We aimed to prepare novel dibenzo [a,d][7]annulen derivatives that act on N-methyl-d-aspartate (NMDA) receptors with potential neuroprotective effects. Our approach involved modifying the tropane moiety of MK-801, a potent open-channel blocker known for its psychomimetic side effects, by introducing a seven-membered ring with substituted base moieties specifically to alleviate these undesirable effects. Our in silico analyses showed that these derivatives should have high gastrointestinal absorption and cross the blood-brain barrier (BBB). Our pharmacokinetic studies in rats supported this conclusion and confirmed the ability of leading compounds 3l and 6f to penetrate the BBB. Electrophysiological experiments showed that all compounds exhibited different inhibitory activity towards the two major NMDA receptor subtypes, GluN1/GluN2A and GluN1/GluN2B. Of the selected compounds intentionally differing in the inhibitory efficacy, 6f showed high relative inhibition (∼90 % for GluN1/GluN2A), while 3l showed moderate inhibition (∼50 %). An in vivo toxicity study determined that compounds 3l and 6f were safe at 10 mg/kg doses with no adverse effects. Behavioral studies demonstrated that these compounds did not induce hyperlocomotion or impair prepulse inhibition of startle response in rats. Neuroprotective assays using a model of NMDA-induced hippocampal neurodegeneration showed that compound 3l at a concentration of 30 μM significantly reduced hippocampal damage in rats. These results suggest that these novel dibenzo [a,d][7]annulen derivatives are promising candidates for developing NMDA receptor-targeted therapies with minimal psychotomimetic side effects.
- MeSH
- dizocilpinmaleát * farmakologie MeSH
- hematoencefalická bariéra metabolismus účinky léků MeSH
- krysa rodu rattus MeSH
- lidé MeSH
- molekulární struktura MeSH
- neuroprotektivní látky * farmakologie chemie chemická syntéza MeSH
- potkani Sprague-Dawley MeSH
- receptory N-methyl-D-aspartátu * antagonisté a inhibitory metabolismus MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Lenvatinib is an orally effective tyrosine kinase inhibitor used to treat several types of tumors, including progressive, radioiodine-refractory differentiated thyroid cancer and advanced renal cell carcinoma. Although this drug is increasingly used in therapy, its metabolism and effects on the organism are still not described in detail. Using the rat as an experimental animal model, this study aimed to investigate the metabolism of lenvatinib by rat microsomal enzymes and cytochrome P450 (CYPs) enzymes recombinantly expressed in SupersomesTMin vitro and to assess the effect of lenvatinib on rat CYP expression in vivo. Two metabolites, O-desmethyl lenvatinib, and lenvatinib N-oxide, were produced by rat CYPs in vitro. CYP2A1 and 2C12 were found to be the most effective in forming O-desmethyl lenvatinib, while CYP3A2 was found to primarily form lenvatinib N-oxide. The administration of lenvatinib to rats caused changes in the expression of mRNA and protein, as well as the activity of various CYPs, particularly in an increase in CYP1A1. Thus, the administration of lenvatinib to rats has an impact on the level of CYPs.
- MeSH
- chinoliny * farmakologie MeSH
- fenylmočovinové sloučeniny * farmakologie MeSH
- inhibitory proteinkinas * farmakologie MeSH
- inhibitory tyrosinkinasy MeSH
- jaterní mikrozomy účinky léků MeSH
- játra * účinky léků metabolismus MeSH
- krysa rodu rattus MeSH
- messenger RNA metabolismus genetika MeSH
- oxidace-redukce * účinky léků MeSH
- potkani Sprague-Dawley MeSH
- systém (enzymů) cytochromů P-450 * metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
N-methyl-D-aspartate receptors (NMDARs) play a significant role in developing several central nervous system (CNS) disorders. Currently, memantine, used for treating Alzheimer's disease, and ketamine, known for its anesthetic and antidepressant properties, are two clinically used NMDAR open-channel blockers. However, despite extensive research into NMDAR modulators, many have shown either harmful side effects or inadequate effectiveness. For instance, dizocilpine (MK-801) is recognized for its powerful psychomimetic effects due to its high-affinity and nearly irreversible inhibition of the GluN1/GluN2 NMDAR subtypes. Unlike ketamine, memantine and MK-801 also act through a unique, low-affinity "membrane-to-channel inhibition" (MCI). We aimed to develop an open-channel blocker based on MK-801 with distinct inhibitory characteristics from memantine and MK-801. Our novel compound, K2060, demonstrated effective voltage-dependent inhibition in the micromolar range at key NMDAR subtypes, GluN1/GluN2A and GluN1/GluN2B, even in the presence of Mg2+. K2060 showed reversible inhibitory dynamics and a partially trapping open-channel blocking mechanism with a significantly stronger MCI than memantine. Using hippocampal slices, 30 μM K2060 inhibited excitatory postsynaptic currents in CA1 hippocampal neurons by ∼51 %, outperforming 30 μM memantine (∼21 % inhibition). K2060 exhibited No Observed Adverse Effect Level (NOAEL) of 15 mg/kg upon intraperitoneal administration in mice. Administering K2060 at a 10 mg/kg dosage resulted in brain concentrations of approximately 2 μM, with peak concentrations (Tmax) achieved within 15 minutes. Finally, applying K2060 with trimedoxime and atropine in mice exposed to tabun improved treatment outcomes. These results underscore K2060's potential as a therapeutic agent for CNS disorders linked to NMDAR dysfunction.
- MeSH
- antagonisté excitačních aminokyselin farmakologie MeSH
- dizocilpinmaleát * farmakologie MeSH
- excitační postsynaptické potenciály účinky léků MeSH
- hipokampus účinky léků metabolismus MeSH
- lidé MeSH
- memantin farmakologie MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- neurony účinky léků metabolismus MeSH
- receptory N-methyl-D-aspartátu * antagonisté a inhibitory metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH