Autosomal trisomies and monosomies bring serious threats to embryonic development through transcriptional disarray caused primarily by the dosage effect of the aneuploid part of the genome. The present study compared the effect of a mouse-viable 30-Mb segmental trisomy on the genome-wide transcriptional profile of somatic (liver) cells and male germ cells. Although the 1.6-fold change in expression of triplicated genes reflected the gene dosage in liver cells, the extra copy genes were compensated in early pachytene spermatocytes, showing 1.18-fold increase. Although more pronounced, the dosage compensation of trisomic genes was concordant with the incidence of HORMAD2 protein and histone gammaH2AX markers of unsynapsed chromatin. A possible explanation for this includes insufficient sensitivity to detect the meiotic silencing of unsynapsed chromatin markers in the 30-Mb region of the chromosome or an earlier silencing effect of another epigenetic factor. Taken together, our results indicate that the meiotic silencing of unsynapsed chromatin is the major, but most likely not the only, factor driving the dosage compensation of triplicated genes in primary spermatocytes.
- MeSH
- aneuploidie MeSH
- chromatin genetika MeSH
- fenotyp MeSH
- genom * MeSH
- játra fyziologie MeSH
- kompenzace dávky (genetika) * MeSH
- meióza genetika MeSH
- mužská infertilita genetika MeSH
- myši inbrední C57BL MeSH
- spermatocyty fyziologie MeSH
- synaptonemální komplex genetika MeSH
- těhotenství MeSH
- tělesná hmotnost genetika MeSH
- transkriptom MeSH
- translokace genetická genetika MeSH
- trizomie genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
During meiosis, pairing of homologous chromosomes and their synapsis are essential prerequisites for normal male gametogenesis. Even limited autosomal asynapsis often leads to spermatogenic impairment, the mechanism of which is not fully understood. The present study was aimed at deliberately increasing the size of partial autosomal asynapsis and analysis of its impact on male meiosis. For this purpose, we studied the effect of t(12) haplotype encompassing four inversions on chromosome 17 on mouse autosomal translocation T(16;17)43H (abbreviated T43H). The T43H/T43H homozygotes were fully fertile in both sexes, while +/T43H heterozygous males, but not females, were sterile with meiotic arrest at late pachynema. Inclusion of the t(12) haplotype in trans to the T43H translocation resulted in enhanced asynapsis of the translocated autosome, ectopic phosphorylation of histone H2AX, persistence of RAD51 foci, and increased gene silencing around the translocation break. Increase was also on colocalization of unsynapsed chromatin with sex body. Remarkably, we found that transcriptional silencing of the unsynapsed autosomal chromatin precedes silencing of sex chromosomes. Based on the present knowledge, we conclude that interference of meiotic silencing of unsynapsed autosomes with meiotic sex chromosome inactivation is the most likely cause of asynapsis-related male sterility.
- MeSH
- biologické modely MeSH
- chromatin metabolismus fyziologie MeSH
- chromozomy genetika metabolismus MeSH
- genetická transkripce genetika MeSH
- hybridizace in situ fluorescenční MeSH
- meióza genetika fyziologie MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- párování chromozomů genetika MeSH
- pohlavní chromozomy genetika metabolismus MeSH
- regulace genové exprese MeSH
- translokace genetická genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Tight regulation of testicular gene expression is a prerequisite for male reproductive success, while differentiation of gene activity in spermatogenesis is important during speciation. Thus, comparison of testicular transcriptomes between closely related species can reveal unique regulatory patterns and shed light on evolutionary constraints separating the species. METHODOLOGY/PRINCIPAL FINDINGS: Here, we compared testicular transcriptomes of two closely related mouse species, Mus musculus and Mus spretus, which diverged more than one million years ago. We analyzed testicular expression using tiling arrays overlapping Chromosomes 2, X, Y and mitochondrial genome. An excess of differentially regulated non-coding RNAs was found on Chromosome 2 including the intronic antisense RNAs, intergenic RNAs and premature forms of Piwi-interacting RNAs (piRNAs). Moreover, striking difference was found in the expression of X-linked G6pdx gene, the parental gene of the autosomal retrogene G6pd2. CONCLUSIONS/SIGNIFICANCE: The prevalence of non-coding RNAs among differentially expressed transcripts indicates their role in species-specific regulation of spermatogenesis. The postmeiotic expression of G6pdx in Mus spretus points towards the continuous evolution of X-chromosome silencing and provides an example of expression change accompanying the out-of-the X-chromosomal retroposition.
- MeSH
- antisense RNA genetika MeSH
- chromozom X genetika MeSH
- druhová specificita MeSH
- glukosa-6-fosfátdehydrogenasa genetika MeSH
- malá interferující RNA genetika MeSH
- meióza genetika MeSH
- molekulární evoluce MeSH
- myši MeSH
- nekódující RNA genetika MeSH
- retroelementy genetika MeSH
- testis cytologie metabolismus MeSH
- transkriptom MeSH
- umlčování genů MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Heterozygosity for certain mouse and human chromosomal rearrangements is characterized by the incomplete meiotic synapsis of rearranged chromosomes, by their colocalization with the XY body in primary spermatocytes, and by male-limited sterility. Previously, we argued that such X-autosomal associations could interfere with meiotic sex chromosome inactivation. Recently, supporting evidence has reported modifications of histones in rearranged chromosomes by a process called the meiotic silencing of unsynapsed chromatin (MSUC). Here, we report on the transcriptional down-regulation of genes within the unsynapsed region of the rearranged mouse chromosome 17, and on the subsequent disturbance of X chromosome inactivation. The partial transcriptional suppression of genes in the unsynapsed chromatin was most prominent prior to the mid-pachytene stage of primary spermatocytes. Later, during the mid-late pachytene, the rearranged autosomes colocalized with the XY body, and the X chromosome failed to undergo proper transcriptional silencing. Our findings provide direct evidence on the MSUC acting at the mRNA level, and implicate that autosomal asynapsis in meiosis may cause male sterility by interfering with meiotic sex chromosome inactivation.
- MeSH
- chromatin genetika MeSH
- chromozom X genetika MeSH
- down regulace MeSH
- financování organizované MeSH
- genová přestavba MeSH
- inaktivace chromozomu X MeSH
- lidé MeSH
- meióza genetika MeSH
- mužská infertilita genetika MeSH
- myši inbrední C57BL MeSH
- myši kongenní MeSH
- myši MeSH
- spermatocyty cytologie metabolismus MeSH
- spermatogeneze genetika MeSH
- translokace genetická MeSH
- umlčování genů MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH