183:6315–23. 10.1128/JB.183.21.6315-6323.2001. PubMed DOI PMC
Krásný L, Tišerová H, Jonák J et al. The identity of the transcription +1 position is crucial for changes in gene expression in response to amino acid starvation in Bacillus subtilis. Mol Microbiol. 2008;69:42–54. PubMed
Pruitt KD, Tatusova T, Maglott DR. NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 2007;35:D61–5. 10.1093/nar/gkl842,. PubMed DOI PMC
Laptenko O, Lee J, Lomakin I et al. Transcript cleavage factors GreA and GreB act as transient catalytic components of RNA polymerase. EMBO J. 2003;22:6322–34. 10.1093/emboj/cdg610. PubMed DOI PMC
Borukhov S, Sagitov V, Goldfarb A. Transcript cleavage factors from E. coli. Cell. 1993;72:459–66. 10.1016/0092-8674(93)90121-6. PubMed DOI
Larsen JS, Miller M, Oakley AJ et al. Multiple classes and isoforms of the RNA polymerase recycling motor protein HelD. Microbiologyopen. 2021;10:e1251. 10.1002/mbo3.1251. PubMed DOI PMC
Hutter B, Fischer C, Jacobi A et al. Panel of PubMed DOI PMC
Yim G, Spiegelman GB, Davies JE. Separate mechanisms are involved in rifampicin upmodulated and downmodulated gene expression in Salmonella Typhimurium. Res Microbiol. 2013;164:416–24. 10.1016/j.resmic.2013.02.003. PubMed DOI
Zhu JH, Wang BW, Pan M et al. Rifampicin can induce antibiotic tolerance in mycobacteria via paradoxical changes in rpoB transcription. Nat Commun. 2018;9:4218. 10.1038/s41467-018-06667-3. PubMed DOI PMC
Goh EB, Yim G, Tsui W et al. Transcriptional modulation of bacterial gene expression by subinhibitory concentrations of antibiotics. Proc Natl Acad Sci USA. 2002;99:17025–30. 10.1073/pnas.252607699. PubMed DOI PMC
Callen BP, Shearwin KE, Egan JB. Transcriptional interference between convergent promoters caused by elongation over the promoter. Mol Cell. 2004;14:647–56. 10.1016/j.molcel.2004.05.010. PubMed DOI
Giangrossi M, Prosseda G, Tran CN et al. A novel antisense RNA regulates at transcriptional level the virulence gene icsA of Shigella flexneri. Nucleic Acids Res. 2010;38:3362. 10.1093/nar/gkq025. PubMed DOI PMC
Wiechens E, Vigliotti F, Siniuk K et al. Gene regulation by convergent promoters. Nature Genetics 2025 57:1. 2025;57:206–17.
Bordoy AE, Varanasi US, Courtney CM et al. Transcriptional interference in convergent promoters as a means for tunable gene expression. ACS Synth Biol. 2016;5:1331–41. 10.1021/acssynbio.5b00223. PubMed DOI
Helmann JD. Compilation and analysus of PubMed DOI PMC
Kriel A, Bittner AN, Kim SH et al. Direct regulation of GTP homeostasis by (p)ppGpp: a critical component of viability and stress resistance. Mol Cell. 2012;48:231–41. 10.1016/j.molcel.2012.08.009. PubMed DOI PMC
Lopez JM, Dromerick A, Freese E. Response of guanosine 5’-triphosphate concentration to nutritional changes and its significance for Bacillus subtilis sporulation. J Bacteriol. 1981;146:605–13. 10.1128/jb.146.2.605-613.1981. PubMed DOI PMC
Short FL, Liu Q, Shah B et al. The Acinetobacter baumannii disinfectant resistance protein, AmvA, is a spermidine and spermine efflux pump. Commun Biol. 2021;4:1114. 10.1038/s42003-021-02629-6,. PubMed DOI PMC
Venugopal AA, Johnson S. Fidaxomicin: a novel macrocyclic antibiotic approved for treatment of clostridium difficile infection. Clin Infect Dis. 2012;54:568–74. 10.1093/cid/cir830. PubMed DOI
Spanogiannopoulos P, Waglechner N, Koteva K et al. A rifamycin inactivating phosphotransferase family shared by environmental and pathogenic bacteria. Proc Natl Acad Sci USA. 2014;111:7102–7. 10.1073/pnas.1402358111. PubMed DOI PMC