Metabolomic Insights Into the Impact of a Maternal Western-Style Diet and Leptin Supplementation During Suckling on Adult Rat Offspring

. 2026 Jan 31 ; 40 (2) : e71452.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41537760

Grantová podpora
PGC2018-097436-B-I00 MCIN/AEI and ERDF a way of making Europe
PID2022-138140NB-I00 MCIN/AEI and ERDF a way of making Europe
NU20-07-00026 Ministry of Health of the Czech Republic

Perinatal nutrition influences offspring metabolic phenotype and obesity risk. This study examines how a maternal obesogenic diet and offspring's leptin supplementation during suckling affect the metabolome in offspring adulthood, offering insights into long-term metabolic programming. Offspring of dams fed a standard diet (SD), a Western-style diet (WD) before and during gestation and lactation (WD-dams), or a WD switched to SD during lactation were supplemented throughout suckling with leptin or vehicle and then maintained on an SD post-weaning. Metabolomic analysis of plasma from offspring adult animals revealed sex-specific alterations in the relative abundance of circulating metabolites due to maternal WD. Among these, lower abundance of orotic acid in males and arginine in females emerged as the most discriminating metabolites between experimental groups influenced by maternal WD during gestation and lactation. These changes, indicative of poor metabolic programming, were largely normalized by dietary intervention during lactation. Leptin supplementation during suckling also induced favorable metabolic adaptations, reflected in lower N-acetylneuraminic acid and choline abundance (both sexes), higher 5-amino valeric acid betaine (males), lower TCA cycle intermediates (fumarate, succinate, malate), and elevated γ-glutamyl peptides (γ-glutamylalanine, γ-glutamylglutamine) (females), suggesting potential anti-inflammatory effects. These findings enhance our understanding of how early-life conditions influence long-term metabolism and underscore the potential of circulating metabolites as biomarkers for assessing perinatal interventions.

Zobrazit více v PubMed

Barker M., Baird J., Tinati T., et al., “Translating Developmental Origins: Improving the Health of Women and Their Children Using a Sustainable Approach to Behaviour Change,” Healthcare (Basel) 5 (2017): 17. PubMed PMC

Fleming T. P., Watkins A. J., Velazquez M. A., et al., “Origins of Lifetime Health Around the Time of Conception: Causes and Consequences,” Lancet 391 (2018): 1842–1852. PubMed PMC

Zambrano E., Ibáñez C., Martínez‐Samayoa P. M., Lomas‐Soria C., Durand‐Carbajal M., and Rodríguez‐González G. L., “Maternal Obesity: Lifelong Metabolic Outcomes for Offspring From Poor Developmental Trajectories During the Perinatal Period,” Archives of Medical Research 47 (2016): 1–12. PubMed

Kislal S., Shook L. L., and Edlow A. G., “Perinatal Exposure to Maternal Obesity: Lasting Cardiometabolic Impact on Offspring,” Prenatal Diagnosis 40 (2020): 1109–1125. PubMed PMC

Pomar C. A., van Nes R., Sánchez J., Picó C., Keijer J., and Palou A., “Maternal Consumption of a Cafeteria Diet During Lactation in Rats Leads the Offspring to a Thin‐Outside‐Fat‐Inside Phenotype,” International Journal of Obesity 41 (2017): 1279–1287. PubMed

Pomar C., Castillo P., Palou M., Palou A., and Picó C., “Implementation of a Healthy Diet to Lactating Rats Attenuates the Early Detrimental Programming Effects in the Offspring Born to Obese Dams. Putative Relationship With Milk Hormone Levels,” Journal of Nutritional Biochemistry 107 (2022): 109043. PubMed

Castillo P., Kuda O., Kopecky J., et al., “Stachydrine, N‐Acetylornithine and Trimethylamine N‐Oxide Levels as Candidate Milk Biomarkers of Maternal Consumption of an Obesogenic Diet During Lactation,” Biofactors 49, no. 5 (2023): 1022–1037. PubMed

Pomar C. A., Trepiana J., Besné‐Eseverri I., et al., “Maternal Dietary Improvement or Leptin Supplementation During Suckling Mitigates the Long‐Term Impact of Maternal Obesogenic Conditions on Inflammatory and Oxidative Stress Biomarkers in the Offspring of Diet‐Induced Obese Rats,” International Journal of Molecular Sciences 25, no. 22 (2024): 11876. PubMed PMC

Castillo P., Pomar C. A., Palou A., Palou M., and Picó C., “Influence of Maternal Metabolic Status and Diet During the Perinatal Period on the Metabolic Programming by Leptin Ingested During the Suckling Period in Rats,” Nutrients 15 (2023): 570. PubMed PMC

Castillo P., Kuda O., Kopecky J., et al., “Reverting to a Healthy Diet During Lactation Normalizes Maternal Milk Lipid Content of Diet‐Induced Obese Rats and Prevents Early Alterations in the Plasma Lipidome of the Offspring,” Molecular Nutrition & Food Research 66 (2022): e2200204. PubMed PMC

Palou M., Picó C., and Palou A., “Leptin as a Breast Milk Component for the Prevention of Obesity,” Nutrition Reviews 76, no. 12 (2018): 875–892. PubMed

Horakova O., Janovska P., Irodenko I., et al., “Postnatal Surge of Adipose‐Secreted Leptin Is a Robust Predictor of Fat Mass Trajectory in Mice,” American Journal of Physiology. Endocrinology and Metabolism 327 (2024): E729–E745. PubMed

Picó C., Oliver P., Sánchez J., et al., “The Intake of Physiological Doses of Leptin During Lactation in Rats Prevents Obesity in Later Life,” International Journal of Obesity 31 (2007): 1199–1209. PubMed

Sánchez J., Priego T., Palou M., Tobaruela A., Palou A., and Picó C., “Oral Supplementation With Physiological Doses of Leptin During Lactation in Rats Improves Insulin Sensitivity and Affects Food Preferences Later in Life,” Endocrinology 149 (2008): 733–740. PubMed

Benova A., Ferencakova M., Bardova K., et al., “Omega‐3 PUFAs Prevent Bone Impairment and Bone Marrow Adiposity in Mouse Model of Obesity,” Communications Biology 6 (2023): 1043. PubMed PMC

Hricko J., Rudl Kulhava L., Paucova M., et al., “Short‐Term Stability of Serum and Liver Extracts for Untargeted Metabolomics and Lipidomics,” Antioxidants 12 (2023): 986. PubMed PMC

Cajka T., Hricko J., Rudl Kulhava L., Paucova M., Novakova M., and Kuda O., “Optimization of Mobile Phase Modifiers for Fast LC‐MS‐Based Untargeted Metabolomics and Lipidomics,” International Journal of Molecular Sciences 24 (2023): 1987. PubMed PMC

Tsugawa H., Ikeda K., Takahashi M., et al., “A Lipidome Atlas in MS‐DIAL 4,” Nature Biotechnology 38 (2020): 1159–1163. PubMed

Pang Z., Chong J., Zhou G., et al., “MetaboAnalyst 5.0: Narrowing the Gap Between Raw Spectra and Functional Insights,” Nucleic Acids Research 49 (2021): W388–W396. PubMed PMC

Jobgen W., Meininger C. J., Jobgen S. C., et al., “Dietary L‐Arginine Supplementation Reduces White Fat Gain and Enhances Skeletal Muscle and Brown Fat Masses in Diet‐Induced Obese Rats,” Journal of Nutrition 139 (2009): 230–237. PubMed PMC

Kalezic A., Korac A., Korac B., and Jankovic A., “L‐Arginine Induces White Adipose Tissue Browning‐A New Pharmaceutical Alternative to Cold,” Pharmaceutics 14 (2022): 1368. PubMed PMC

Hase A., Jung S. E., and aan het Rot M., “Behavioral and Cognitive Effects of Tyrosine Intake in Healthy Human Adults,” Pharmacology, Biochemistry, and Behavior 133 (2015): 1–6. PubMed

Harden T. K., Sesma J. I., Fricks I. P., and Lazarowski E. R., “Signalling and Pharmacological Properties of the P2Y Receptor,” Acta Physiologica (Oxford, England) 199 (2010): 149–160. PubMed PMC

Meister J., Le Duc D., Ricken A., et al., “The G Protein‐Coupled Receptor P2Y14 Influences Insulin Release and Smooth Muscle Function in Mice,” Journal of Biological Chemistry 289 (2014): 23353–23366. PubMed PMC

Fushimura Y., Hoshino A., Furukawa S., et al., “Orotic Acid Protects Pancreatic β Cell by p53 Inactivation in Diabetic Mouse Model,” Biochemical and Biophysical Research Communications 585 (2021): 191–195. PubMed

Rüthrich H. L., Wetzel W., and Matthies H., “Postnatal Orotate Treatment: Effects on Learning and Memory in Adult Rats,” Psychopharmacology 63 (1979): 25–28. PubMed

Ahmed S. A., Sarma P., Barge S. R., Swargiary D., Devi G. S., and Borah J. C., “Xanthosine, a Purine Glycoside Mediates Hepatic Glucose Homeostasis Through Inhibition of Gluconeogenesis and Activation of Glycogenesis via Regulating the AMPK/ FoxO1/AKT/GSK3β Signaling Cascade,” Chemico‐Biological Interactions 371 (2023): 110347. PubMed

Lin Z. H., Zhong L. Y., Jiang H. B., et al., “Elucidation of the Beneficial Role of Co‐Fermented Whole Grain Quinoa and Black Barley With Lactobacillus on Rats Fed a Western‐Style Diet via a Multi‐Omics Approach,” Food Research International 187 (2024): 114345. PubMed

Monagas M., Khan N., Andrés‐Lacueva C., et al., “Dihydroxylated Phenolic Acids Derived From Microbial Metabolism Reduce Lipopolysaccharide‐Stimulated Cytokine Secretion by Human Peripheral Blood Mononuclear Cells,” British Journal of Nutrition 102 (2009): 201–206. PubMed

Rios S., García‐Gavilán J. F., Babio N., et al., “Plasma Metabolite Profiles Associated With the World Cancer Research Fund/American Institute for Cancer Research Lifestyle Score and Future Risk of Cardiovascular Disease and Type 2 Diabetes,” Cardiovascular Diabetology 22 (2023): 252. PubMed PMC

Cheeseman J., Badia C., Elgood‐Hunt G., et al., “Elevated Concentrations of Neu5Ac and Neu5,9Ac2 in Human Plasma: Potential Biomarkers of Cardiovascular Disease,” Glycoconjugate Journal 40 (2023): 645–654. PubMed PMC

Zhang L., Wei T. T., Li Y., et al., “Functional Metabolomics Characterizes a Key Role for N‐Acetylneuraminic Acid in Coronary Artery Diseases,” Circulation 137 (2018): 1374–1390. PubMed

Pan X. F., Yang J. J., Shu X. O., et al., “Associations of Circulating Choline and Its Related Metabolites With Cardiometabolic Biomarkers: An International Pooled Analysis,” American Journal of Clinical Nutrition 114 (2021): 893–906. PubMed PMC

Martínez‐Reyes I. and Chandel N. S., “Mitochondrial TCA Cycle Metabolites Control Physiology and Disease,” Nature Communications 11 (2020): 102. PubMed PMC

Fernández‐Veledo S., Marsal‐Beltran A., and Vendrell J., “Type 2 Diabetes and Succinate: Unmasking an Age‐Old Molecule,” Diabetologia 67 (2024): 430–442. PubMed PMC

Blatnik M., Thorpe S. R., and Baynes J. W., “Succination of Proteins by Fumarate: Mechanism of Inactivation of Glyceraldehyde‐3‐Phosphate Dehydrogenase in Diabetes,” Annals of the New York Academy of Sciences 1126 (2008): 272–275. PubMed PMC

Adam J., Ramracheya R., Chibalina M. V., et al., “Fumarate Hydratase Deletion in Pancreatic β Cells Leads to Progressive Diabetes,” Cell Reports 20 (2017): 3135–3148. PubMed PMC

Zheng L., Cardaci S., Jerby L., et al., “Fumarate Induces Redox‐Dependent Senescence by Modifying Glutathione Metabolism,” Nature Communications 6 (2015): 6001. PubMed PMC

Sullivan L. B., Martinez‐Garcia E., Nguyen H., et al., “The Proto‐Oncometabolite Fumarate Binds Glutathione to Amplify ROS‐Dependent Signaling,” Molecular Cell 51 (2013): 236–248. PubMed PMC

Santos J. L., Ruiz‐Canela M., Razquin C., et al., “Circulating Citric Acid Cycle Metabolites and Risk of Cardiovascular Disease in the PREDIMED Study,” Nutrition, Metabolism, and Cardiovascular Diseases 33 (2023): 835–843. PubMed

Guha S. and Majumder K., “Comprehensive Review of γ‐Glutamyl Peptides (γ‐GPs) and Their Effect on Inflammation Concerning Cardiovascular Health,” Journal of Agricultural and Food Chemistry 70 (2022): 7851–7870. PubMed

Haikonen R., Kärkkäinen O., Koistinen V., and Hanhineva K., “Diet‐ and Microbiota‐Related Metabolite, 5‐Aminovaleric Acid Betaine (5‐AVAB), in Health and Disease,” Trends in Endocrinology and Metabolism 33 (2022): 463–480. PubMed

Dambrova M., Makrecka‐Kuka M., Vilskersts R., Makarova E., Kuka J., and Liepinsh E., “Pharmacological Effects of Meldonium: Biochemical Mechanisms and Biomarkers of Cardiometabolic Activity,” Pharmacological Research 113 (2016): 771–780. PubMed

Kärkkäinen O., Tuomainen T., Koistinen V., et al., “Whole Grain Intake Associated Molecule 5‐Aminovaleric Acid Betaine Decreases β‐Oxidation of Fatty Acids in Mouse Cardiomyocytes,” Scientific Reports 8 (2018): 13036. PubMed PMC

Lee E., Kang S., Lee A. R., et al., “Stachydrine Derived From Fermented Rice Prevents Diet‐Induced Obesity by Regulating Adipsin and Endoplasmic Reticulum Homeostasis,” Journal of Nutritional Biochemistry 107 (2022): 109036. PubMed

Fu T. T. and Shen L., “Ergothioneine as a Natural Antioxidant Against Oxidative Stress‐Related Diseases,” Frontiers in Pharmacology 13 (2022): 850813. PubMed PMC

Smith E., Ottosson F., Hellstrand S., et al., “Ergothioneine Is Associated With Reduced Mortality and Decreased Risk of Cardiovascular Disease,” Heart 106 (2020): 691–697. PubMed PMC

Du J., Shen L., Tan Z., et al., “Betaine Supplementation Enhances Lipid Metabolism and Improves Insulin Resistance in Mice Fed a High‐Fat Diet,” Nutrients 10 (2018): 131. PubMed PMC

Gao X., Zhang H., Guo X. F., Li K., Li S., and Li D., “Effect of Betaine on Reducing Body Fat‐A Systematic Review and Meta‐Analysis of Randomized Controlled Trials,” Nutrients 11 (2019): 2480. PubMed PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...