Cytokinins (CKs) are a chemically diverse class of plant growth regulators, exhibiting wide-ranging actions on plant growth and development, hence their exploitation in agriculture for crop improvement and management. Their coordinated regulatory effects and cross-talk interactions with other phytohormones and signaling networks are highly sophisticated, eliciting and controlling varied biological processes at the cellular to organismal levels. In this review, we briefly introduce the mode of action and general molecular biological effects of naturally occurring CKs before highlighting the great variability in the response of fruit crops to CK-based innovations. We present a comprehensive compilation of research linked to the application of CKs in non-model crop species in different phases of fruit production and management. By doing so, it is clear that the effects of CKs on fruit set, development, maturation, and ripening are not necessarily generic, even for cultivars within the same species, illustrating the magnitude of yet unknown intricate biochemical and genetic mechanisms regulating these processes in different fruit crops. Current approaches using genomic-to-metabolomic analysis are providing new insights into the in planta mechanisms of CKs, pinpointing the underlying CK-derived actions that may serve as potential targets for improving crop-specific traits and the development of new solutions for the preharvest and postharvest management of fruit crops. Where information is available, CK molecular biology is discussed in the context of its present and future implications in the applications of CKs to fruits of horticultural significance.
- MeSH
- cytokininy chemie metabolismus farmakologie MeSH
- molekulární struktura MeSH
- ovoce účinky léků růst a vývoj metabolismus MeSH
- regulátory růstu rostlin chemie metabolismus farmakologie MeSH
- rostliny účinky léků metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Clonal propagation plays a critical integral role in the growth and success of a global multi-billion dollar horticulture industry through a constant supply of healthy stock plants. The supply chain depends on continuously improving the micropropagation process, thus, understanding the physiology of in vitro plants remains a core component. We evaluated the influence of exogenously applied cytokinins (CKs, N6-benzyladenine = BA, isopentenyladenine = iP, meta-topolin = mT, 6-(3-hydroxybenzylamino)-9-(tetrahydropyran-2-yl)purine = mTTHP) in Murashige and Skoog (MS)-supplemented media on organogenic response and accumulation of endogenous CK and indole-3-acetic acid (IAA) metabolites. The highest shoot proliferation (30 shoots/explant) was obtained with 20 μM mT treatment. However, the best quality regenerants were produced in 10 μM mT treatment. Rooting of Amelanchier alnifolia in vitro plantlets was observed at the lowest CK concentrations, with the highest root proliferation (3 roots/explant) in 1 μM mTTHP regenerants. Similar to the organogenic response, high levels of endogenous bioactive CK metabolites (free bases, ribosides, and nucleotides) were detected in mT and mTTHP-derived regenerants. The level of O-glucosides was also comparatively high in these cultures. All CK-treated plants had high levels of endogenous free IAA compared to the control. This may suggest an influence of CKs on biosynthesis of IAA.
- MeSH
- cytokininy farmakologie MeSH
- ovoce růst a vývoj MeSH
- Rosaceae růst a vývoj MeSH
- Publikační typ
- časopisecké články MeSH
Cryptostephanus vansonii I. Verd., an endemic Amaryllidaceae species from Zimbabwe, was evaluated for its acetylcholinesterase (AChE) inhibitory and cytotoxicity properties using Ellman's colorimetric method and the tetrazolium-based colorimetric assay against Vero monkey kidney cells, respectively. The plant extracts were also evaluated for their antibacterial activity against five bacteria. Furthermore, phytochemical profiles of the extracts were determined using ultra-high performance liquid chromatography coupled with tandem mass spectrometry analysis. A plant part-dependent AChE inhibitory activity was observed, in the order, root > rhizome > basal leaf > leaf. Overall, C. vansonii extracts exhibited better antibacterial activity against Gram-negative compared with Gram-positive bacteria. Cytotoxic effects were not detected in Vero monkey kidney cell lines suggesting the possible absence of toxophores in C. vansonii extracts. Similar to the trend in biological activity, a distinct plant part-dependent variation in hydroxybenzoates, hydroxycinnamates and flavonoids was observed in the plant extracts. In addition, 5-hydroxymetylfurfural and eucomic acid were detected in the different plant parts of C. vansonii. The results of the present study provide valuable AChE inhibition activity, toxicological and phytochemical profiles of C. vansonii. Further studies on isolation of bioactive compounds and their subsequent evaluation in other pharmacological and toxicological model systems are required. Copyright © 2017 John Wiley & Sons, Ltd.
- MeSH
- acetylcholinesterasa metabolismus MeSH
- antibakteriální látky farmakologie MeSH
- Bacteria účinky léků MeSH
- cholinesterasové inhibitory chemie farmakologie MeSH
- flavonoidy farmakologie MeSH
- fytonutrienty farmakologie MeSH
- liliovité chemie MeSH
- listy rostlin chemie MeSH
- rostlinné extrakty farmakologie MeSH
- Publikační typ
- časopisecké články MeSH