Complex mixtures of micropollutants, including pesticides, pharmaceuticals and industrial chemicals emitted by wastewater effluents to European rivers may compromise the quality of these water resources and may pose a risk to ecosystem health and abstraction of drinking water. In the present study, an integrated analytical and bioanalytical approach was applied to investigate the impact of untreated wastewater effluents from the city of Novi Sad, Serbia, into the River Danube. The study was based on three on-site large volume solid phase extracted water samples collected upstream and downstream of the untreated wastewater discharge. Chemical screening with liquid chromatography high resolution mass spectrometry (LC-HRMS) was applied together with a battery of in vitro cell-based bioassays covering important steps of the cellular toxicity pathway to evaluate effects on the activation of metabolism (arylhydrocarbon receptor AhR, peroxisome proliferator activated receptor gamma PPARγ), specific modes of action (estrogen receptor ERα, androgen receptor AR) and adaptive stress responses (oxidative stress, inflammation). Increased effects, significantly changed contamination patterns and higher chemical concentrations were observed downstream of the wastewater discharge. A mass balance approach showed that enhanced endocrine disruption was in good agreement with concentrations of detected hormones, while only a smaller fraction of the effects on xenobiotic metabolism (<1%) and adaptive stress responses (0-12%) could be explained by the detected chemicals. The chemical and effects patterns observed upstream of the discharge point were fairly re-established at about 7 km downstream, demonstrating the enormous dilution capacity of this large river.
- MeSH
- biotest metody MeSH
- buněčné linie MeSH
- chemické látky znečišťující vodu analýza MeSH
- endokrinní disruptory analýza MeSH
- kvalita vody MeSH
- monitorování životního prostředí metody MeSH
- odpadní voda chemie MeSH
- pesticidy analýza MeSH
- pitná voda analýza MeSH
- receptory aromatických uhlovodíků analýza MeSH
- receptory pro estrogeny analýza MeSH
- řeky chemie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Německo MeSH
Bioassays are particularly useful tools to link the chemical and ecological assessments in water quality monitoring. Different methods cover a broad range of toxicity mechanisms in diverse organisms, and account for risks posed by non-target compounds and mixtures. Many tests are already applied in chemical and waste assessments, and stakeholders from the science-police interface have recommended their integration in regulatory water quality monitoring. Still, there is a need to address bioassay suitability to evaluate water samples containing emerging pollutants, which are a current priority in water quality monitoring. The presented interlaboratory study (ILS) verified whether a battery of miniaturized bioassays, conducted in 11 different laboratories following their own protocols, would produce comparable results when applied to evaluate blinded samples consisting of a pristine water extract spiked with four emerging pollutants as single chemicals or mixtures, i.e. triclosan, acridine, 17α-ethinylestradiol (EE2) and 3-nitrobenzanthrone (3-NBA). Assays evaluated effects on aquatic organisms from three different trophic levels (algae, daphnids, zebrafish embryos) and mechanism-specific effects using in vitro estrogenicity (ER-Luc, YES) and mutagenicity (Ames fluctuation) assays. The test battery presented complementary sensitivity and specificity to evaluate the different blinded water extract spikes. Aquatic organisms differed in terms of sensitivity to triclosan (algae > daphnids > fish) and acridine (fish > daphnids > algae) spikes, confirming the complementary role of the three taxa for water quality assessment. Estrogenicity and mutagenicity assays identified with high precision the respective mechanism-specific effects of spikes even when non-specific toxicity occurred in mixture. For estrogenicity, although differences were observed between assays and models, EE2 spike relative induction EC50 values were comparable to the literature, and E2/EE2 equivalency factors reliably reflected the sample content. In the Ames, strong revertant induction occurred following 3-NBA spike incubation with the TA98 strain, which was of lower magnitude after metabolic transformation and when compared to TA100. Differences in experimental protocols, model organisms, and data analysis can be sources of variation, indicating that respective harmonized standard procedures should be followed when implementing bioassays in water monitoring. Together with other ongoing activities for the validation of a basic bioassay battery, the present study is an important step towards the implementation of bioanalytical monitoring tools in water quality assessment and monitoring.
- MeSH
- biotest MeSH
- chemické látky znečišťující vodu MeSH
- čištění vody MeSH
- kvalita vody * MeSH
- monitorování životního prostředí MeSH
- voda * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Surface water can contain countless organic micropollutants, and targeted chemical analysis alone may only detect a small fraction of the chemicals present. Consequently, bioanalytical tools can be applied complementary to chemical analysis to detect the effects of complex chemical mixtures. In this study, bioassays indicative of activation of the aryl hydrocarbon receptor (AhR), activation of the pregnane X receptor (PXR), activation of the estrogen receptor (ER), adaptive stress responses to oxidative stress (Nrf2), genotoxicity (p53) and inflammation (NF-κB) and the fish embryo toxicity test were applied along with chemical analysis to water extracts from the Danube River. Mixture-toxicity modeling was applied to determine the contribution of detected chemicals to the biological effect. Effect concentrations for between 0 to 13 detected chemicals could be found in the literature for the different bioassays. Detected chemicals explained less than 0.2% of the biological effect in the PXR activation, adaptive stress response, and fish embryo toxicity assays, while five chemicals explained up to 80% of ER activation, and three chemicals explained up to 71% of AhR activation. This study highlights the importance of fingerprinting the effects of detected chemicals.
- MeSH
- biotest MeSH
- chemické látky znečišťující vodu analýza toxicita MeSH
- ekotoxikologie metody MeSH
- embryo nesavčí účinky léků MeSH
- NF-kappa B MeSH
- organické látky analýza toxicita MeSH
- receptory aromatických uhlovodíků metabolismus MeSH
- receptory pro estrogeny metabolismus MeSH
- řeky chemie MeSH
- ryby embryologie MeSH
- steroidní receptory metabolismus MeSH
- techniky in vitro MeSH
- teoretické modely MeSH
- testy genotoxicity metody MeSH
- testy toxicity metody MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH