The paper presents a validation of novel multichannel ballistocardiography (BCG) measuring system, enabling heartbeat detection from information about movements during myocardial contraction and dilatation of arteries due to blood expulsion. The proposed methology includes novel sensory system and signal processing procedure based on Wavelet transform and Hilbert transform. Because there are no existing recommendations for BCG sensor placement, the study focuses on investigation of BCG signal quality measured from eight different locations within the subject's body. The analysis of BCG signals is primarily based on heart rate (HR) calculation, for which a J-wave detection based on decision-making processes was used. Evaluation of the proposed system was made by comparing with electrocardiography (ECG) as a gold standard, when the averaged signal from all sensors reached HR detection sensitivity higher than 95% and two sensors showed a significant difference from ECG measurement.
- MeSH
- balistokardiografie * metody MeSH
- dospělí MeSH
- elektrokardiografie * metody MeSH
- lidé MeSH
- mladý dospělý MeSH
- počítačové zpracování signálu MeSH
- srdeční frekvence * fyziologie MeSH
- vlnková analýza MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
Aim of this paper is to evaluate short and long-term changes in T2 relaxation times after radiotherapy in patients with low and intermediate risk localized prostate cancer. A total of 24 patients were selected for this retrospective study. Each participant underwent 1.5T magnetic resonance imaging on seven separate occasions: initially after the implantation of gold fiducials, the required step for Cyberknife therapy guidance, followed by MRI scans two weeks post-therapy and monthly thereafter. As part of each MRI scan, the prostate region was manually delineated, and the T2 relaxation times were calculated for quantitative analysis. The T2 relaxation times between individual follow-ups were analyzed using Repeated Measures Analysis of Variance that revealed a significant difference across all measurements (F (6, 120) = 0.611, p << 0.001). A Bonferroni post hoc test revealed significant differences in median T2 values between the baseline and subsequent measurements, particularly between pre-therapy (M0) and two weeks post-therapy (M1), as well as during the monthly interval checks (M2 - M6). Some cases showed a delayed decrease in relaxation times, indicating the prolonged effects of therapy. The changes in T2 values during the course of radiotherapy can help in monitoring radiotherapy response in unconfirmed patients, quantifying the scarring process, and recognizing the therapy failure.
- Publikační typ
- časopisecké články MeSH
Analysis of biomedical signals is a very challenging task involving implementation of various advanced signal processing methods. This area is rapidly developing. This paper is a Part III paper, where the most popular and efficient digital signal processing methods are presented. This paper covers the following bioelectrical signals and their processing methods: electromyography (EMG), electroneurography (ENG), electrogastrography (EGG), electrooculography (EOG), electroretinography (ERG), and electrohysterography (EHG).
Advanced signal processing methods are one of the fastest developing scientific and technical areas of biomedical engineering with increasing usage in current clinical practice. This paper presents an extensive literature review of the methods for the digital signal processing of cardiac bioelectrical signals that are commonly applied in today's clinical practice. This work covers the definition of bioelectrical signals. It also covers to the extreme extent of classical and advanced approaches to the alleviation of noise contamination such as digital adaptive and non-adaptive filtering, signal decomposition methods based on blind source separation and wavelet transform.
- MeSH
- algoritmy * MeSH
- elektrokardiografie * MeSH
- lidé MeSH
- počítačové zpracování signálu MeSH
- srdce MeSH
- vlnková analýza MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH