The diversity of cyanobacteria along the Alaskan North Slope was investigated. We isolated and cultivated 57 strains of cyanobacteria and sequenced a section of their rRNA operon containing a fragment of the 16S rRNA gene. Here, we describe 17 found species belonging mainly to families Coleofasciculaceae, Microcoleaceae, Oculatellaceae, Leptolyngbyaceae and to the order Synechococcales. In pursuing a conservative polyphasic approach, we utilized suggested thresholds in 16S rRNA gene differences in parallel with morphological differences between new and already described taxa for the description of new species and genera. Based on a combination of morphological, molecular and ecological analysis of collected and cultured strains we describe two genera Gibliniella and Shackletoniella as well as six cyanobacterial species; Cephalothrix alaskaensis, Tildeniella alaskaensis, Pseudophormidium americanum, Leptodesmis alaskaensis, Albertania alaskaensis and Nodosilinea alaskaensis. Here, a polyphasic approach was used to identify eight novel and nine established cyanobacterial taxa from a previously non-investigated region that uncovered a high degree of biodiversity in extreme polar environments.
- MeSH
- DNA bakterií genetika MeSH
- fylogeneze MeSH
- RNA ribozomální 16S genetika MeSH
- sekvenční analýza DNA MeSH
- sinice * genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Geografické názvy
- Aljaška MeSH
Genotypic and morphological diversity of cyanobacteria in the Rupite hot spring (Bulgaria) was investigated by means of optical microscopy, cultivation, single-cell PCR, and 16S rRNA gene amplicon sequencing. Altogether, 34 sites were investigated along the 71-39 °C temperature gradient. Analysis of samples from eight representative sites shown that Illumina, optical microscopy, and Roche 454 identified 72, 45 and 19% respective occurrences of all cumulatively present taxa. Optical microscopy failed to detect species of minor occurrence; whereas, amplicon sequencing technologies suffered from failed primer annealing and the presence of species with extensive extracellular polysaccharides production. Amplicon sequencing of the 16S rRNA gene V5-V6 region performed by Illumina identified the cyanobacteria most reliably to the generic level. Nevertheless, only the combined use of optical microscopy, cultivation and sequencing methods allowed for reliable estimate of the cyanobacterial diversity. Here, we show that Rupite hot-spring system hosts one of the richest cyanobacterial flora reported from a single site above 50 °C. Chlorogloeopsis sp. was the most abundant at the highest temperature (68 °C), followed by Leptolyngbya boryana, Thermoleptolyngbya albertanoae, Synechococcus bigranulatus, Oculatella sp., and Desertifilum sp. thriving above 60 °C, while Leptolyngbya geysericola, Geitlerinema splendidum, and Cyanobacterium aponinum were found above 50 °C.
Cyanobacteria are well adapted to freezing and desiccation; they have been proposed as possible survivors of comprehensive Antarctic glaciations. Filamentous types from the order Oscillatoriales, especially the species Phormidium autumnale Kützing ex Gomont 1892, have widely diverse morphotypes that dominate in Antarctic aquatic microbial mats, seepages, and wet soils. Currently little is known about the dispersion of cyanobacteria in Antarctica and of their population history. We tested the hypothesis that cyanobacteria survived Antarctic glaciations directly on site after the Gondwana breakup by using the relaxed and strict molecular clock in the analysis of the 16S rRNA gene. We estimated that the biogeographic history of Antarctic cyanobacteria belonging to P. autumnale lineages has ancient origins. The oldest go further back in time than the breakup of Gondwana and originated somewhere on the supercontinent between 442 and 297 Ma. Enhanced speciation rate was found around the time of the opening of the Drake Passage (c. 31-45 Ma) with beginning of glaciations (c. 43 Ma). Our results, based primarily on the strains collected in maritime Antarctica, mostly around James Ross Island, support the hypothesis that long-term survival took place in glacial refuges. The high morphological diversification of P. autumnale suggested the coevolution of lineages and formation of complex associations with different morphologies, resulting in a specific endemic Antarctic cyanobacterial flora.
- MeSH
- Bayesova věta MeSH
- biologická evoluce * MeSH
- DNA bakterií genetika MeSH
- fylogeneze * MeSH
- modely genetické MeSH
- RNA ribozomální 16S genetika MeSH
- sinice klasifikace genetika MeSH
- vznik druhů (genetika) MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Antarktida MeSH