We investigated lichen diversity in temperate oak forests using standardized protocols. Forty-eight sites were sampled in the Czech Republic, Slovakia and Hungary. The effects of natural environmental predictors and human influences on lichen diversity (lichen diversity value, species richness) were analysed by means of correlation tests. We found that lichen diversity responded differently to environmental predictors between two regions with different human impact. In the industrial region, air pollution was the strongest factor. In the agricultural to highly forested regions, lichen diversity was strongly influenced by forest age and forest fragmentation. We found that several natural factors can in some cases obscure the effect of human influences. Thus, factors of natural gradient must be considered (both statistically and interpretively) when studying human impact on lichen diversity.
- MeSH
- biodiverzita MeSH
- dub (rod) MeSH
- ekosystém MeSH
- lidé MeSH
- lišejníky klasifikace izolace a purifikace fyziologie MeSH
- monitorování životního prostředí MeSH
- stromy MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
Image cytometry still faces the problem of the quality of cell image analysis results. Degradations caused by cell preparation, optics, and electronics considerably affect most 2D and 3D cell image data acquired using optical microscopy. That is why image processing algorithms applied to these data typically offer imprecise and unreliable results. As the ground truth for given image data is not available in most experiments, the outputs of different image analysis methods can be neither verified nor compared to each other. Some papers solve this problem partially with estimates of ground truth by experts in the field (biologists or physicians). However, in many cases, such a ground truth estimate is very subjective and strongly varies between different experts. To overcome these difficulties, we have created a toolbox that can generate 3D digital phantoms of specific cellular components along with their corresponding images degraded by specific optics and electronics. The user can then apply image analysis methods to such simulated image data. The analysis results (such as segmentation or measurement results) can be compared with ground truth derived from input object digital phantoms (or measurements on them). In this way, image analysis methods can be compared with each other and their quality (based on the difference from ground truth) can be computed. We have also evaluated the plausibility of the synthetic images, measured by their similarity to real image data. We have tested several similarity criteria such as visual comparison, intensity histograms, central moments, frequency analysis, entropy, and 3D Haralick features. The results indicate a high degree of similarity between real and simulated image data.
- MeSH
- algoritmy MeSH
- buněčné jadérko ultrastruktura MeSH
- buněčné jádro MeSH
- fantomy radiodiagnostické MeSH
- fluorescenční mikroskopie metody MeSH
- granulocyty cytologie MeSH
- HL-60 buňky MeSH
- lidé MeSH
- mikrosféry MeSH
- obrazová cytometrie metody MeSH
- zobrazování trojrozměrné metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- práce podpořená grantem MeSH