In this work, we investigated the accuracy of chronotype estimation from actigraphy while evaluating the required recording length and stability over time. Chronotypes have an important role in chronobiological and sleep research. In outpatient studies, chronotypes are typically evaluated by questionnaires. Alternatively, actigraphy provides potential means for measuring chronotype characteristics objectively, which opens many applications in chronobiology research. However, studies providing objective, critical evaluation of agreement between questionnaire-based and actigraphy-based chronotypes are lacking. We recorded 3-months of actigraphy and collected Morningness-Eveningness Questionnaire (MEQ), and Munich Chronotype Questionnaire (MCTQ) results from 122 women. Regression models were applied to evaluate the questionnaire-based chronotypes scores using selected actigraphy features. Changes in predictive strength were evaluated based on actigraphy recordings of different duration. The actigraphy was significantly associated with the questionnaire-based chronotype, and the best single-feature-based models explained 37% of the variability (R2) for MEQ (p < .001), 47% for mid-sleep time MCTQ-MSFsc (p < .001), and 19% for social jetlag MCTQ-SJLrel (p < .001). Concerning stability in time, the Mid-sleep and Acrophase features showed high levels of stability (test-retest R ~ 0.8), and actigraphy-based MSFscacti and SJLrelacti showed high temporal variability (test-retest R ~ 0.45). Concerning required recording length, features estimated from recordings with 3-week and longer observation periods had sufficient predictive power on unseen data. Additionally, our data showed that the subjectively reported extremes of the MEQ, MCTQ-MSFsc, and MCTQ-SJLrel are commonly overestimated compared to objective activity peak and middle of sleep differences measured by actigraphy. Such difference may be associated with chronotype time-variation. As actigraphy is considered accurate in sleep-wake cycle detection, we conclude that actigraphy-based chronotyping is appropriate for large-scale studies, especially where higher temporal variability in chronotype is expected.
- MeSH
- aktigrafie * MeSH
- cirkadiánní rytmus * MeSH
- lidé MeSH
- průzkumy a dotazníky MeSH
- spánek MeSH
- zápěstí MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Bipolar disorder (BD) is linked to circadian rhythm disruptions resulting in aberrant motor activity patterns. We aimed to explore whether motor activity alone, as assessed by longitudinal actigraphy, can be used to classify accurately BD patients and healthy controls (HCs) into their respective groups. METHODS: Ninety-day actigraphy records from 25 interepisode BD patients (ie, Montgomery-Asberg Depression Rating Scale (MADRS) and Young Mania Rating Scale (YMRS) < 15) and 25 sex- and age-matched HCs were used in order to identify latent actigraphic biomarkers capable of discriminating between BD patients and HCs. Mean values and time variations of a set of standard actigraphy features were analyzed and further validated using the random forest classifier. RESULTS: Using all actigraphy features, this method correctly assigned 88% (sensitivity = 85%, specificity = 91%) of BD patients and HCs to their respective group. The classification success may be confounded by differences in employment between BD patients and HCs. When motor activity features resistant to the employment status were used (the strongest feature being time variation of intradaily variability, Cohen's d = 1.33), 79% of the subjects (sensitivity = 76%, specificity = 81%) were correctly classified. CONCLUSION: A machine-learning actigraphy-based model was capable of distinguishing between interepisode BD patients and HCs solely on the basis of motor activity. The classification remained valid even when features influenced by employment status were omitted. The findings suggest that temporal variability of actigraphic parameters may provide discriminative power for differentiating between BD patients and HCs while being less affected by employment status.
- MeSH
- aktigrafie MeSH
- biologické markery MeSH
- bipolární porucha * diagnóza MeSH
- cirkadiánní rytmus MeSH
- lidé MeSH
- pohybová aktivita MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH