Cystathionine beta-synthase (CBS) deficiency is a rare inherited disorder in the methionine catabolic pathway, in which the impaired synthesis of cystathionine leads to accumulation of homocysteine. Patients can present to many different specialists and diagnosis is often delayed. Severely affected patients usually present in childhood with ectopia lentis, learning difficulties and skeletal abnormalities. These patients generally require treatment with a low-methionine diet and/or betaine. In contrast, mildly affected patients are likely to present as adults with thromboembolism and to respond to treatment with pyridoxine. In this article, we present recommendations for the diagnosis and management of CBS deficiency, based on a systematic review of the literature. Unfortunately, the quality of the evidence is poor, as it often is for rare diseases. We strongly recommend measuring the plasma total homocysteine concentrations in any patient whose clinical features suggest the diagnosis. Our recommendations may help to standardise testing for pyridoxine responsiveness. Current evidence suggests that patients are unlikely to develop complications if the plasma total homocysteine concentration is maintained below 120 μmol/L. Nevertheless, we recommend keeping the concentration below 100 μmol/L because levels fluctuate and the complications associated with high levels are so serious.
14 stran : ilustrace ; 30 cm
Publikace se zabývá problematikou remetylačních poruch.
- MeSH
- homocystein MeSH
- metabolické nemoci MeSH
- methionin MeSH
- vitamin B 12 MeSH
- Publikační typ
- populární práce MeSH
- Konspekt
- Patologie. Klinická medicína
- NLK Obory
- vnitřní lékařství
- NLK Publikační typ
- brožury
Homozygosity or compound heterozygosity for the c.833T>C transition (p.I278 T) in the cystathionine beta-synthase (CBS) gene represents the most common cause of pyridoxine-responsive homocystinuria in Western Eurasians. However, the frequency of the pathogenic c.833C allele, as observed in healthy newborns from several European countries (q(c.833C) approximately equals 3.3 x 10(-3)), is approximately 20-fold higher than expected on the basis of the observed number of symptomatic homocystinuria patients carrying this mutation (q(c.833C) approximately equals 0.18 x 10(-3)), implying clinical underascertainment. Intriguingly, the c.833C mutation is also present in combination with a 68-bp insertion, c.[833C; 844_845ins68], in a substantial proportion of chromosomes from nonhomocystinuric individuals worldwide. We have sought to study the relationship between the pathogenic and nonpathogenic c.833C-bearing chromosomes and to determine whether the pathogenic c.[833C; -] chromosomes are identical-by-descent or instead arose by recurrent mutation. Initial haplotype analysis of 780 randomly selected Czech and sub-Saharan African wild-type chromosomes, employing 12 intragenic markers, revealed 29 distinct CBS haplotypes, of which 10 carried the c.[833C; 844_845ins68] combination; none carried an isolated c.833C or c.844_845ins68 mutation. Subsequent examination of 69 pathogenic c.[833C; -] chromosomes, derived from homocystinuria patients of predominantly European origin, disclosed three unrelated haplotypes that differed from their wild-type counterparts by virtue of the presence of c.833C, thereby indicating that c.833T>C transition has occurred repeatedly and independently in the past. Since c.833T does not reside within an obvious mutational hotspot, we surmise that the three pathogenic and comparatively prevalent c.[833C; -] chromosomes may have originated by recurrent gene conversion employing the common nonpathogenic c.[833C; 844_845ins68] chromosomes as templates.
- MeSH
- cystathionin-beta-synthasa genetika MeSH
- financování organizované MeSH
- frekvence genu MeSH
- genetická variace MeSH
- genetické testování MeSH
- genová konverze fyziologie MeSH
- haplotypy MeSH
- homocystinurie genetika MeSH
- lidé MeSH
- molekulární sekvence - údaje MeSH
- sekvence nukleotidů MeSH
- Check Tag
- lidé MeSH
- Geografické názvy
- Afrika MeSH
- Evropa MeSH