Nicotinic receptors (NRs) play an important role in the cholinergic regulation of heart functions, and converging evidence suggests a diverse repertoire of NR subunits in the heart. A recent hypothesis about the plasticity of β NR subunits suggests that β2-subunits and β4-subunits may substitute for each other. In our study, we assessed the hypothetical β-subunit interchangeability in the heart at the level of mRNA. Using two mutant mice strains lacking β2 or β4 NR subunits, we examined the relative expression of NR subunits and other key cholinergic molecules. We investigated the physiology of isolated hearts perfused by Langendorff's method at basal conditions and after cholinergic and/or adrenergic stimulation. Lack of β2 NR subunit was accompanied with decreased relative expression of β4-subunits and α3-subunits. No other cholinergic changes were observed at the level of mRNA, except for increased M3 and decreased M4 muscarinic receptors. Isolated hearts lacking β2 NR subunit showed different dynamics in heart rate response to indirect cholinergic stimulation. In hearts lacking β4 NR subunit, increased levels of β2-subunits were observed together with decreased mRNA for acetylcholine-synthetizing enzyme and M1 and M4 muscarinic receptors. Changes in the expression levels in β4-/- hearts were associated with increased basal heart rate and impaired response to a high dose of acetylcholine upon adrenergic stimulation. In support of the proposed plasticity of cardiac NRs, our results confirmed subunit-dependent compensatory changes to missing cardiac NRs subunits with consequences on isolated heart physiology.NEW & NOTEWORTHY In the present study, we observed an increase in mRNA levels of the β2 NR subunit in β4-/- hearts but not vice versa, thus supporting the hypothesis of β NR subunit plasticity that depends on the specific type of missing β-subunit. This was accompanied with specific cholinergic adaptations. Nevertheless, isolated hearts of β4-/- mice showed increased basal heart rate and a higher sensitivity to a high dose of acetylcholine upon adrenergic stimulation.
- MeSH
- acetylcholin farmakologie MeSH
- antagonisté muskarinových receptorů farmakologie MeSH
- atropin farmakologie MeSH
- cholinesterasové inhibitory farmakologie MeSH
- hexamethonium farmakologie MeSH
- isoprenalin farmakologie MeSH
- myokard metabolismus MeSH
- myši knockoutované MeSH
- myši MeSH
- neostigmin farmakologie MeSH
- nikotinové receptory metabolismus MeSH
- srdce účinky léků MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Acetylcholine (ACh)-mediated vagal transmission as well as nonneuronal ACh release are considered cardioprotective in pathological situations with increased sympathetic drive such as ischemia-reperfusion and cardiac remodeling. ACh action is terminated by hydrolysis by the cholinesterases (ChEs), acetylcholinesterase, and butyrylcholinesterase. Both ChEs exist in multiple molecular variants either soluble or anchored by specific anchoring proteins like collagen Q (ColQ) anchoring protein and proline-rich membrane anchoring protein (PRiMA). Here we assessed the expression of specific ChE molecular forms in different heart compartments using RT-qPCR. We show that both ChEs are expressed in all heart compartments but display different expression patterns. The acetylcholinesterase-T variant together with PRiMA and ColQ is predominantly expressed in rat atria. Butylcholinesterase is found in all heart compartments and is accompanied by both PRiMA and ColQ anchors. Its expression in the ventricular system suggests involvement in the nonneuronal cholinergic system. Additionally, two PRiMA variants are detected throughout the rat heart.
- MeSH
- acetylcholin metabolismus MeSH
- acetylcholinesterasa analýza metabolismus MeSH
- butyrylcholinesterasa analýza metabolismus MeSH
- GPI-vázané proteiny analýza metabolismus MeSH
- izoenzymy analýza metabolismus MeSH
- kolagen analýza metabolismus MeSH
- krysa rodu rattus MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- membránové proteiny analýza metabolismus MeSH
- myokard enzymologie MeSH
- potkani Wistar MeSH
- proteiny nervové tkáně analýza metabolismus MeSH
- stanovení celkové genové exprese MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH