The phenology of wood formation is a critical process to consider for predicting how trees from the temperate and boreal zones may react to climate change. Compared to leaf phenology, however, the determinism of wood phenology is still poorly known. Here, we compared for the first time three alternative ecophysiological model classes (threshold models, heat-sum models and chilling-influenced heat-sum models) and an empirical model in their ability to predict the starting date of xylem cell enlargement in spring, for four major Northern Hemisphere conifers (Larix decidua, Pinus sylvestris, Picea abies and Picea mariana). We fitted models with Bayesian inference to wood phenological data collected for 220 site-years over Europe and Canada. The chilling-influenced heat-sum model received most support for all the four studied species, predicting validation data with a 7.7-day error, which is within one day of the observed data resolution. We conclude that both chilling and forcing temperatures determine the onset of wood formation in Northern Hemisphere conifers. Importantly, the chilling-influenced heat-sum model showed virtually no spatial bias whichever the species, despite the large environmental gradients considered. This suggests that the spring onset of wood formation is far less affected by local adaptation than by environmentally driven plasticity. In a context of climate change, we therefore expect rising winter-spring temperature to exert ambivalent effects on the spring onset of wood formation, tending to hasten it through the accumulation of forcing temperature, but imposing a higher forcing temperature requirement through the lower accumulation of chilling.
- MeSH
- Bayesova věta MeSH
- biologické modely * MeSH
- cévnaté rostliny růst a vývoj MeSH
- dřevo růst a vývoj MeSH
- klimatické změny MeSH
- roční období MeSH
- teplota * MeSH
- xylém růst a vývoj MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
- Kanada MeSH
Peroxiredoxins (Prxs) are enzymatic antioxidants widely distributed in biological kingdoms, which constitute a family of heme-free peroxidases that reduce alkyl hydroperoxides and hydrogen peroxide. In this paper, an open reading frame (ORF) of 639 bp, which encoded a protein of 213 amino acid residues, was cloned from Pseudomonas fluorescens GcM5-1A carried by pine wood nematode. Amino acid sequence alignment showed that the encoded protein shared 99, 97, and 97 % identity with the thiol-specific antioxidant protein LsfA of P. fluorescens Q2-87, the peroxiredoxin of Pseudomonas sp. GM17 and 1-Cys peroxiredoxin of P. fluorescens Pf 0-1, respectively. The ORF was cloned into expressing vector pET-15b and introduced into Escherichia coli BL21 (DE3). Overexpression of a 27-kDa protein was achieved by IPTG induction. The recombinant protein was purified by affinity chromatography on a Ni(2+) matrix column. Non-reducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis indicated that part of the recombinant appeared in dimer form. Bioassay results showed that purified recombinant protein had both peroxidase and thioredoxin activity. Furthermore, E. coli expressing the ORF showed tolerance to hydrogen peroxide stress, which indicated that the gene might help P. fluorescens GcM5-1A resist hydrogen peroxide generated by host pines after pine wood nematode associated with this bacterium infected pine trees.
- MeSH
- bakteriální proteiny chemie genetika izolace a purifikace metabolismus MeSH
- Escherichia coli genetika metabolismus MeSH
- hlístice mikrobiologie MeSH
- klonování DNA MeSH
- molekulární sekvence - údaje MeSH
- molekulová hmotnost MeSH
- otevřené čtecí rámce MeSH
- peroxiredoxiny chemie genetika izolace a purifikace metabolismus MeSH
- Pseudomonas fluorescens chemie enzymologie genetika MeSH
- rekombinantní proteiny chemie genetika izolace a purifikace metabolismus MeSH
- sekvence aminokyselin MeSH
- sekvenční seřazení MeSH
- stabilita enzymů MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH