Phosphofructokinase-1 (PFK1) catalyzes the rate-limiting step of glycolysis, committing glucose to conversion into cellular energy. PFK1 is highly regulated to respond to the changing energy needs of the cell. In bacteria, the structural basis of PFK1 regulation is a textbook example of allostery; molecular signals of low and high cellular energy promote transition between an active R-state and inactive T-state conformation, respectively. Little is known, however, about the structural basis for regulation of eukaryotic PFK1. Here, we determine structures of the human liver isoform of PFK1 (PFKL) in the R- and T-state by cryoEM, providing insight into eukaryotic PFK1 allosteric regulatory mechanisms. The T-state structure reveals conformational differences between the bacterial and eukaryotic enzyme, the mechanisms of allosteric inhibition by ATP binding at multiple sites, and an autoinhibitory role of the C-terminus in stabilizing the T-state. We also determine structures of PFKL filaments that define the mechanism of higher-order assembly and demonstrate that these structures are necessary for higher-order assembly of PFKL in cells.
- MeSH
- adenosintrifosfát * metabolismus MeSH
- alosterická regulace MeSH
- elektronová kryomikroskopie MeSH
- fosfofruktokinasa-1 * metabolismus chemie genetika MeSH
- glykolýza MeSH
- játra enzymologie metabolismus MeSH
- konformace proteinů MeSH
- lidé MeSH
- molekulární modely MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Atomic characterization of large nonfibrillar aggregates of amyloid polypeptides cannot be determined by experimental means. Starting from β-rich aggregates of Y and elongated topologies predicted by coarse-grained simulations and consisting of more than 100 Aβ16-22 peptides, we performed atomistic molecular dynamics (MD), replica exchange with solute scaling (REST2), and umbrella sampling simulations using the CHARMM36m force field in explicit solvent. Here, we explored the dynamics within 3 μs, the free energy landscape, and the potential of mean force associated with either the unbinding of one single peptide in different configurations within the aggregate or fragmentation events of a large number of peptides. Within the time scale of MD and REST2, we find that the aggregates experience slow global conformational plasticity, and remain essentially random coil though we observe slow beta-strand structuring with a dominance of antiparallel beta-sheets over parallel beta-sheets. Enhanced REST2 simulation is able to capture fragmentation events, and the free energy of fragmentation of a large block of peptides is found to be similar to the free energy associated with fibril depolymerization by one chain for longer Aβ sequences.
Expertomica Cells is a program for the creation and analysis of pedigree plots from time-lapse micrographs of cell monolayers. It enables recording the basic events in a cell cycle, cell neighbourhoods and spatial migration. The output is both numeric and graphical. The software helps to lower main hurdles in the manual analysis of cell monolayer development to practical limits; it reduces the operator processing time of typical experiment containing 5000 consecutive images from the usual 3 months to 3-10 h. Availability and Implementation: Freely available on the web at http://www.expertomicacells.tk or http://www.expertomicacells.wu.cz. The source code is implemented in JAVA 6 and supported by Linux, Mac and MS Windows. SUPPLEMENTARY INFORMATION: Supplementary data available at Bioinformatics online.