Plant-soil feedback (PSF) effects are studied as plant growth responses to soil previously conditioned by another plant. These studies usually exclude effects of soil fauna, such as nematodes, soil arthropods, and earthworms, although these organisms are known to influence plant performance. Here, we aimed to explore effects of a model microarthropod community on PSFs. We performed a PSF experiment in microcosms with two plant species, Phleum pratense and Poa pratensis. We added a model microarthropod community consisting of three fungivorous springtail species (Proisotoma minuta, Folsomia candida, and Sinella curviseta) and a predatory mite (Hypoaspis aculeifer) to half of the microcosms. We measured seedling establishment and plant biomass, nematode and microbial community composition, microbial biomass, and mycorrhizal colonization of roots. Microarthropods caused changes in the composition of nematode and microbial communities. Their effect was particularly strong in Phleum plants where they altered the composition of bacterial communities. Microarthropods also generally influenced plant performance, and their effects depended on previous soil conditioning and the identity of plant species. Microarthropods did not affect soil microbial biomass and mycorrhizal colonization of roots. We conclude that the role of soil microarthropods should be considered in future PSF experiments, especially as their effects are plant species-specific.
- MeSH
- biomasa MeSH
- členovci klasifikace fyziologie MeSH
- druhová specificita MeSH
- ekosystém MeSH
- feedback psychologický fyziologie MeSH
- hlístice fyziologie MeSH
- kořeny rostlin mikrobiologie parazitologie fyziologie MeSH
- mykorhiza fyziologie MeSH
- Oligochaeta fyziologie MeSH
- Phleum mikrobiologie parazitologie fyziologie MeSH
- Poa mikrobiologie parazitologie fyziologie MeSH
- půda parazitologie MeSH
- půdní mikrobiologie * MeSH
- roztoči fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Global change drivers are rapidly altering resource availability and biodiversity. While there is consensus that greater biodiversity increases the functioning of ecosystems, the extent to which biodiversity buffers ecosystem productivity in response to changes in resource availability remains unclear. We use data from 16 grassland experiments across North America and Europe that manipulated plant species richness and one of two essential resources-soil nutrients or water-to assess the direction and strength of the interaction between plant diversity and resource alteration on above-ground productivity and net biodiversity, complementarity, and selection effects. Despite strong increases in productivity with nutrient addition and decreases in productivity with drought, we found that resource alterations did not alter biodiversity-ecosystem functioning relationships. Our results suggest that these relationships are largely determined by increases in complementarity effects along plant species richness gradients. Although nutrient addition reduced complementarity effects at high diversity, this appears to be due to high biomass in monocultures under nutrient enrichment. Our results indicate that diversity and the complementarity of species are important regulators of grassland ecosystem productivity, regardless of changes in other drivers of ecosystem function.
- MeSH
- biodiverzita * MeSH
- eutrofizace * MeSH
- fyziologie rostlin * MeSH
- období sucha * MeSH
- pastviny * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
- Severní Amerika MeSH