HPMA polymers as functional excipients in dermal nanoformulations of imiquimod
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
41583059
PubMed Central
PMC12830183
DOI
10.1016/j.ijpx.2026.100486
PII: S2590-1567(26)00004-6
Knihovny.cz E-zdroje
- Klíčová slova
- Dermal delivery, HPMA polymers, Imiquimod, Nanocrystals, Nanoemulsion, Skin penetration enhancers,
- Publikační typ
- časopisecké články MeSH
A key challenge in topical drug delivery is the inherently low bioavailability of many active compounds within skin tissue. Here, we present the first comprehensive study investigating the impact of biocompatible hydrophilic polymers based on N-(2-hydroxypropyl)methacrylamide (p(HPMA)) on skin barrier properties and its potential to enhance drug permeation. Using imiquimod (IMQ), a model compound known for its poor dermal delivery, we demonstrate that p(HPMA) can significantly influence transport across the skin. To enhance the dermal delivery of IMQ, we investigated three p(HPMA) polymers of varying molecular sizes (5, 20, 80 kg/mol) with very low dispersity. Our initial focus was on the p(HPMA) interaction with the skin barrier, specifically within the stratum corneum (SC), which was studied by confocal microscopy. Results revealed that p(HPMA) can penetrate into deeper skin layers, with this ability inversely correlated with their molecular weight. FTIR analysis confirmed that the polymers increase SC hydration without disrupting lipid organization. As demonstrated by the ex vivo skin permeation study, the smallest p(HPMA) polymer (5 kg/mol) produced the strongest enhancement effect on IMQ delivery into skin tissue. Relative to p(HPMA)-free controls, IMQ accumulation increased by 90% from the conventional suspension and by 10% and 50% from the nanoemulsion and nanocrystal formulations, respectively. These findings substantiate the role of p(HPMA) as an effective skin-penetration enhancer and support its further investigation for optimizing topical drug-delivery systems.
Zobrazit více v PubMed
Alexander H., Brown S., Danby S., Flohr C. Research techniques made simple: transepidermal water loss measurement as a research tool. J. Invest. Dermatol. 2018;138:2295–2300. doi: 10.1016/j.jid.2018.09.001. e2291. PubMed DOI
Al-Mayhay M.H., Sabri A.H., Rutland C.S., Holmes A., McKenna J., Marlow M., Scurr D.J. Insight into imiquimod skin permeation and increased delivery using microneedle pre-treatment. Eur. J. Pharm. Biopharm. 2019;139:33–43. doi: 10.1016/j.ejpb.2019.02.006. PubMed DOI
Chaturvedi S., Garg A. An insight of techniques for the assessment of permeation flux across the skin for optimization of topical and transdermal drug delivery systems. J. Drug Deliv. Sci. Tech. 2021;62 doi: 10.1016/0300-9629(72)90139-9. DOI
Chytil P., Etrych T., Kříž J., Šubr V., Ulbrich K. N-(2-Hydroxypropyl)methacrylamide-based polymer conjugates with pH-controlled activation of doxorubicin for cell-specific or passive tumour targeting. Synthesis by RAFT polymerisation and physicochemical characterisation. Eur. J. Pharm. Sci. 2010;41:473–482. doi: 10.1016/j.ejps.2010.08.003. PubMed DOI
Chytil P., Koziolová E., Etrych T., Ulbrich K. HPMA copolymer–drug conjugates with controlled tumor-specific drug release. Macromol. Biosci. 2018;18 doi: 10.1002/mabi.201700209. PubMed DOI
Chytil P., Kostka L., Etrych T. HPMA copolymer-based nanomedicines in controlled drug delivery. J. Pers. Med. 2021;11:115. doi: 10.3390/jpm11020115. PubMed DOI PMC
Covi-Schwarz J., Klang V., Valenta C. In: Percutaneous Penetration Enhancers Drug Penetration into/through the Skin: Methodology and General Considerations. Dragicevic N., Maibach I., H., editors. Springer Berlin Heidelberg; Berlin, Heidelberg: 2017. ATR-FTIR Spectroscopy and the Skin Barrier: Evaluation of Penetration-Enhancement Effects; pp. 247–254.
Čuříková B.A., Procházková K., Filková B., Diblíková P., Svoboda J., Kováčik A., Vávrová K., Zbytovská J. Simplified stratum corneum model membranes for studying the effects of permeation enhancers. Int. J. Pharmaceut. 2017;534(1–2):287–296. doi: 10.1016/j.ijpharm.2017.10.038. PubMed DOI
Čuříková-Kindlová B.A., Diat O., Štěpánek F., Vávrová K., Zbytovská J. Probing the interactions among sphingosine and phytosphingosine ceramides with non- and alpha-hydroxylated acyl chains in skin lipid model membranes. Int. J. Pharmaceut. 2019;563:384–394. doi: 10.1016/j.ijpharm.2019.04.010. PubMed DOI
Čuříková-Kindlová B.A., Vovesná A., Nováčková A., Zbytovská J. In vitro modeling of skin barrier disruption and its recovery by ceramide-based formulations. AAPS PharmSciTech. 2022;23:21. doi: 10.1208/s12249-021-02154-z. PubMed DOI
Dozono H., Yanazume S., Nakamura H., Etrych T., Chytil P., Ulbrich K., Fang J., Arimura T., Douchi T., Kobayashi H., Ikoma M., Maeda H. HPMA copolymer-conjugated pirarubicin in multimodal treatment of a patient with stage IV prostate cancer and extensive lung and bone metastases. Target. Oncol. 2016;11(1):101–106. doi: 10.1007/s11523-015-0379-4. PubMed DOI
Dvořáková K., Štěpánek P., Kroupová J., Zbytovská J. N-Alkylmorpholines: potent dermal and transdermal skin permeation enhancers. Pharmaceutics. 2022;14(1):64. doi: 10.3390/pharmaceutics14010064. PubMed DOI PMC
Essendoubi M., Gobinet C., Reynaud R., Angiboust J.F., Manfait M., Piot O. Human skin penetration of hyaluronic acid of different molecular weights as probed by Raman spectroscopy. Skin Res. Technol. 2016;22:55–62. doi: 10.1111/srt.12228. PubMed DOI
Fasano W.J., Hinderliter P.M. The Tinsley LCR Databridge Model 6401 and electrical impedance measurements to evaluate skin integrity in vitro. Toxicol. in Vitro. 2004;18(5):725–729. doi: 10.1016/j.tiv.2004.01.003. PMID: 15251192. PubMed DOI
FDA . U.S. Food and Drug Administration; Washington (DC): 2020. Topical Dermatological Drug Products — In Vitro Release and Permeation Testing (IVPT) Guidance for Industry.
Gökçe B.B., Boran T., Emlik Çalık F., Özhan G., Sanyal R., Güngör S. Dermal delivery and follicular targeting of adapalene using PAMAM dendrimers. Drug Deliv. Trans. Res. 2021;11:626–646. doi: 10.1007/s13346-021-00933-6. PubMed DOI
Gorzelanny C., Mess C., Schneider S.W., Huck V., Brandner J.M. Skin barriers in dermal drug delivery: which Barriers have to be overcome and how can we measure them? Pharmaceutics. 2020;12:684. doi: 10.3390/pharmaceutics12070684. PubMed DOI PMC
Guth K., Schäfer-Korting M., Fabian E., Landsiedel R., van Ravenzwaay B. Suitability of skin integrity tests for dermal absorption studies in vitro. Toxicol. in Vitro. 2015;29:113–123. doi: 10.1016/j.tiv.2014.09.007. PubMed DOI
Hanna E., Abadi R., Abbas O. Imiquimod in dermatology: an overview. Int. J. Dermatol. 2016;55:831–844. doi: 10.1111/ijd.13235. PubMed DOI
Hattingh J. The correlation between transepidermal water loss and the thickness of epidermal components. Comp. Biochem. Physiol. A Comp. Physiol. 1972;43:719–722. doi: 10.1016/0300-9629(72)90139-9. PubMed DOI
Jain S., Mistry M.A., Swarnakar N.K. Enhanced dermal delivery of acyclovir using solid lipid nanoparticles. Drug Deliv. Transl. Res. 2011;1:395–406. doi: 10.1007/s13346-011-0036-0. PubMed DOI
Juhaščik M., Kováčik A., Huerta-Ángeles G. Recent advances of Hyaluronan for skin delivery: from structure to fabrication strategies and applications. Polymers. 2022;14:4833. doi: 10.3390/polym14224833. PubMed DOI PMC
Kalvodová A., Zbytovská J. Lipid nanocapsules enhance the transdermal delivery of drugs regardless of their physico-chemical properties. Int. J. Pharmaceut. 2022;628 doi: 10.1016/j.ijpharm.2022.122264. PubMed DOI
Kalvodová A., Dvořáková K., Petrová E., Michniak-Kohn B.B., Zbytovská J. The contest of nanoparticles: searching for the most effective topical delivery of corticosteroids. Pharmaceutics. 2023;15:513. doi: 10.3390/pharmaceutics15020513. PubMed DOI PMC
Klepac D., Kostková H., Petrova S., Chytil P., Etrych T., Kereïche S., Raška I., Weitz D.A., Filippov S.K. Interaction of spin-labeled HPMA-based nanoparticles with human blood plasma proteins – the introduction of protein-corona-free polymer nanomedicine. Nanoscale. 2018;10:6194–6204. doi: 10.1039/C7NR09355A. PubMed DOI
Klepac D., Tavares M.R., Vragović M., Ogrizović R., Valić S., Kereïche S., Filippov S.K., Etrych T., Čakara D., Chytil P. HPMA-based nitroxide radical containing nanoparticles with controlled radical release: detailed physico-chemical characterization. Eur. Polym. J. 2025;225 doi: 10.1016/j.eurpolymj.2025.113727. DOI
Kopecek J., Kopecková P. HPMA copolymers: origins, early developments, present, and future. Adv. Drug Deliv. Rev. 2010;62:122–149. doi: 10.1016/j.addr.2009.10.004. PubMed DOI PMC
Kotla N.G., Chandrasekar B., Rooney P., Sivaraman G., Larrañaga A., Krishna K.V., Pandit A., Rochev Y. Biomimetic lipid-based nanosystems for enhanced dermal delivery of drugs and bioactive agents. ACS Biomater Sci. Eng. 2017;3:1262–1272. doi: 10.1021/acsbiomaterials.6b00681. PubMed DOI
Kováčik A., Kopečná M., Vávrová K. Permeation enhancers in transdermal drug delivery: benefits and limitations. Exp. Opin. Drug Deliv. 2020;17:145–155. doi: 10.1080/17425247.2020.1713087. PubMed DOI
Koziolová E., Kostka L., Kotrchová L., Šubr V., Konefal R., Nottelet B., Etrych T. N-(2-Hydroxypropyl)methacrylamide-based linear, diblock, and starlike polymer drug carriers: advanced process for their simple production. Biomacromolecules. 2018;19:4003–4013. doi: 10.1021/acs.biomac.8b00973. PubMed DOI
Lammers T., Peschke P., Kühnlein R., Subr V., Ulbrich K., Debus J., Huber P., Hennink W., Storm G. Effect of radiotherapy and hyperthermia on the tumor accumulation of HPMA copolymer-based drug delivery systems. J. Control. Release. 2007;117:333–341. doi: 10.1016/j.jconrel.2006.10.032. PubMed DOI
Lee J.S., Oh E., Oh H., Kim S., Ok S., et al. Tacrolimus-loaded chitosan-based nanoparticles as an efficient topical therapeutic for the effective treatment of atopic dermatitis symptoms. Int. J. Biol. Macromol. 2024;273 PubMed
Lee S., Park C., Kim Y.W., Jung S.O., Lee Y., Kwon W., Kim H. Advances in transdermal delivery systems using polysaccharide-based natural enhancers: mechanisms and clinical potential. J. Pharm. Investig. 2025 doi: 10.1007/s40005-025-00764-4. DOI
Liu L., Zhao W., Ma Q., Gao Y., Wang W., Zhang X., Dong Y., Zhang T., Liang Y., Han S., Cao J., Wang X., Sun W., Ma H., Sun Y. Functional nano-systems for transdermal drug delivery and skin therapy. Nanoscale Adv. 2023;5:1527–1558. doi: 10.1039/d2na00530a. PubMed DOI PMC
Meyer W., Zschemisch N.H. Skin layer thickness at the ear of the domesticated pig, with special reference to the use of the ear integument for human dermatological research. Berl. Munch. Tierarztl. Wochenschr. 2002;115(11–12):401–406. PubMed
Olsztyńska-Janus S., Pietruszka A., Kiełbowicz Z., Czarnecki M.A. ATR-IR study of skin components: Lipids, proteins and water. Part I: Temperature effect. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018;188:37–49. doi: 10.1016/j.saa.2017.07.001. PubMed DOI
Paradee N., Thanokiang J., Sirivat A. Conductive poly(2-ethylaniline) dextran-based hydrogels for electrically controlled diclofenac release. Mater. Sci. Eng. 2021;C 118 doi: 10.1016/j.msec.2020.111346. PubMed DOI
Patzelt A., Mak W.C., Jung S., Knorr F., Meinke M.C., Richter H., Rühl E., Cheung K.Y., Tran N.B.N.N., Lademann J. Do nanoparticles have a future in dermal drug delivery? J. Control. Release. 2017;246:174–182. doi: 10.1016/j.jconrel.2016.09.015. PubMed DOI
Perrier S., Takolpuckdee P., Mars C.A. Reversible addition−fragmentation chain transfer polymerization: end group modification for functionalized polymers and chain transfer agent recovery. Macromolecules. 2005;38:2033–2036. doi: 10.1021/ma047611m. DOI
Petrová E., Chvíla S., Balouch M., Štěpánek F., Zbytovská J. Nanoformulations for dermal delivery of Imiquimod: the race of “soft” against “hard”. Int. J. Pharmaceut. 2023 doi: 10.1016/j.ijpharm.2023.123577. PubMed DOI
Petrová E., Chvíla S., Štěpánek F., Zbytovská J., Lamprou D.A. Imiquimod nanocrystal-loaded dissolving microneedles prepared by DLP printing. Drug Deliv. Trans. Res. 2025;15:158–170. doi: 10.1007/s13346-024-01567-0. PubMed DOI PMC
Roger M., Fullard N., Costello L., Bradbury S., Markiewicz E., O’Reilly S., Darling N., Ritchie P., Määttä A., Karakesisoglou I., Nelson G., von Zglinicki T., Dicolandrea T., Isfort R., Bascom C., Przyborski S. Bioengineering the microanatomy of human skin. J. Anat. 2019;234:10438–10455. doi: 10.1111/joa.12942. PubMed DOI PMC
Scales C.W., Vasilieva Y.A., Convertine A.J., Lowe A.B., McCormick C.L. Direct, controlled synthesis of the nonimmunogenic, hydrophilic polymer, Poly(N-(2-hydroxypropyl)methacrylamide) via RAFT in aqueous media. Biomacromolecules. 2005;6:1846–1850. doi: 10.1021/bm0503017. PubMed DOI
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., Tinevez J.Y., White D.J., Hartenstein V., Eliceiri K., Tomancak P., Cardona A. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 2019;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Šubr V., Ulbrich K. Synthesis and properties of new N-(2-hydroxypropyl)methacrylamide copolymers containing thiazolidine-2-thione reactive groups. React. Funct. Polym. 2006;66:1525–1538. doi: 10.1016/j.reactfunctpolym.2006.05.002. DOI
Venuganti V.V., Sahdev P., Hildreth M., Guan X., Perumal O. Structure-skin permeability relationship of dendrimers. Pharm. Res. 2011;28:2246–2260. doi: 10.1007/s11095-011-0455-0. PubMed DOI
Vitorino C., Almeida A., Sousa J., Lamarche I., Gobin P., Marchand S., Couet W., Olivier J.-C., Pais A. Passive and active strategies for transdermal delivery using co-encapsulating nanostructured lipid carriers: in vitro vs. in vivo studies. Eur. J. Pharm. Biopharm. 2014;86:133–144. doi: 10.1016/j.ejpb.2013.12.004. PubMed DOI
Vovesná A., Zhigunov A., Balouch M., Zbytovská J. Ceramide liposomes for skin barrier recovery: a novel formulation based on natural skin lipids. Int. J. Pharmaceut. 2021;596 doi: 10.1016/j.ijpharm.2021.120264. PubMed DOI
Weiss V.M., Lucas H., Mueller T., Chytil P., Etrych T., Naolou T., Kressler J., Mäder K. Macromol. Biosci. 2018;18 doi: 10.1002/mabi.201700240. PubMed DOI
Witting M., Boreham A., Brodwolf R., Vavrova K., Alexiev U., Friess W., Hedtrich S. Interactions of hyaluronic acid with the skin and implications for the dermal delivery of biomacromolecules. Mol. Pharm. 2015;12:1391–1401. doi: 10.1021/mp500676e. PubMed DOI
Zhu J., Tang X., Jia Y., Ho C.-T., Huang Q. Applications and delivery mechanisms of hyaluronic acid used for topical/transdermal delivery – a review. Int. J. Pharmaceut. 2020;578 doi: 10.1016/j.ijpharm.2020.119127. PubMed DOI