PURPOSE: Water removal is one of the computational bottlenecks in the processing of high-resolution MRSI data. The purpose of this work is to propose an approach to reduce the computing time required for water removal in large MRS data. METHODS: In this work, we describe a singular value decomposition-based approach that uses the partial position-time separability and the time-domain linear predictability of MRSI data to reduce the computational time required for water removal. Our approach arranges MRS signals in a Casorati matrix form, applies low-rank approximations utilizing singular value decomposition, removes residual water from the most prominent left-singular vectors, and finally reconstructs the water-free matrix using the processed left-singular vectors. RESULTS: We have demonstrated the effectiveness of our proposed algorithm for water removal using both simulated and in vivo data. The proposed algorithm encompasses a pip-installable tool ( https://pypi.org/project/CSVD/), available on GitHub ( https://github.com/amirshamaei/CSVD), empowering researchers to use it in future studies. Additionally, to further promote transparency and reproducibility, we provide comprehensive code for result replication. CONCLUSIONS: The findings of this study suggest that the proposed method is a promising alternative to existing water removal methods due to its low processing time and good performance in removing water signals.
PURPOSE: The aims of this work are (1) to explore deep learning (DL) architectures, spectroscopic input types, and learning designs toward optimal quantification in MR spectroscopy of simulated pathological spectra; and (2) to demonstrate accuracy and precision of DL predictions in view of inherent bias toward the training distribution. METHODS: Simulated 1D spectra and 2D spectrograms that mimic an extensive range of pathological in vivo conditions are used to train and test 24 different DL architectures. Active learning through altered training and testing data distributions is probed to optimize quantification performance. Ensembles of networks are explored to improve DL robustness and reduce the variance of estimates. A set of scores compares performances of DL predictions and traditional model fitting (MF). RESULTS: Ensembles of heterogeneous networks that combine 1D frequency-domain and 2D time-frequency domain spectrograms as input perform best. Dataset augmentation with active learning can improve performance, but gains are limited. MF is more accurate, although DL appears to be more precise at low SNR. However, this overall improved precision originates from a strong bias for cases with high uncertainty toward the dataset the network has been trained with, tending toward its average value. CONCLUSION: MF mostly performs better compared to the faster DL approach. Potential intrinsic biases on training sets are dangerous in a clinical context that requires the algorithm to be unbiased to outliers (i.e., pathological data). Active learning and ensemble of networks are good strategies to improve prediction performances. However, data quality (sufficient SNR) has proven as a bottleneck for adequate unbiased performance-like in the case of MF.