HPMA polymers as functional excipients in dermal nanoformulations of imiquimod

. 2026 Jun ; 11 () : 100486. [epub] 20260108

Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41583059
Odkazy

PubMed 41583059
PubMed Central PMC12830183
DOI 10.1016/j.ijpx.2026.100486
PII: S2590-1567(26)00004-6
Knihovny.cz E-zdroje

A key challenge in topical drug delivery is the inherently low bioavailability of many active compounds within skin tissue. Here, we present the first comprehensive study investigating the impact of biocompatible hydrophilic polymers based on N-(2-hydroxypropyl)methacrylamide (p(HPMA)) on skin barrier properties and its potential to enhance drug permeation. Using imiquimod (IMQ), a model compound known for its poor dermal delivery, we demonstrate that p(HPMA) can significantly influence transport across the skin. To enhance the dermal delivery of IMQ, we investigated three p(HPMA) polymers of varying molecular sizes (5, 20, 80 kg/mol) with very low dispersity. Our initial focus was on the p(HPMA) interaction with the skin barrier, specifically within the stratum corneum (SC), which was studied by confocal microscopy. Results revealed that p(HPMA) can penetrate into deeper skin layers, with this ability inversely correlated with their molecular weight. FTIR analysis confirmed that the polymers increase SC hydration without disrupting lipid organization. As demonstrated by the ex vivo skin permeation study, the smallest p(HPMA) polymer (5 kg/mol) produced the strongest enhancement effect on IMQ delivery into skin tissue. Relative to p(HPMA)-free controls, IMQ accumulation increased by 90% from the conventional suspension and by 10% and 50% from the nanoemulsion and nanocrystal formulations, respectively. These findings substantiate the role of p(HPMA) as an effective skin-penetration enhancer and support its further investigation for optimizing topical drug-delivery systems.

Zobrazit více v PubMed

Alexander H., Brown S., Danby S., Flohr C. Research techniques made simple: transepidermal water loss measurement as a research tool. J. Invest. Dermatol. 2018;138:2295–2300. doi: 10.1016/j.jid.2018.09.001. e2291. PubMed DOI

Al-Mayhay M.H., Sabri A.H., Rutland C.S., Holmes A., McKenna J., Marlow M., Scurr D.J. Insight into imiquimod skin permeation and increased delivery using microneedle pre-treatment. Eur. J. Pharm. Biopharm. 2019;139:33–43. doi: 10.1016/j.ejpb.2019.02.006. PubMed DOI

Chaturvedi S., Garg A. An insight of techniques for the assessment of permeation flux across the skin for optimization of topical and transdermal drug delivery systems. J. Drug Deliv. Sci. Tech. 2021;62 doi: 10.1016/0300-9629(72)90139-9. DOI

Chytil P., Etrych T., Kříž J., Šubr V., Ulbrich K. N-(2-Hydroxypropyl)methacrylamide-based polymer conjugates with pH-controlled activation of doxorubicin for cell-specific or passive tumour targeting. Synthesis by RAFT polymerisation and physicochemical characterisation. Eur. J. Pharm. Sci. 2010;41:473–482. doi: 10.1016/j.ejps.2010.08.003. PubMed DOI

Chytil P., Koziolová E., Etrych T., Ulbrich K. HPMA copolymer–drug conjugates with controlled tumor-specific drug release. Macromol. Biosci. 2018;18 doi: 10.1002/mabi.201700209. PubMed DOI

Chytil P., Kostka L., Etrych T. HPMA copolymer-based nanomedicines in controlled drug delivery. J. Pers. Med. 2021;11:115. doi: 10.3390/jpm11020115. PubMed DOI PMC

Covi-Schwarz J., Klang V., Valenta C. In: Percutaneous Penetration Enhancers Drug Penetration into/through the Skin: Methodology and General Considerations. Dragicevic N., Maibach I., H., editors. Springer Berlin Heidelberg; Berlin, Heidelberg: 2017. ATR-FTIR Spectroscopy and the Skin Barrier: Evaluation of Penetration-Enhancement Effects; pp. 247–254.

Čuříková B.A., Procházková K., Filková B., Diblíková P., Svoboda J., Kováčik A., Vávrová K., Zbytovská J. Simplified stratum corneum model membranes for studying the effects of permeation enhancers. Int. J. Pharmaceut. 2017;534(1–2):287–296. doi: 10.1016/j.ijpharm.2017.10.038. PubMed DOI

Čuříková-Kindlová B.A., Diat O., Štěpánek F., Vávrová K., Zbytovská J. Probing the interactions among sphingosine and phytosphingosine ceramides with non- and alpha-hydroxylated acyl chains in skin lipid model membranes. Int. J. Pharmaceut. 2019;563:384–394. doi: 10.1016/j.ijpharm.2019.04.010. PubMed DOI

Čuříková-Kindlová B.A., Vovesná A., Nováčková A., Zbytovská J. In vitro modeling of skin barrier disruption and its recovery by ceramide-based formulations. AAPS PharmSciTech. 2022;23:21. doi: 10.1208/s12249-021-02154-z. PubMed DOI

Dozono H., Yanazume S., Nakamura H., Etrych T., Chytil P., Ulbrich K., Fang J., Arimura T., Douchi T., Kobayashi H., Ikoma M., Maeda H. HPMA copolymer-conjugated pirarubicin in multimodal treatment of a patient with stage IV prostate cancer and extensive lung and bone metastases. Target. Oncol. 2016;11(1):101–106. doi: 10.1007/s11523-015-0379-4. PubMed DOI

Dvořáková K., Štěpánek P., Kroupová J., Zbytovská J. N-Alkylmorpholines: potent dermal and transdermal skin permeation enhancers. Pharmaceutics. 2022;14(1):64. doi: 10.3390/pharmaceutics14010064. PubMed DOI PMC

Essendoubi M., Gobinet C., Reynaud R., Angiboust J.F., Manfait M., Piot O. Human skin penetration of hyaluronic acid of different molecular weights as probed by Raman spectroscopy. Skin Res. Technol. 2016;22:55–62. doi: 10.1111/srt.12228. PubMed DOI

Fasano W.J., Hinderliter P.M. The Tinsley LCR Databridge Model 6401 and electrical impedance measurements to evaluate skin integrity in vitro. Toxicol. in Vitro. 2004;18(5):725–729. doi: 10.1016/j.tiv.2004.01.003. PMID: 15251192. PubMed DOI

FDA . U.S. Food and Drug Administration; Washington (DC): 2020. Topical Dermatological Drug Products — In Vitro Release and Permeation Testing (IVPT) Guidance for Industry.

Gökçe B.B., Boran T., Emlik Çalık F., Özhan G., Sanyal R., Güngör S. Dermal delivery and follicular targeting of adapalene using PAMAM dendrimers. Drug Deliv. Trans. Res. 2021;11:626–646. doi: 10.1007/s13346-021-00933-6. PubMed DOI

Gorzelanny C., Mess C., Schneider S.W., Huck V., Brandner J.M. Skin barriers in dermal drug delivery: which Barriers have to be overcome and how can we measure them? Pharmaceutics. 2020;12:684. doi: 10.3390/pharmaceutics12070684. PubMed DOI PMC

Guth K., Schäfer-Korting M., Fabian E., Landsiedel R., van Ravenzwaay B. Suitability of skin integrity tests for dermal absorption studies in vitro. Toxicol. in Vitro. 2015;29:113–123. doi: 10.1016/j.tiv.2014.09.007. PubMed DOI

Hanna E., Abadi R., Abbas O. Imiquimod in dermatology: an overview. Int. J. Dermatol. 2016;55:831–844. doi: 10.1111/ijd.13235. PubMed DOI

Hattingh J. The correlation between transepidermal water loss and the thickness of epidermal components. Comp. Biochem. Physiol. A Comp. Physiol. 1972;43:719–722. doi: 10.1016/0300-9629(72)90139-9. PubMed DOI

Jain S., Mistry M.A., Swarnakar N.K. Enhanced dermal delivery of acyclovir using solid lipid nanoparticles. Drug Deliv. Transl. Res. 2011;1:395–406. doi: 10.1007/s13346-011-0036-0. PubMed DOI

Juhaščik M., Kováčik A., Huerta-Ángeles G. Recent advances of Hyaluronan for skin delivery: from structure to fabrication strategies and applications. Polymers. 2022;14:4833. doi: 10.3390/polym14224833. PubMed DOI PMC

Kalvodová A., Zbytovská J. Lipid nanocapsules enhance the transdermal delivery of drugs regardless of their physico-chemical properties. Int. J. Pharmaceut. 2022;628 doi: 10.1016/j.ijpharm.2022.122264. PubMed DOI

Kalvodová A., Dvořáková K., Petrová E., Michniak-Kohn B.B., Zbytovská J. The contest of nanoparticles: searching for the most effective topical delivery of corticosteroids. Pharmaceutics. 2023;15:513. doi: 10.3390/pharmaceutics15020513. PubMed DOI PMC

Klepac D., Kostková H., Petrova S., Chytil P., Etrych T., Kereïche S., Raška I., Weitz D.A., Filippov S.K. Interaction of spin-labeled HPMA-based nanoparticles with human blood plasma proteins – the introduction of protein-corona-free polymer nanomedicine. Nanoscale. 2018;10:6194–6204. doi: 10.1039/C7NR09355A. PubMed DOI

Klepac D., Tavares M.R., Vragović M., Ogrizović R., Valić S., Kereïche S., Filippov S.K., Etrych T., Čakara D., Chytil P. HPMA-based nitroxide radical containing nanoparticles with controlled radical release: detailed physico-chemical characterization. Eur. Polym. J. 2025;225 doi: 10.1016/j.eurpolymj.2025.113727. DOI

Kopecek J., Kopecková P. HPMA copolymers: origins, early developments, present, and future. Adv. Drug Deliv. Rev. 2010;62:122–149. doi: 10.1016/j.addr.2009.10.004. PubMed DOI PMC

Kotla N.G., Chandrasekar B., Rooney P., Sivaraman G., Larrañaga A., Krishna K.V., Pandit A., Rochev Y. Biomimetic lipid-based nanosystems for enhanced dermal delivery of drugs and bioactive agents. ACS Biomater Sci. Eng. 2017;3:1262–1272. doi: 10.1021/acsbiomaterials.6b00681. PubMed DOI

Kováčik A., Kopečná M., Vávrová K. Permeation enhancers in transdermal drug delivery: benefits and limitations. Exp. Opin. Drug Deliv. 2020;17:145–155. doi: 10.1080/17425247.2020.1713087. PubMed DOI

Koziolová E., Kostka L., Kotrchová L., Šubr V., Konefal R., Nottelet B., Etrych T. N-(2-Hydroxypropyl)methacrylamide-based linear, diblock, and starlike polymer drug carriers: advanced process for their simple production. Biomacromolecules. 2018;19:4003–4013. doi: 10.1021/acs.biomac.8b00973. PubMed DOI

Lammers T., Peschke P., Kühnlein R., Subr V., Ulbrich K., Debus J., Huber P., Hennink W., Storm G. Effect of radiotherapy and hyperthermia on the tumor accumulation of HPMA copolymer-based drug delivery systems. J. Control. Release. 2007;117:333–341. doi: 10.1016/j.jconrel.2006.10.032. PubMed DOI

Lee J.S., Oh E., Oh H., Kim S., Ok S., et al. Tacrolimus-loaded chitosan-based nanoparticles as an efficient topical therapeutic for the effective treatment of atopic dermatitis symptoms. Int. J. Biol. Macromol. 2024;273 PubMed

Lee S., Park C., Kim Y.W., Jung S.O., Lee Y., Kwon W., Kim H. Advances in transdermal delivery systems using polysaccharide-based natural enhancers: mechanisms and clinical potential. J. Pharm. Investig. 2025 doi: 10.1007/s40005-025-00764-4. DOI

Liu L., Zhao W., Ma Q., Gao Y., Wang W., Zhang X., Dong Y., Zhang T., Liang Y., Han S., Cao J., Wang X., Sun W., Ma H., Sun Y. Functional nano-systems for transdermal drug delivery and skin therapy. Nanoscale Adv. 2023;5:1527–1558. doi: 10.1039/d2na00530a. PubMed DOI PMC

Meyer W., Zschemisch N.H. Skin layer thickness at the ear of the domesticated pig, with special reference to the use of the ear integument for human dermatological research. Berl. Munch. Tierarztl. Wochenschr. 2002;115(11–12):401–406. PubMed

Olsztyńska-Janus S., Pietruszka A., Kiełbowicz Z., Czarnecki M.A. ATR-IR study of skin components: Lipids, proteins and water. Part I: Temperature effect. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018;188:37–49. doi: 10.1016/j.saa.2017.07.001. PubMed DOI

Paradee N., Thanokiang J., Sirivat A. Conductive poly(2-ethylaniline) dextran-based hydrogels for electrically controlled diclofenac release. Mater. Sci. Eng. 2021;C 118 doi: 10.1016/j.msec.2020.111346. PubMed DOI

Patzelt A., Mak W.C., Jung S., Knorr F., Meinke M.C., Richter H., Rühl E., Cheung K.Y., Tran N.B.N.N., Lademann J. Do nanoparticles have a future in dermal drug delivery? J. Control. Release. 2017;246:174–182. doi: 10.1016/j.jconrel.2016.09.015. PubMed DOI

Perrier S., Takolpuckdee P., Mars C.A. Reversible addition−fragmentation chain transfer polymerization: end group modification for functionalized polymers and chain transfer agent recovery. Macromolecules. 2005;38:2033–2036. doi: 10.1021/ma047611m. DOI

Petrová E., Chvíla S., Balouch M., Štěpánek F., Zbytovská J. Nanoformulations for dermal delivery of Imiquimod: the race of “soft” against “hard”. Int. J. Pharmaceut. 2023 doi: 10.1016/j.ijpharm.2023.123577. PubMed DOI

Petrová E., Chvíla S., Štěpánek F., Zbytovská J., Lamprou D.A. Imiquimod nanocrystal-loaded dissolving microneedles prepared by DLP printing. Drug Deliv. Trans. Res. 2025;15:158–170. doi: 10.1007/s13346-024-01567-0. PubMed DOI PMC

Roger M., Fullard N., Costello L., Bradbury S., Markiewicz E., O’Reilly S., Darling N., Ritchie P., Määttä A., Karakesisoglou I., Nelson G., von Zglinicki T., Dicolandrea T., Isfort R., Bascom C., Przyborski S. Bioengineering the microanatomy of human skin. J. Anat. 2019;234:10438–10455. doi: 10.1111/joa.12942. PubMed DOI PMC

Scales C.W., Vasilieva Y.A., Convertine A.J., Lowe A.B., McCormick C.L. Direct, controlled synthesis of the nonimmunogenic, hydrophilic polymer, Poly(N-(2-hydroxypropyl)methacrylamide) via RAFT in aqueous media. Biomacromolecules. 2005;6:1846–1850. doi: 10.1021/bm0503017. PubMed DOI

Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., Tinevez J.Y., White D.J., Hartenstein V., Eliceiri K., Tomancak P., Cardona A. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 2019;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC

Šubr V., Ulbrich K. Synthesis and properties of new N-(2-hydroxypropyl)methacrylamide copolymers containing thiazolidine-2-thione reactive groups. React. Funct. Polym. 2006;66:1525–1538. doi: 10.1016/j.reactfunctpolym.2006.05.002. DOI

Venuganti V.V., Sahdev P., Hildreth M., Guan X., Perumal O. Structure-skin permeability relationship of dendrimers. Pharm. Res. 2011;28:2246–2260. doi: 10.1007/s11095-011-0455-0. PubMed DOI

Vitorino C., Almeida A., Sousa J., Lamarche I., Gobin P., Marchand S., Couet W., Olivier J.-C., Pais A. Passive and active strategies for transdermal delivery using co-encapsulating nanostructured lipid carriers: in vitro vs. in vivo studies. Eur. J. Pharm. Biopharm. 2014;86:133–144. doi: 10.1016/j.ejpb.2013.12.004. PubMed DOI

Vovesná A., Zhigunov A., Balouch M., Zbytovská J. Ceramide liposomes for skin barrier recovery: a novel formulation based on natural skin lipids. Int. J. Pharmaceut. 2021;596 doi: 10.1016/j.ijpharm.2021.120264. PubMed DOI

Weiss V.M., Lucas H., Mueller T., Chytil P., Etrych T., Naolou T., Kressler J., Mäder K. Macromol. Biosci. 2018;18 doi: 10.1002/mabi.201700240. PubMed DOI

Witting M., Boreham A., Brodwolf R., Vavrova K., Alexiev U., Friess W., Hedtrich S. Interactions of hyaluronic acid with the skin and implications for the dermal delivery of biomacromolecules. Mol. Pharm. 2015;12:1391–1401. doi: 10.1021/mp500676e. PubMed DOI

Zhu J., Tang X., Jia Y., Ho C.-T., Huang Q. Applications and delivery mechanisms of hyaluronic acid used for topical/transdermal delivery – a review. Int. J. Pharmaceut. 2020;578 doi: 10.1016/j.ijpharm.2020.119127. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...