The phenylpyrazole fipronil is an insecticide that inhibits γ -amino-butyric acid (GABA) ionotropic receptors in the central nervous system. Experimental evidence suggests that fipronil acts as a neurotoxin and it is implicated in neurodegenerative diseases; however, the mechanisms of neurotoxicity are not fully elucidated. The objective of this study was to quantify mechanisms of fipronil-induced neurotoxicity in dopamine cells. Rat primary immortalized mesencephalic dopaminergic cells (N27) were treated with fipronil (0.25 up to 500 μM depending on the assay). We measured endpoints related to mitochondrial bioenergetics, mitophagy, mitochondrial membrane potential, and ATP production in addition to discerning transcriptome responses to the pesticide. Fipronil reduced cell viability at 500 μM after 24 h exposure and caspase 3/7 activity was significant increased after 6 and 12 h by 250 and 500 μM fipronil. Subsequent endpoints were thus assessed at concentrations that were below cytotoxicity. We measured oxidative respiration of N27 cells following a 24 h exposure to one dose of either 0.25, 2.5, 25, or 50 μM fipronil. Oxygen consumption rates (OCR) were not different between vehicle-control and 0.25 or 2.5 μM fipronil treatments, but there was a ∼40-60 % reduction in basal respiration, as well as reduced oligomycin-induced ATP production at 50 μM. The reduction in OCR is hypothesized to be related to lower mitochondrial mass due to mitophagy. Mitochondrial membrane potential was also sensitive to fipronil, and it was compromised at concentrations of 2.5 μM and above. To further elucidate the mechanisms linked to neurotoxicity, we conducted transcriptomics in dopamine cells following treatment with 25 μM fipronil. Fipronil suppressed transcriptional networks associated with mitochondria (damage, depolarization, permeability, and fission), consistent with its effects on mitochondrial membrane potential. Altered gene networks also included those related to Alzheimer disease, inflammatory disease, nerve fiber degeneration, and neurofibrillary tangles. This study clarifies molecular targets of fipronil-induced neurotoxicity and supports, through multiple lines of evidence, that fipronil acts as a mitochondrial toxicant in dopamine cells. This is relevant to neurodegenerative diseases like Parkinson's disease as exposure to fipronil is associated with the progressive loss of nigrostriatal dopaminergic neurons in rodents.
- MeSH
- dopaminergní neurony účinky léků metabolismus MeSH
- insekticidy toxicita MeSH
- krysa rodu rattus MeSH
- membránový potenciál mitochondrií účinky léků fyziologie MeSH
- mitochondrie účinky léků metabolismus MeSH
- pyrazoly toxicita MeSH
- transformované buněčné linie MeSH
- transkriptom účinky léků fyziologie MeSH
- viabilita buněk účinky léků fyziologie MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Among the benzotriazole ultraviolet stabilizers (BUVSs), UV-234 and UV-320 are frequently detected in aquatic ecosystem. Despite the fact that these chemicals are present in low ng/L levels in surface water, they show high bio-accumulation potential and pose exposure risks to aquatic organisms. However, there are limited toxicological data available in fish. In this study, zebrafish embryos were exposed to 0.01, 0.1 and 1 μM UV-234 or UV-320 for up to 6 days. Developmental toxicity as well as effects on mitochondrial bioenergetics, immune system responses, and locomotor activity in zebrafish were measured. After UV-234 treatment (0.1-1 μM), hatching time of embryos was increased compared to controls. There was also a ∼20-40% reduction in non-mitochondrial respiration and oligomycin-dependent mitochondrial respiration in embryos treated with 1 μM UV-234 for 24 and 48 h respectively; conversely basal respiration and non-mitochondrial respiration were increased ∼20-30% in embryos treated with 1 μM UV-320 at 48 h. Transcript levels of sod1 were down-regulated with BUVSs while sod2 mRNA was highly up-regulated with both UV-234 and UV-320, suggesting an oxidative damage response. Considering that mitochondrial signaling regulates innate immune pathways, we measured the expression of immune related transcripts (tlr5a, tlr5b, mmp9, il8, tnfa, cxcl-C1c, nfkb1, and ifng). Of these, only il8 and cxcl-C1c mRNA were decreased in response to 0.1 μM UV-320. To associate early molecular events with behavior, locomotor activity was assessed. UV-234 reduced larval activity in a dark photokinesis assay by ∼15%, however behavioral responses at environmentally-relevant concentrations of BUVSs were not consistent across experiments nor BUVSs. These data suggest that BUVSs can perturb mitochondrial bioenergetics, embryonic development, and locomotor activity of zebrafish, but these responses appear to be dose-, time- and BUVSs dependent, suggesting these chemicals may have unique modes of action.
- MeSH
- dánio pruhované embryologie metabolismus MeSH
- embryonální vývoj účinky léků MeSH
- energetický metabolismus fyziologie MeSH
- larva účinky léků MeSH
- lokomoce fyziologie MeSH
- mitochondrie metabolismus MeSH
- oxidační stres účinky léků MeSH
- přirozená imunita účinky léků MeSH
- triazoly farmakologie MeSH
- ultrafialové záření MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Ziram is a broad spectrum pesticide that belongs to the class of dimethyl-dithiocarbamate (DTC) fungicides. The objectives of this study were to assess the effects of ziram in developing zebrafish. Ziram was highly toxic to zebrafish embryos, with a 96-h LC50 value of 1082.54 nM (∼0.33 mg/L). Zebrafish embryos at 6 h post-fertilization (hpf) were exposed to solvent control (0.1% DMSO), or one dose of 1, 10, 100, and 1000 nM ziram for 96 h. Ziram induced lethality in a dose-dependent manner, decreased hatching rate and heartbeat, and caused wavy deformities at 72 and 96 hpf at 100 and 1000 nM. Basal oxygen consumption rates of zebrafish at 24 hpf were decreased with 1000 nM, suggesting that ziram affects oxidative phosphorylation. We also measured the expression of transcripts associated with the oxidative stress response (sod1 and sod2) and dopamine receptor signaling at ∼96 h of exposure. There was no difference in the expression of genes related to oxidative stress, nor those related to the dopamine system. Locomotor activity was also assessed in larval zebrafish (7 dpf), and ziram increased total activity, the velocity in light zone, and total distance moved at 10 nM, while it decreased the mean time spent in the dark zone at 1 and 10 nM. Behavioral responses were dependent upon the time point and clutch examined. These data demonstrate that ziram negatively impacts embryonic development (i.e. mortality, hatching, heartbeat and notochord development) of zebrafish, decreases basal respiration of embryos, and alters behavioral responses in larvae.
- MeSH
- chování zvířat účinky léků MeSH
- dánio pruhované růst a vývoj metabolismus MeSH
- dopamin genetika MeSH
- embryo nesavčí účinky léků MeSH
- embryonální vývoj účinky léků MeSH
- larva účinky léků MeSH
- lokomoce účinky léků MeSH
- oxidační stres genetika MeSH
- průmyslové fungicidy metabolismus toxicita MeSH
- spotřeba kyslíku účinky léků MeSH
- ziram toxicita MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH