Bacteria sense the antibiotic rifampicin through a widespread dual-promoter based alarm system

. 2026 Jan 14 ; 54 (2) : .

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41533585

Grantová podpora
23-06295S Czech Science Foundation
24-10700S Czech Science Foundation
LX22NPO5103 National Institute of Virology and Bacteriology
European Union - Next Generation EU
GA UK No.164125 Charles University in Prague
CZ.02.01.01/00/22_008/0004575 Ministry of Education
LM2023055 ELIXIR CZ
LM2023053 ELIXIR CZ
Czech National Node to the European Infrastructure for Translational Medicine
Ministry of Education, Youth and Sports of the Czech Republic
LM2023042 MEYS CR infrastructure project
CZ.02.01.01/00/23_015/0008175 MEYS CR infrastructure project

Most antibiotics are natural compounds or their derivatives, and bacteria have evolved defensive mechanisms to resist them. Many of these mechanisms are still poorly understood or unknown. This study reveals that in Bacillus subtilis, the transcription factor HelD increases resistance to rifampicin by protecting its target, RNA polymerase (RNAP). This protection is mediated by the HelD N-terminal domain that penetrates into RNAP to the close vicinity of the rifampicin binding pocket. Importantly, the bacterium detects low rifampicin levels using a unique regulatory system involving two convergent promoters with finely tuned kinetic properties. In the absence of rifampicin, the stronger antisense promoter inhibits transcription from the sense promoter. In the presence of subinhibitory rifampicin concentration, the antisense promoter is more likely to encounter rifampicin-bound RNAP. This relieves the repression from the sense promoter, increasing its transcription by almost two orders of magnitude, boosting helD expression. A similar two-promoter arrangement also controls the pps gene, which encodes a rifampicin-modifying enzyme. These findings define a widespread bacterial response system sensitive to rifampicin, as this dual-promoter architecture is conserved across many bacterial species and found upstream of genes potentially involved in rifampicin resistance, such as those for hydrolases, transporters, and transferases.

Zobrazit více v PubMed

Tamae  C, Liu  A, Kim  K  et al.  Determination of antibiotic hypersensitivity among 4,000 single-gene-knockout mutants of Escherichia coli. J Bacteriol. 2008;190:5981–8. 10.1128/JB.01982-07. PubMed DOI PMC

Koval'  T, Borah  N, Sudzinová  P  et al.  Mycobacterial HelD connects RNA polymerase recycling with transcription initiation. Nat Commun. 2024;15:1–20. PubMed PMC

Kouba  T, Koval’  T, Sudzinová  P  et al.  Mycobacterial HelD is a nucleic acids-clearing factor for RNA polymerase. Nat Commun. 2020;11:1–13. 10.1038/s41467-020-20158-4. PubMed DOI PMC

Newing  TP, Oakley  AJ, Miller  M  et al.  Molecular basis for RNA polymerase-dependent transcription complex recycling by the helicase-like motor protein HelD. Nat Commun. 2020;11:1–11. 10.1038/s41467-020-20157-5. PubMed DOI PMC

Pei  HH, Hilal  T, Chen  ZA  et al.  The δ subunit and NTPase HelD institute a two-pronged mechanism for RNA polymerase recycling. Nat Commun. 2020;11:1–14. 10.1038/s41467-020-20159-3. PubMed DOI PMC

Wiedermannová  J, Sudzinová  P, Koval  T  et al.  Characterization of HelD, an interacting partner of RNA polymerase from Bacillus subtilis. Nucleic Acids Res. 2014;42:5151–63. 10.1093/nar/gku113. PubMed DOI PMC

Surette  MD, Waglechner  N, Koteva  K  et al.  HelR is a helicase-like protein that protects RNA polymerase from rifamycin antibiotics. Mol Cell. 2022;82:3151–65. 10.1016/j.molcel.2022.06.019. PubMed DOI

Hurst-Hess  KR, Saxena  A, Rudra  P  et al.  Mycobacterium abscessus HelR interacts with RNA polymerase to confer intrinsic rifamycin resistance. Mol Cell. 2022;82:3166–77. 10.1016/j.molcel.2022.06.034. PubMed DOI PMC

Campbell  EA, Korzheva  N, Mustaev  A  et al.  Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell. 2001;104:901–12. 10.1016/S0092-8674(01)00286-0. PubMed DOI

Lin  W, Mandal  S, Degen  D  et al.  Structural Basis of Mycobacterium tuberculosis Transcription and Transcription Inhibition. Mol Cell. 2017;66:169–79. 10.1016/j.molcel.2017.03.001e8. PubMed DOI PMC

Unger  T, Jacobovitch  Y, Dantes  A  et al.  Applications of the Restriction Free (RF) cloning procedure for molecular manipulations and protein expression. J Struct Biol. 2010;172:34–44. 10.1016/j.jsb.2010.06.016. PubMed DOI

Ross  W, Thompson  JF, Newlands  JT  et al.  E. coli Fis protein activates ribosomal RNA transcription in vitro and in vivo. EMBO J. 1990;9:3733–42. 10.1002/j.1460-2075.1990.tb07586.x. PubMed DOI PMC

Krásný  L, Gourse  RL. An alternative strategy for bacterial ribosome synthesis: bacillus subtilis rRNA transcription regulation. EMBO J. 2004;23:4473–83. PubMed PMC

Hanahan  D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983;166:557–80. 10.1016/S0022-2836(83)80284-8. PubMed DOI

Dubnau  D, Davidoff-Abelson  R. Fate of transforming DNA following uptake by competent Bacillus subtilis. I. Formation and properties of the donor-recipient complex. J Mol Biol. 1971;56:209–21. 10.1016/0022-2836(71)90460-8. PubMed DOI

Guérout-Fleury  AM, Frandsen  N, Stragier  P. Plasmids for ectopic integration in Bacillus subtilis. Gene. 1996;180:57–61. 10.1016/S0378-1119(96)00404-0. PubMed DOI

Koo  BM, Kritikos  G, Farelli  JD  et al.  Construction and analysis of two genome-scale deletion libraries for PubMed DOI PMC

Leehan  JD, Nicholson  WL. The spectrum of spontaneous rifampin resistance mutations in the DOI

Meijer  WJJ, Miguel-Arribas  A. Genetic engineering of PubMed

Bradford  MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54. 10.1016/0003-2697(76)90527-3. PubMed DOI

Perez-Riverol  Y, Bandla  C, Kundu  DJ  et al.  The PRIDE database at 20 years: 2025 update. Nucleic Acids Res. 2025;53:D543–53. 10.1093/nar/gkae1011. PubMed DOI PMC

Pfaffl  MW. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 2001;29:45e. 10.1093/nar/29.9.e45. DOI

Martini  MC, Zhou  Y, Sun  H  et al.  Defining the transcriptional and post-transcriptional landscapes of mycobacterium smegmatisin aerobic growth and hypoxia. Front Microbiol. 2019;10:1–17. 10.3389/fmicb.2019.00591. PubMed DOI PMC

Qi  Y, Hulett  FM. PhoP∼P and RNA polymerase sigma(A) holoenzyme are sufficient for transcription of Pho regulon promoters in Bacillus subtilis: phoP∼P activator sites within the coding region stimulate transcription in vitro. Mol Microbiol. 1998;28:1187–97. 10.1046/j.1365-2958.1998.00882.x. PubMed DOI

Chang  B-Y, Doi  RH. Overproduction, purification, and characterization of PubMed DOI PMC

Koval  T, Sudzinová  P, Perháčová  T  et al.  Domain structure of HelD, an interaction partner of Bacillus subtilis RNA polymerase. FEBS Lett. 2019;593:996–1005. PubMed

Rabatinová  A, Šanderová  H, Matějčková  JJ  et al.  The δ subunit of RNA polymerase is required for rapid changes in gene expression and competitive fitness of the cell. J Bacteriol. 2013;195:2603–11. 10.1128/JB.00188-13. PubMed DOI PMC

Sojka  L, Kouba  T, Barvík  I  et al.  Rapid changes in gene expression: DNA determinants of promoter regulation by the concentration of the transcription initiating NTP in Bacillus subtilis. Nucleic Acids Res. 2011;39:4598–611. 10.1093/nar/gkr032. PubMed DOI PMC

Rice  P, Longden  L, Bleasby  A. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. 2000;16:276–7. 10.1016/S0168-9525(00)02024-2. PubMed DOI

O’Leary  NA, Wright  MW, Brister  JR  et al.  Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016;44:D733–45. PubMed PMC

O’Leary  NA, Cox  E, Holmes  JB  et al.  Exploring and retrieving sequence and metadata for species across the tree of life with NCBI Datasets. Sci Data. 2024;11:1–10. PubMed PMC

Grant  CE, Bailey  TL, Noble  WS. FIMO: scanning for occurrences of a given motif. Bioinformatics. 2011;27:1017–8. 10.1093/bioinformatics/btr064. PubMed DOI PMC

Bailey  TL, Johnson  J, Grant  CE  et al.  The MEME Suite. Nucleic Acids Res. 2015;43:W39–49. 10.1093/nar/gkv416. PubMed DOI PMC

Schoch  CL, Ciufo  S, Domrachev  M  et al.  NCBI Taxonomy: a comprehensive update on curation, resources and tools. Database. 2020;2020:baaa062. 10.1093/database/baaa062. PubMed DOI PMC

Huerta-Cepas  J, Serra  F, Bork  P. ETE 3: reconstruction, analysis, and visualization of phylogenomic data. Mol Biol Evol. 2016;33:1635–8. 10.1093/molbev/msw046. PubMed DOI PMC

Letunic  I, Bork  P. Interactive Tree of Life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res. 2024;52:W78–82. 10.1093/nar/gkae268. PubMed DOI PMC

Steinegger  M, Söding  J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat Biotechnol. 2017;35:1026–8. 10.1038/nbt.3988. PubMed DOI

Consortium  TGO, Aleksander  SA, Balhoff  J  et al.  The Gene Ontology knowledgebase in 2023. Genetics. 2023;224:iyad031. 10.1093/genetics/iyad031. PubMed DOI PMC

Klopfenstein  DV, Zhang  L, Pedersen  BS  et al.  GOATOOLS: a Python library for Gene Ontology analyses. Sci Rep. 2018;8:1–17. 10.1038/s41598-018-28948-z. PubMed DOI PMC

McKinney  W. Data Structures for Statistical Computing in Python. Scipy. 2010;56–61. 10.25080/Majora-92bf1922-00a. DOI

Hunter  JD. Matplotlib: a 2D graphics environment. Comput Sci Eng. 2007;9:90–5. 10.1109/MCSE.2007.55. DOI

Stogios  PJ, Cox  G, Spanogiannopoulos  P  et al.  Rifampin phosphotransferase is an unusual antibiotic resistance kinase. Nat Commun. 2016;7. 10.1038/ncomms11343. DOI

Qi  X, Lin  W, Ma  M  et al.  Structural basis of rifampin inactivation by rifampin phosphotransferase. Proc Natl Acad Sci USA. 2016;113:3803–8. 10.1073/pnas.1523614113. PubMed DOI PMC

Dabbs  ER, Yazawa  K, Tanaka  Y  et al.  Rifampicin Inactivation by Bacillus species. J Antibiot. 1995;48:815–9. 10.7164/antibiotics.48.815. DOI

Sudzinová  P, Šanderová  H, Koval’  T  et al.  What the Hel: recent advances in understanding rifampicin resistance in bacteria. FEMS Microbiol Rev. 2022;47:fuac051. 10.1093/femsre/fuac051. DOI

Forrest  D, Warman  EA, Erkelens  AM  et al.  Xenogeneic silencing strategies in bacteria are dictated by RNA polymerase promiscuity. Nat Commun 2022 13:1. 2022;13:1–13.

Nicolas  P, Mäder  U, Dervyn  E  et al.  Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis. Science (1979). 2012;335:1103–6.

Su  M, Gao  F, Yuan  Q  et al.  Structural basis for conductance through TRIC cation channels. Nat Commun. 2017;8:15103. 10.1038/ncomms15103. PubMed DOI PMC

Barker  MM, Gourse  RL. Regulation of rRNA transcription correlates with nucleoside triphosphate sensing. J Bacteriol. 2001;183:6315–23. 10.1128/JB.183.21.6315-6323.2001. PubMed DOI PMC

Krásný  L, Tišerová  H, Jonák  J  et al.  The identity of the transcription +1 position is crucial for changes in gene expression in response to amino acid starvation in Bacillus subtilis. Mol Microbiol. 2008;69:42–54. PubMed

Pruitt  KD, Tatusova  T, Maglott  DR. NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 2007;35:D61–5. 10.1093/nar/gkl842,. PubMed DOI PMC

Laptenko  O, Lee  J, Lomakin  I  et al.  Transcript cleavage factors GreA and GreB act as transient catalytic components of RNA polymerase. EMBO J. 2003;22:6322–34. 10.1093/emboj/cdg610. PubMed DOI PMC

Borukhov  S, Sagitov  V, Goldfarb  A. Transcript cleavage factors from E. coli. Cell. 1993;72:459–66. 10.1016/0092-8674(93)90121-6. PubMed DOI

Larsen  JS, Miller  M, Oakley  AJ  et al.  Multiple classes and isoforms of the RNA polymerase recycling motor protein HelD. Microbiologyopen. 2021;10:e1251. 10.1002/mbo3.1251. PubMed DOI PMC

Hutter  B, Fischer  C, Jacobi  A  et al.  Panel of PubMed DOI PMC

Yim  G, Spiegelman  GB, Davies  JE. Separate mechanisms are involved in rifampicin upmodulated and downmodulated gene expression in Salmonella Typhimurium. Res Microbiol. 2013;164:416–24. 10.1016/j.resmic.2013.02.003. PubMed DOI

Zhu  JH, Wang  BW, Pan  M  et al.  Rifampicin can induce antibiotic tolerance in mycobacteria via paradoxical changes in rpoB transcription. Nat Commun. 2018;9:4218. 10.1038/s41467-018-06667-3. PubMed DOI PMC

Goh  EB, Yim  G, Tsui  W  et al.  Transcriptional modulation of bacterial gene expression by subinhibitory concentrations of antibiotics. Proc Natl Acad Sci USA. 2002;99:17025–30. 10.1073/pnas.252607699. PubMed DOI PMC

Callen  BP, Shearwin  KE, Egan  JB. Transcriptional interference between convergent promoters caused by elongation over the promoter. Mol Cell. 2004;14:647–56. 10.1016/j.molcel.2004.05.010. PubMed DOI

Giangrossi  M, Prosseda  G, Tran  CN  et al.  A novel antisense RNA regulates at transcriptional level the virulence gene icsA of Shigella flexneri. Nucleic Acids Res. 2010;38:3362. 10.1093/nar/gkq025. PubMed DOI PMC

Wiechens  E, Vigliotti  F, Siniuk  K  et al.  Gene regulation by convergent promoters. Nature Genetics 2025 57:1. 2025;57:206–17.

Bordoy  AE, Varanasi  US, Courtney  CM  et al.  Transcriptional interference in convergent promoters as a means for tunable gene expression. ACS Synth Biol. 2016;5:1331–41. 10.1021/acssynbio.5b00223. PubMed DOI

Helmann  JD. Compilation and analysus of PubMed DOI PMC

Kriel  A, Bittner  AN, Kim  SH  et al.  Direct regulation of GTP homeostasis by (p)ppGpp: a critical component of viability and stress resistance. Mol Cell. 2012;48:231–41. 10.1016/j.molcel.2012.08.009. PubMed DOI PMC

Lopez  JM, Dromerick  A, Freese  E. Response of guanosine 5’-triphosphate concentration to nutritional changes and its significance for Bacillus subtilis sporulation. J Bacteriol. 1981;146:605–13. 10.1128/jb.146.2.605-613.1981. PubMed DOI PMC

Short  FL, Liu  Q, Shah  B  et al.  The Acinetobacter baumannii disinfectant resistance protein, AmvA, is a spermidine and spermine efflux pump. Commun Biol. 2021;4:1114. 10.1038/s42003-021-02629-6,. PubMed DOI PMC

Venugopal  AA, Johnson  S. Fidaxomicin: a novel macrocyclic antibiotic approved for treatment of clostridium difficile infection. Clin Infect Dis. 2012;54:568–74. 10.1093/cid/cir830. PubMed DOI

Spanogiannopoulos  P, Waglechner  N, Koteva  K  et al.  A rifamycin inactivating phosphotransferase family shared by environmental and pathogenic bacteria. Proc Natl Acad Sci USA. 2014;111:7102–7. 10.1073/pnas.1402358111. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...